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1.1: Sets and Operations on Sets. Quantifiers

Sets and Operations on Sets

A set is a collection of objects of any specified kind. Sets are usually denoted by capitals. The objects belonging to a set are called
its elements or members. We write  if  is a member of , and  if it is not.

 means that  consists of the elements . In particular,  consists of  and ; 
consists of  alone. The empty or void set, , has no elements. Equality ( ) means logical identity.

If all members of  are also in , we call  a subset of  (and  is a superset of ), and write  or . It is an axiom
that the sets  and  are equal ( ) if they have the same members, i.e.,

If, however,  but  (i.e., B has some elements not in A), we call  a proper subset of  and write  or . “
” is called the inclusion relation.

Set equality is not affected by the order in which elements appear. Thus . Not so for ordered pairs . For such pairs,

but not if  and . Similarly, for ordered n-tuples,

We write  for "the set of all  satisfying the condition ." Similarly,  is the set of all ordered pairs for
which  holds;  is the set of those  in  for which  is true.

For any sets  and , we define their union , intersection , difference , and Cartesian product (or cross
product) , as follows:

 is the set of all members of  and  taken together:

 is the set of all common elements of  and :

 consists of those  that are not in :

 is the set of all ordered pairs , with  and :

Similarly,  is the set of all ordered n-tuples  such that . We write  for 
 (  factors).

 and  are said to be disjoint iff  (no common elements). Otherwise, we say that  meets  ( ). Usually
all sets involved are subsets of a "master set" , called the space. Then we write  for , and call  the complement of 

 ( in ). Various other notations are likewise in use.

Let . Then

If  is the set of all naturals (positive integers), we could also write

x ∈ A x A x ∉ A

A= {a, b, c, . . . } A a, b, c, . . . A= {a, b} a b A= {p}
p ∅ =

A B A B B A A⊆B B⊇A

A B A=B

A⊆B and B⊆A. (1.1.1)

A⊆B B ⊈ A A B A⊂B B⊃A

⊆

a, b = b, a (a, b)

(a, b) = (x, y) iff a= x and b = y, (1.1.2)

a= y b = x

( , , . . . , ) = ( , , . . . , ) iff = , k= 1, 2, . . . ,n.a1 a2 an x1 x2 xn ak xk (1.1.3)

x|P (x) x P (x) (x, y)|P (x, y)
P (x, y) x ∈ A|P (x) x A P (x)

A B A∪B A∩B A=B

A×B

A∪B A B

{x|x ∈ A or x ∈ B}. (1.1.4)

A∩B A B

{x ∈ A|x ∈ B}. (1.1.5)

A−B x ∈ A B

{x ∈ A|x ∉ B}. (1.1.6)

A×B (x, y) x ∈ A y ∈ B

{(x, y) x ∈ A, y ∈ B}. (1.1.7)

× ×. . . ×A1 A2 An ( , . . . , )x1 xn ∈ , k= 1, 2, . . . ,nxk Ak An

A×A×. . . ×A n

A B A∩B  = ∅ A B A∩B≠ ∅
S −X S−X −X

X S

 Example 1.1.1

A= {1, 2, 3},B= {2, 4}

A∪B= {1, 2, 3, 4}, A∩B−{2}, A−B= {1, 3}, (1.1.8)

A×B= {(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4)}. (1.1.9)

N

A= {x ∈N |x < 4}. (1.1.10)
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a. ;
b. ;
c. ;
d. ;
e. .

Proof

The proof of (d) is sketched out in Problem 1. The rest is left to the reader.

Because of (c), we may omit brackets in  and ; similarly for four or more sets. More generally, we may
consider whole families of sets, i.e., collections of many (possibly infinitely many) sets. If  is such a family, we define its union, 

, to be the set of all elements , each belonging to at least one set of the family. The intersection of , denoted ,
consists of those  that belong to all sets of the family simultaneously. Instead, we also write

Often we can number the sets of a given family:

More generally, we may denote all sets of a family  by some letter (say, ) with indices  attached to it (the indices may, but
need not, be numbers). The family  then is denoted by  or , where  is a variable index ranging over a suitable set

 of indices ("index notation"). In this case, the union and intersection of  are denoted by such symbols as

If the indices are integers, we may write

For any sets  and  , the following are true:

(If  is the entire space, we may write  for ,  for , etc.

Before proving these laws, we introduce some useful notation.

Logical Quantifiers
From logic we borrow the following abbreviations.

" ..." means "For each member  of , it is true that . . ."

" ..." means "There is at least one  in  such that . . ."

" ..." means "There is a unique  in  such that . . ."

The symbols " " and " " are called the universal and existential quantifiers, respectively. If confusion is ruled out,
we simply write " ," " ," and " " instead. For example, if we agree that , and  denote naturals, then

 Theorem 1.1.1

A∪A=A;A∩A=A

A∪B=B∪A,A∩B=B∩A

(A∪B)∪C =A∪ (B∪C); (A∩B)∩C =A∩ (B∩C)
(A∪B)∩C = (A∩C)∪ (B∩C)
(A∩B)∪C = (A∪C)∩ (B∪C)

A∪B∪C A∩B∩C

M

⋃M x M ⋂M

x

⋃{X|X ∈M} and ⋂{X|X ∈M}, respectively. (1.1.11)

, , . . . , , . . .A1 A2 An (1.1.12)

M X i

M { }Xi { |i ∈ IXi i

I M

⋃{ |i ∈ I} = =⋃ = ;Xi ⋃
i

Xi Xi ⋃
i∈I

Xi (1.1.13)

⋂{ |i ∈ I} = =⋂ = ;Xi ⋂
i

Xi Xi ⋂
i∈I

Xi (1.1.14)

, , , etc.⋃
n=1

m

Xn ⋃
n=1

∞

Xn ⋃
n=k

m

Xn (1.1.15)

 Theorem : De Morgan's Duality Laws1.1.1

S Ai (i ∈ I)

(i) S− = (S−A); (ii) S− = (S− ).⋃
i

Ai ⋂
i

⋂
i

Ai ∪i Ai (1.1.16)

S −Ai S−Ai −⋃Ai S−⋃Ai

(∀x ∈ A) x A

(∃x ∈ A) x A

(∃!x ∈ A) x A

(∀x ∈ A) (∃x ∈ A)
(∀x) (∃x) (∃!x) m n

" (∀n)(∃m) m > n " (1.1.17)
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means "For each natural , there is a natural  such that ." We give some more examples.

Let  be an indexed set family. By definition,  means that  is in at least one of the sets ; in symbols,

Thus we note that

Similarly,

Also note that  iff  is in none of the , i.e.,

Similarly,  iff  fails to be in some . i.e.,

We now use these remarks to prove Theorem 2(i). We have to show that  has the same elements as , i.e., that 
 iff . But, by our definitions, we have

as required.

One proves part (ii) of Theorem 2 quite similarly. (Exercise!)

We shall now dwell on quantifiers more closely. Sometimes a formula  holds not for all , but only for those with an
additional property .

This will be written as

where the vertical stroke stands for "such that." For example, if  is again the naturals, then the formula

means "for each  such that ." In other words, for naturals,  (the arrow stands for "implies"). Thus
(1) can also be written as

In mathematics, we often have to form the negation of a formula that starts with one or several quantifiers. It is noteworthy, then,
that each universal quantifier is replaced by an existential one (and vice versa), followed by the negation of the subsequent part of
the formula. For example, in calculus, a real number  is called the limit of a sequence  iff the following is true:

For every real , there is a natural  (depending on ) such that, for all natural , we have .

If we agree that lower case letters (possibly with subscripts) denote real numbers, and that ,  denote naturals , this
sentence can be written as

Here the expressions " " and " " stand for " " and " ," respectively (such self-explanatory
abbreviations will also be used in other similar cases).

n m m > n

M= { |i ∈ I}Ai x ∈⋃Ai x Ai

(∃i ∈ I) x ∈ .Ai (1.1.18)

x ∈ iff [(∃i ∈ I)x ∈ ].⋃
i∈I

Ai Ai (1.1.19)

x ∈ iff [(∀i ∈ I)x ∈ ].⋂
i

Ai Ai (1.1.20)

x ∉⋃Ai x Ai

(∀i) x ∉ .Ai (1.1.21)

x ∉⋂Ai x Ai

(∃i) x ∉ . (Why?)Ai (1.1.22)

S−⋃Ai ⋂(S− )Ai

x ∈ S−⋃Ai x ∈⋂(S− )Ai

x ∈ S−⋃Ai ⟺ [x ∈ S, x ∉⋃ ]Ai

⟺ (∀i)[x ∈ S, x ∉ ]Ai

⟺ (∀i)x ∈ S−Ai

⟺ x ∈⋂(S− ),Ai

(1.1.23)

P (x) x ∈ A

Q(x)

(∀x ∈ A|Q(x)) P (x), (1.1.24)

N

(∀x ∈N |x > 3) x ≥ 4 (1.1.25)

x ∈N x ≥ 4 x > 3 ⟹ x ≥ 4

(∀x ∈N) x > 3 ⟹ x ≥ 4. (1.1.26)

p , , . . . , , . . .x1 x2 xn

ϵ> 0 k ϵ n> k | −p| < ϵ|xn

n k (n, k ∈ N)

(∀ϵ> 0)(∃k)(∀n> k) | −p| < ϵ.xn (1.1.27)

(∀ϵ> 0) (∀n> k) (∀ϵ|ϵ> 0) (∀n|n> k)
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Now, since (2) states that "for all " something (i.e., the rest of (2)) is true, the negation of (2) starts with "there is an "
(for which the rest of the formula fails). Thus we start with " ," and form the negation of what follows, i.e., of

This negation, in turn, starts with " ," etc. Step by step, we finally arrive at

Note that here the choice of  may depend on k. To stress it, we often write  for . Thus the negation of (2) finally emerges
as

The order in which the quantifiers follow each other is essential. For example, the formula

("each  is exceeded by some ") is true, but

is false. However, two consecutive universal quantifiers (or two consecutive existential ones) may be interchanged. We briefly write

and

does not imply the existence of an  for which  is true. It is only meant to imply that there is no  in  for which  fails.

The latter is true even if ; we then say that " " is vacuously true. For examplek the formula , i.e.,

is always true (vacuously).

This page titled 1.1: Sets and Operations on Sets. Quantifiers is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

ϵ> 0 ϵ> 0
(∃ϵ> 0)

(∃k)(∀n> k) | −p| < ϵ.xn (1.1.28)

(∀k)

(∃ϵ> 0)(∀k)(∃n> k) | −p| ≥ ϵ.xn (1.1.29)

n> k nk n

(∃ϵ> 0)(∀k)(∃ > k) | −p| ≥ ϵ.nk xnk
(1.1.30)

(∀n ∈N)(∃m ∈N) m > n (1.1.31)

n ∈N m ∈N

(∃m ∈N)(∀n ∈N) m > n (1.1.32)

" (∀x, y ∈ A) "  for  " (∀x ∈ A)(∀y ∈ A), " (1.1.33)

" (∃x, y ∈ A) "  for  " (∃x ∈ A)(∃y ∈ A), "  etc. (1.1.34)

x P (x) x A P (x)

A= ∅ (∀x ∈ A) P (x) ∅ ⊆B

(∀x ∈ ∅) x ∈ B (1.1.35)
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1.1.E: Problems in Set Theory (Exercises)

Prove Theorem 1 (show that  is in the left-hand set iff it is in the right-hand set). For example, for  

Prove that 
(i) ; 
(ii)  iff .

Prove that 

 
Also, give three expressions for  and  in terms of complements.

Prove the second duality law (Theorem 2(ii)).

Describe geometrically the following sets on the real line: 

Let  denote the set 

 
(Kuratowski's definition of an ordered pair). 
(i) Which of the following statements are true? 

 
(ii) Prove that  if  and . 
[Hint: Consider separately the two cases  and  noting that   Also note that 

 Exercise 1.1.E. 1

x (d),

x ∈ (A ∪ B) ∩ C ⟺ [x ∈ (A ∪ B) and x ∈ C]

⟺ [(x ∈ A or x ∈ B),  and x ∈ C]

⟺ [(x ∈ A, x ∈ C) or (x ∈ B, x ∈ C)].

 Exercise 1.1.E. 2

−(−A) = A

A ⊆ B −B ⊆ −A

 Exercise 1.1.E. 3

A −B = A ∩ (−B) = (−B) −(−A) = −[(−A) ∪ B]. (1.1.E.1)

A ∩ B A ∪ B,

 Exercise 1.1.E. 4

 Exercise 1.1.E. 5

 (i) {x|x < 0};

 (iii) {x||x −a| < ε};

 (v) {x||x| < 0}.

 (ii) {x||x| < 1};

 (iv) {x|a < x ≤ b}; (1.1.E.2)

 Exercise 1.1.E. 6

(a, b)

{{a}, {a, b}} (1.1.E.3)

 (a) a ∈ (a, b);

 (c) (a, a) = {a};

 (e) {b} ∈ (a, b);

 (b) {a} ∈ (a, b);

 (d) b ∈ (a, b);

 (f) {a, b} ∈ (a, b).

(1.1.E.4)

(a, b) = (u, v) a = u b = v

a = b a ≠ b, {a, a} = {a}. {a} ≠ a. ]
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Describe geometrically the following sets in the -plane. 
(i) ; 
(ii) ; 
(iii) ;
(iii) ; 
(iv) ; 
(vii) ; 
(vii) ; 
(viii) ; 
(ix) .

Prove that 
(i) ; 
(ii) ; 
(iii) ; 
[Hint: In each case, show that an ordered pair  is in the left-hand set iff it is in the right-hand set, treating  as one
element of the Cartesian product. 

Prove the distributive laws 
(i) ; 
(ii) ; 
(iii) ; 
(iv) ; 
(v)  
(vi) .

Prove that 
(i) ; 
(ii) ; 
(iii) ; 

(iv) .

1.1.E: Problems in Set Theory (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 1.1.E. 7

xy

{(x, y)|x < y}

{(x, y)| + < 1}x2 y2

{(x, y)| max(|x|, |y|) < 1}

{(x, y)|y > }x2

{(x, y)|y > }x2

{(x, y)||x| + |y| < 4}

{(x, y)|(x −2 +(y +5 ≤ 9})2 )2

{(x, y)| −2xy + < 0}x2 y2

{(x, y)| −2xy + = 0}x2 y2

 Exercise 1.1.E. 8

(A ∪ B) ×C = (A ×C) ∪ (B ×C)

(A ∩ B) ×(C ∩ D) = (A ×C) ∩ (B ×D)

(X ×Y ) −( × ) = [(X ∩ ) ×(Y − )] ∪ [(X − ) ×Y ]X ′ Y ′ X ′ Y ′ X ′

(x, y) (x, y)

]

 Exercise 1.1.E. 9

A ∩ ∪ =⋃ (A ∩ )Xi Xi

A ∪ ∩ =⋂ (A ∪ )Xi Xi

(∩ ) −A = ∩ ( −A)Xi Xi

(∪ ) −A = ∪ ( −A)Xi Xi

∩ ∪ ∩ = ( ∪ ) ;Xi Yj ∩i,j Xi Yj

∪ ∩ ∪ = ( ∩ )Xi Yj ∪i,j Xi Yj

 Exercise 1.1.E. 10

(∪ ) ×B =⋃ ( ×B)Ai Ai

(∩ ) ×B = ∩ ( ×B)Ai Ai

( ) ×( ) = ( × )∩iAi ∩jBj ⋂i,j Ai Bi

( ) ×( ) = ( × )∪iAi ⋃j Bj ⋃i,j Ai Bj
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1.2: Relations. Mappings

Relations

In §1, we have already considered sets of ordered pairs, such as Cartesian products  or sets of the form  (cf.
§§1–3, Problem 7). If the pair  is an element of such a set , we write

treating  as one thing. Note that this does not imply that  and  taken separately are members of  (in which case we would
write ). We call ,  the terms of .

In mathematics, it is customary to call any set of ordered pairs a relation. For example, all sets listed in Problem 7 of §§1–3 are
relations. Since relations are sets, equality  for relations means that they consist of the same elements (ordered pairs), i.e.,
that

If , we call  an -relative of ; we also say that  is -related to  or that the relation  holds between  and  (in this
order). Instead of , we also write , and often replace “ ” by special symbols like , , etc. Thus, in case (i) of
Problem 7 above, “ ” means that .

Replacing all pairs  by the inverse pairs , we obtain a new relation, called the inverse of  and denoted .
Clearly,  iff ; thus

Hence , in turn, is the inverse of ; i.e.,

For example, the relations  and  between numbers are inverse to each other; so also are the relations  and  between sets.
(We may treat “ ” as the name of the set of all pairs  such that  in a given space.)

If  contains the pairs , we shall write

To obtain , we simply interchange the upper and lower rows in Equation .

The set of all left terms  of pairs  is called the domain of , denoted . The set of all right terms of these pairs is
called the range of , denoted . Clearly,  iff  for some . In symbols,

In Equation ,  is the upper row, and  is the lower row. Clearly,

For example, if

then

A ×B {(x, y)|P (x, y)}
(x, y) R

(x, y) ∈ R (1.2.1)

(x, y) x y R

x, y ∈ R x y (x, y)

R = S

(x, y) ∈ R ⟺ (x, y) ∈ S (1.2.2)

(x, y) ∈ R y R x y R x R x y

(x, y) ∈ R xRy R < ∼
xRy x < y

(x, y) ∈ R (y, x) R R−1

x yR−1 yRx

= {(x, y)|yRx} = {(y, x)|xRy}.R−1 (1.2.3)

R R−1

( = R.R−1)−1 (1.2.4)

< > ⊆ ⊇
⊆ (X, Y ) X ⊆ Y

R (x, x'), (y, y'), (z, z'), . . .

R =( ) ; e. g. , R =( ) .
x

x′

y

y′

z

z′

…

 

1

2

4

2

1

1

3

1
(1.2.5)

R−1 1.2.1

Definition 1

x (x, y) ∈ R R DR

R D′
R x ∈ DR xRy y

x ∈ ⟺ (∃y) xRy; similarly, y ∈ ⟺ (∃x) xRy.DR D
′

R (1.2.6)

1.2.1 DR D′
R

= and = .DR−1 D
′

R D
′

R−1 DR (1.2.7)

R =( ) ,
1

2

4

2

1

1
(1.2.8)

= = {1, 4} and = = {1, 2}.DR D
′

R−1 D
′

R DR−1 (1.2.9)
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The image of a set  under a relation  (briefly, the  of ) is the set of all -relatives of elements of , denoted 
. The inverse image of  under  is the image of  under the inverse relation, i.e., . If A consists of a single

element, , then  and  are also written  and , respectively, instead of  and .

Let

Then

By definition,  is the set of all -relatives of . Thus

More generally,  means that  for some . In symbols,

Note that  is always defined.

Mappings

We shall now consider an especially important kind of relation.

A relation  is called a mapping (map), or a function, or a transformation, iff every element  has a unique -relative,
so that  consists of a single element. This unique element is denoted by  and is called the function value at  (under 

). Thus  is the only member of .

If, in addition, different elements of  have different images,  is called a one-to-one (or one-one) map. In this case,

equivalently,

In other words, no two pairs belonging to  have the same left, or the same right, terms. This shows that  is one to one iff ,
too, is a map. Mappings are often denoted by the letters , etc.

A mapping  is said to be “from  to ” iff  and ; we then write

If, in particular,  and , we call  a map of  onto , and we write

If  is both onto and one to one, we write

Definition 2

A R R − image A R A

R[A] A R A [A]R−1

A = x R[A] [A]R−1 R[x] [x]R−1 R[x] [x]R−1

 Example 1.2.1

R =( ) , A = {1, 2}, B = {2, 4}.
1

1

1

3

1

4

2

5

2

3

3

4

3

1

3

3

3

5

7

1
(1.2.10)

R[1] = {1, 3, 4};

R[5] = ∅;

[3] = {1, 2, 3};R−1

[A] = {1, 3, 7};R−1

R[2] = {3, 5};

[1] = {1, 3, 7};R−1

[4] = {1, 3};R−1

R[B] = {3, 5}.

R[3] = {1, 3, 4, 5};

[2] = ∅;R−1

R[A] = {1, 3, 4, 5};
(1.2.11)

R[x] R x

y ∈ R[x] iff (x, y) ∈ R; i.e., xRy. (1.2.12)

y ∈ R[A] (x, y) ∈ R x ∈ A

y ∈ R[A] ⟺ (∃x ∈ A)(x, y) ∈ R. (1.2.13)

R[A]

Definition 3

R x ∈ DR R

R[x] R(x) x

R R(x) R[x]

DR R

x ≠ y (x, y ∈ )  implies R(x) ≠ R(y);DR (1.2.14)

R(x) = R(y) implies x = y. (1.2.15)

R R R−1

f , g, h, F , ψ

f A B = ADf ⊆ BD′
f

f : A → B (" f  maps A into B ") (1.2.16)

= ADf = BD′
f

f A B

f : A B (" f  maps A onto B ")⟶
onto

(1.2.17)

f

f : A⟷ B (1.2.18)
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(  means that  is one to one).

All pairs belonging to a mapping  have the form  where  is the function value at , i.e., the unique -relative of 
. Therefore, in order to define some function , it suffices to specify its domain  and the function value  for each 

 . We shall often use such definitions. It is customary to say that  is defined on  (or “  is a function on ”) iff .

(a) The relation 

 
is a one-to-one map of the set of all wives onto the set of all husbands.  is here a one-to-one map of the set of all husbands 

 onto 
the set of all wives .

(b) The relation 

is a map of the set of all people onto the set of their fathers. It is not one to one since several persons may have the same father
( -relative), and so  does not imply 

(c) Let

Then  is a map of  onto  with

(As noted above, these formulas may serve to define  It is not one to one since  so  is not a map.

(d) Consider

By what was said above,  is well defined. It is one to one since  implies  Here  the naturals  but 
 consists of even naturals only. Thus  is not onto  (it is onto a smaller set, the even naturals);  maps the even naturals

onto all of 

The domain and range of a relation may be quite arbitrary sets. In particular, we can consider functions  in which each element of
the domain  is itself an ordered pair  or -tuple  Such mappings are called functions of two (respectively,

 variables. To any  -tuple  that belongs to  the function  assigns a unique function value, denoted by 
 It is convenient to regard  as certain variables; then the function value, too, becomes a variable

depending on the . Often  consists of all ordered -tuples of elements taken from a set , i.e.,  (cross-
product of  sets, each equal to  The range may be an arbitrary set  so . Similarly,  is a function
of two variables, with .

Functions of two variables are also called (binary) operations. For example, addition of natural numbers may be treated as a map 
 with 

A relation  is said to be 
(i) reflexive iff we have  for each ; 
(ii) symmetric iff  always implies ; 
(iii) transitive iff  combined with  always implies .

f : A⟷ B f

f (x, f(x)) f(x) x f

x, x ∈ Df f Df f(x)
x ∈ Df f A f A A = Df

 Example 1.2.2

R = {(x, y)|x is the wife of y} (1.2.19)

R−1

(= )D′
R

(= )DR

f = {(x, y)|y is the father of x} (1.2.20)

f x ≠ x′ f(x) ≠ f ( ) .x′

g =( )
1

2

2

2

3

3

4

8
(1.2.21)

g = {1, 2, 3, 4}Dg = {2, 3, 8},D′
g

g(1) = 2, g(2) = 2, g(3) = 3, g(4) = 8 (1.2.22)

g. ) g(1) = g(2), g−1

f : N → N ,  with f(x) = 2x for each x ∈ N (1.2.23)

f x ≠ y 2x ≠ 2y. = N(Df ),
D′

f
f N f −1

N .

f

Df (x, y) n ( , , … , ) .x1 x2 xn

n) n ( , … , )x1 xn ,Df f

f ( , … , ) .x1 xn , , … ,x1 x2 xn

, … ,x1 xn Df n A =Df An

n A). B; f : → BAn f : A ×B → C

= A ×B, ⊆ CDf D′
f

f : N ×N → N , f(x, y) = x +y.

Definition 4

R

xRx x ∈ DR

xRy yRx

xRy yRz xRz
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 is called an equivalence relation on a set  iff  and  has all the three properties (i), (ii), and (iii). For example, such is
the equality relation on  (also called the identity map on  denoted

Equivalence relations are often denoted by special symbols resembling equality, such as  etc. The formula  where 
is such a symbol, is read

and  (i.e., the -image of  is called the -equivalence class (briefly -class) of  in  it consists of all
elements that are -equivalent to  and hence to each other (for  and  imply first  by symmetry, and hence  by
transitivity). Each such element is called a representative of the given -class, or its generator. We often write  for .

(a') The inequality relation  between real numbers is transitive since

it is neither reflexive nor symmetric. (Why?)

(b') The inclusion relation  between sets is reflexive (for ) and transitive  for  and  implies 
but it is not symmetric.

(c') The membership relation  between an element and a set is neither reflexive nor symmetric nor transitive  and 
 does not imply .

(d') Let  be the parallelism relation between lines in a plane, i.e., the set of all pairs  where  and  are parallel
lines. Writing  for  we have  implies  and  and  \|  implies  so  is an equivalence
relation. An  -class here consists of all lines parallel to a given line in the plane.

(e') Congruence of triangles is an equivalence relation. (Why?)

If  (also written ) is an equivalence relation on  then all R-classes are disjoint from each other, and  is their union.

Proof

Take two -classes, . Seeking a contradiction, suppose they are not disjoint, so

i.e.,  and hence  But then, by symmetry and transitivity,

i.e.,  and  consist of the same elements  contrary to assumption . Thus, indeed, any two (distinct) -classes
are disjoint.

Also, by reflexivity,

i.e.,  Thus each  is in some -class (namely, in  of  is in the union of such classes,

Conversely,

since

R A A = DR R

A A)

= {(x, y)|x ∈ A, x = y}IA (1.2.24)

≡, ≈, ∼, xRy, R

" x is equivalent (orR-equivalent) to y, " (1.2.25)

R[x] = {y|xRy} R x) R R x A;
R x xRy xRz yRx, yRz,

R [x] R[x]

 Example 1.2.3

<

x < y and y < z implies x < z (1.2.26)

⊆ A ⊆ A ( A ⊆ B B ⊆ C A ⊆ C),

∈ (x ∈ A

A ∈M x ∈M)

R (X, Y ), X Y

∥ R, X∥X, X∥Y Y ∥X, (X∥Y Y Z) X∥Z, R

R

 Theorem 1.2.1

R ≡ A, A

R [p] ≠ [q]

(∃x) x ∈ [p] and x ∈ [q]; (1.2.27)

p ≡ x ≡ q p ≡ q.

y ∈ [p] ⇔ y ≡ p ⇔ y ≡ q ⇔ y ∈ [q]; (1.2.28)

[p] [q] y, [q] ≠ [q] R

(∀x ∈ A) x ≡ x (1.2.29)

x ∈ [x]. x ∈ A R [x]); A

A ⊆ R[x]⋃
x

(1.2.30)

(∀x) R[x] ⊆ A (1.2.31)
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by definition. Thus  contains all  hence their union, and so
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y ∈ R[x] ⇒ xRy ⇒ yRx ⇒ (y, x) ∈ R ⇒ y ∈ = ADR (1.2.32)

A R[x],

A = R[x]. □⋃
x

(1.2.33)
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1.2.E: Problems on Relations and Mappings (Exercises)

For the relations specified in Problem 7 of §§1-3, find  and . Also, find  and  if 

Prove that if , then  Disprove the converse by a counterexample.

Prove that 
(i) ; 
(ii) ; 
(iii) . 
Disprove reverse inclusions in (ii) and (iii) by examples. Do (i) and (ii) with  replaced by an arbitrary set family 

.

Under which conditions are the following statements true? 

Let  For each of the following functions, specify  i.e.,  and determine whether  is
one to one and onto  given that for all , 

 
Do all this also if  denotes 
(a) the set of all integers; 
(b) the set of all reals.

Prove that for any mapping  and any sets , 
(a) ; 
(b) ; 
(c) ; 
(d) ; 
(e) . 

 Exercise 1.2.E. 1

, ,DR D′
R R−1 R[A] [A]R−1

 (a) A = { } ;1
2

 (c) A = {0};

 (e) A = {0, 3, −15};

 (g) A = {x| −20 < x < 5}

 (b) A = {1}

 (d) A = ∅ ; 

 (f) A = {3, 4, 7, 0, −1, 6}
(1.2.E.1)

 Exercise 1.2.E. 2

A ⊆ B R[A] ⊆ R[B].

 Exercise 1.2.E. 3

R[A ∪ B] = R[A] ∪ R[B]
R[A ∩ B] ⊆ R[A] ∩ R[B]
R[A −B] ⊇ R[A] −R[B]

A, B

{ |i ∈ I}Ai

 Exercise 1.2.E. 4

(i) R[x] = ∅;

(iii) R[A] = ∅;

(ii)  [x] = ∅;R−1

(iv)  [A] = ∅;R−1
(1.2.E.2)

 Exercise 1.2.E. 5

f : N → N(N = { naturals }). f [N ], ,D′
f f

N , x ∈ N

 (i) f(x) = ;x3

 (iv) f(x) = ;x2

 (ii) f(x) = 1;  (iii) f(x) = |x| +3

(v)f(x) = 4x +5
(1.2.E.3)

N

 Exercise 1.2.E. 6

f A, B, (i ∈ I)Ai

[A ∪ B] = [A] ∪ [B]f −1 f −1 f −1

[A ∩ B] = [A] ∩ [B]f −1 f −1 f −1

[A −B] = [A] − [B]f −1 f −1 f −1

[ ] = [ ]f −1 ⋃i Ai ⋃i f −1 Ai

[ ] = [ ]f −1 ⋂i Ai ⋂i f −1 Ai
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Compare with Problem 3. 
[Hint: First verify that  iff  and 

Let  be a map. Prove that 
(a) ; 
(b)  if ; 
(c) if  and  is one to one, / 
Is 

Is  an equivalence relation on the set  of all integers, and, if so, what are the  -classes, if 
(a) ; 
(b) ; 
(c) . 

Is any relation in Problem 7 of §§1-3 reflexive? Symmetric? Transitive?

10. Show by examples that  may be 
(a) reflexive and symmetric, without being transitive; 
(b) reflexive and transitive without being symmetric. 
Does symmetry plus transitivity imply reflexivity? Give a proof or counterexample.

1.2.E: Problems on Relations and Mappings (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

x ∈ [A]f −1 x ∈ Df f(x) ∈ A. ]

 Exercise 1.2.E. 7

f

f [ [A]] ⊆ Af −1

f [ [A]] = Af −1 A ⊆ D′
f

A ⊆ Df f A = [f [A]]f −1

f [A] ∩ B ⊆ f [A ∩ [B]]?f −1

 Exercise 1.2.E. 8

R J R

R = {(x, y)|x −y is divisible by a fixed n}
R = {(x, y)|x −y is odd }
R = {(x, y)|x −y is a prime }

(x, y, n denote integers.) 

 Exercise 1.2.E. 9

R
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1.3: Sequences
By an infinite sequence (briefly sequence) we mean a mapping (call it  whose domain is  (all natural numbers 
may also contain 

A finite sequence is a map  in which  consists of all positive (or non-negative) integers less than a fixed integer  The range 
 of any sequence  may be an arbitrary set  we then call  a sequence of elements of  or in  For example,

is a sequence with

and with function values

Instead of  we usually write  ("index notation"), and call  the  term of the sequence. If  is treated as a variable,  is
called the general term of the sequence, and  is used to denote the entire (infinite) sequence, as well as its range 
(whichever is meant, will be clear from the context). The formula  means that  i.e., that  is a sequence in .
To 
determine a sequence, it suffices to define its general term  by some formula or rule. In  above, .

Often we omit the mention of  (since it is known) and give only the range  Thus instead of  we briefly write

or, more generally,

Yet it should be remembered that  is a set of pairs (a map).

If all  are distinct (different from each other),  is a one-to-one map. However, this need not be the case. It may even occur that
all  are equal (then  is said to be constant); e.g.,  yields the sequence  i.e.

Note that here  is an infinite sequence (since ), even though its range  has only one element,  (In sets,
repeated terms count as one element; but the sequence  consists of infinitely many distinct pairs  ) If all  are real
numbers, we call  a real sequence. For such sequences, we have the following definitions.

A real sequence  is said to be monotone (or monotonic) iff it is either nondecreasing, i.e.

or nonincreasing, i.e.,

Notation:  and  respectively. If instead we have the strict inequalities  (respectively,  we
call  strictly monotone (increasing or decreasing).

A similar definition applies to sequences of sets.

u) N 1, 2, 3, …); Du

0.

u Du p.

D′
u u B; u B, B.

u =( )
1

2

2

4

3

6

4

8

…

…

n

2n

…

…
(1.3.1)

= N = {1, 2, 3, …}Du (1.3.2)

u(1) = 2, u(2) = 4, u(n) = 2n, n = 1, 2, 3, … (1.3.3)

u(n) un un nth n un

{ }un D′
u

{ } ⊆ Bun ⊆ B,D′
u u B

un (1) = 2nun

= NDu .D′
u (1),

2, 4, 6, … , 2n, … (1.3.4)

, , … , , …u1 u2 un (1.3.5)

u

un u

un u = 1un 1, 1, 1, … , 1, … ,

u =( )
1

1

2

1

3

1

…

…

n

1

…

…
(1.3.6)

u = NDu D′
u = {1}.D′

u

u (n, 1). un

u

Definition 1

{ }un

(∀n) ≤un un+1 (1.3.7)

(∀n) ≥un un+1 (1.3.8)

{ } ↑un { } ↓,un <un un+1 > ),un un+1

{ }un
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A sequence of sets  is said to be monotone iff it is either expanding, i.e.,

or contracting, i.e.,

Notation:  and  respectively. For example, any sequence of concentric solid spheres (treated as sets of points),
with increasing radii, is expanding; if the radii decrease, we obtain a contracting sequence.

Let  be any sequence, and let

be a strictly increasing sequence of natural numbers. Select from  those terms whose subscripts are 
Then the sequence  so selected (with  th term equal to  is called the subsequence of  determined by the
subscripts .

Thus (roughly) a subsequence is any sequence obtained from  by dropping some terms, without changing the order of the
remaining terms (this is ensured by the inequalities  where the  are the subscripts of the remaining
terms). For example, let us select from (1) the subsequence of terms whose subscripts are primes (including 1). Then the
subsequence is

i.e.,

All these definitions apply to finite sequences accordingly. Observe that every sequence arises by "numbering" the elements of its
range (the terms):  is the first term,  is the second term, and so on. By so numbering, we put the terms in a certain order,
determined by their subscripts  (like the numbering of buildings in a street, of books in a library, etc.  The question now
arises: Given a set  is it always possible to "number" its elements by integers? As we shall see in  this is not always the case.
This leads us to the following definition.

A set  is said to be countable iff  is contained in the range of some sequence (briefly, the elements of  can be put in a
sequence).

If, in particular, this sequence can be chosen finite, we call  a finite set. (The empty set is finite.)

Sets that are not finite are said to be infinite.

Sets that are not countable are said to be uncountable.

Note that all finite sets are countable. The simplest example of an infinite countable set is .

This page titled 1.3: Sequences is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The Trilla Group
(support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

Definition 2

, , … , , …A1 A2 An

(∀n) ⊆An An+1 (1.3.9)

(∀n) ⊇An An+1 (1.3.10)

{ } ↑An { } ↓,An

Definition 3

{ }un

< < ⋯ < < ⋯n1 n2 nk (1.3.11)

{ }un , , … , , …n1 n2 nk

{ }unk k ),unk { } ,un

, k = 1, 2, 3, …nk

{ }un

< < ⋯ < < ⋯n1 n2 nk nk

2, 4, 6, 10, 14, 22, … (1.3.12)

, , , , , , …u1 u2 u3 u5 u7 u11 (1.3.13)

u1 u2

1, 2, 3, … ).

A, $4,

Definition 4

A A A

A

N = {1, 2, 3, …}
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1.4: Some Theorems on Countable Sets
We now derive some corollaries of Definition 4 in § 3.

If a set  is countable or finite, so is any subset .

For if  for a sequence  then certainly 

If  is uncountable (or just infinite), so is any superset .

For, if  were countable or finite, so would be  by Corollary 1

If  and  are countable, so is their cross product 

Proof

If  or  is  then  and there is nothing to prove.

Thus let  and  be nonvoid and countable. We may assume that they fill two infinite sequences, 
(repeat terms if necessary). Then, by definition,  is the set of all ordered pairs of the form

Call  the  of the pair  For each  there are  pairs of rank 

We now put all pairs  in one sequence as follows. We start with

as the first term; then take the two pairs of rank three,

then the three pairs of rank four, and so on. At the  st step, we take all pairs of rank  in the order indicated in .

Repeating this process for all ranks ad infinitum, we obtain the sequence of pairs

in which  etc.

By construction, this sequence contains all pairs of all ranks  hence all pairs that form the set  (for every such pair
has some rank  and so it must eventually occur in the sequence). Thus  can be put in a sequence. 

The set  of all rational numbers is countable.

Proof

Consider first the set  of all positive rationals, i.e.,

 COROLLARY 1.4.1

A B ⊆ A

A ⊂ D′
u u, B ⊆ A ⊆ D′

u

 COROLLARY 1.4.2

A B ⊃ A

B A ⊆ B,

 Theorem 1.4.1

A B A ×B

A B ∅, A ×B = ∅,

A B A = { } , B = { }an bn

A ×B

( , ) , n, m ∈ Nan bm (1.4.1)

n +m rank ( , ) .an bm r ∈ N , r −1 r :

( , ) , ( , ) , … , ( , )a1 br−1 a2 br−2 ar−1 b1 (1.4.2)

( , )an bm

( , )a1 b1 (1.4.3)

( , ) , ( , )a1 b2 a2 b1 (1.4.4)

(r −1) r, (1)

( , ) , ( , ) , ( , ) , ( , ) , ( , ) , ( , ) , …a1 b1 a1 b2 a2 b1 a1 b3 a2 b2 a3 b1 (1.4.5)

= ( , ) , = ( , ) ,u1 a1 b1 u2 a1 b2

r, A ×B

r A ×B □

 COROLLARY 1.4.3

R

Q

 fractions  ,  with n, m ∈ N
n

m
(1.4.6)
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We may formally identify them with ordered pairs  i.e., with  We call  the rank of  As in
Theorem  we obtain the sequence

By dropping reducible fractions and inserting also 0 and the negative rationals, we put  into the sequence

The union of any sequence  of countable sets is countable.

Proof

As each  is countable, we may put

(The double subscripts are to distinguish the sequences representing different sets  ) As before, we may assume that all
sequences are infinite. Now,  obviously consists of the elements of all  combined, i.e., all  We
call  the  of  and proceed as in Theorem  thus obtaining

Thus  can be put in a sequence. 

Note 1: Theorem 2 is briefly expressed as

"Any countable union of countable sets is a countable set."

(The term "countable union" means "union of a countable family of sets", i.e., a family of sets whose elements can be put in a
sequence  ) In particular, if  and  are countable, so are  and  (by Corollary 1 .

Note 2: From the proof it also follows that the range of any double sequence  is countable. (A double sequence is a function 
 whose domain  is  say,  If  we write  for  here 

To prove the existence of uncountable sets, we shall now show that the interval

of the real axis is uncountable.

We assume as known the fact that each real number  has a unique infinite decimal expansion

where the  are the decimal digits (possibly zeros), and the sequence  does not terminate in nines (this ensures uniqueness)."

The interval  of the real axis is uncountable.

Proof

We must show that no sequence can comprise all of  Indeed, given any  write each term  as an infinite
fraction; say,

Next, construct a new decimal fraction

(n, m), N ×N n +m (n, m).
1,

, , , , , , , , , , …
1

1

1

2

2

1

1

3

2

2

3

1

1

4

2

3

3

2

4

1
(1.4.7)

R

0, 1, −1, , − , 2, −2, , − , 3, −3, … ,  as required. □
1

2

1

2

1

3

1

3
(1.4.8)

 Theorem 1.4.2

{ }An

An

= { , , … , , …}An an1 an2 anm (1.4.9)

.An

UnAn An (n, m ∈ N).anm

n +m rank anm 1,

= { , , , , , , …}⋃
n

An a11 a12 a21 a13 a22 a31 (1.4.10)

∪nAn □

{ } .An A B A ∪ B, A ∩ B, A −B )

{ }anm

u Du N ×N ; u : N ×N → B. n, m ∈ N , unm u(n, m) = . )unm anm

[0, 1) = {x|0 ≤ x < 1} (1.4.11)

x ∈ [0, 1)

0. , , … , , …x1 x2 xn (1.4.12)

xn { }xn

 Theorem 1.4.3

[0, 1)

[0, 1). { } ,un un

= 0. , , … , , …un an1 an2 anm (1.4.13)
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choosing its digits  as follows.

If  (i.e., the  th digit of  is  put  if, however,  put  Thus, in all cases,  i.e., 
differs from each  in at least one decimal digit (namely, the  th digit). It follows that  is different from all  and
hence is not in  even though .

Thus, no matter what the choice of  was, we found some  not in the range of that sequence. Hence 
contains all of 

Note 3: By Corollary  any superset of  e.g., the entire real axis, is uncountable.

Note 4: Observe that the numbers  used in the proof of Theorem 3 form the diagonal of the infinitely extending square
composed of all  Therefore, the method used above is called the diagonal process (due to G. Cantor).

This page titled 1.4: Some Theorems on Countable Sets is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

z = 0. , , … , , …x1 x2 xn (1.4.14)

xn

ann n )un 0, = 1;xn ≠ 0,ann = 0.xn ≠ ,xn ann z

un n z un

{ } ,un z ∈ [0, 1)

{ }un z ∈ [0, 1) no{ }un

[0, 1). □

2, [0, 1),

ann

.anm
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1.4.E: Problems on Countable and Uncountable Sets (Exercises)

Prove that if  is countable but  is not, then  is uncountable. 
[Hint: If  were countable, so would be 

 
Use Corollary 

Let  be a mapping, and  Prove that 
(i) if  is countable, so is  ; 
(ii) if  is one to one and  is uncountable, so is . 

 

 
(ii) If  were countable, so would be  by (i). Verify that 

 
here; cf. Problem 7 in §§4-7.]

Let  be real numbers  Define a map  on  by 

 
Show that  is one to one and onto the interval . From Problem  deduce that  is uncountable.
Hence, by Problem  so .

Show that between any real numbers  there are uncountably many irrationals, i.e., numbers that are not rational. 
[Hint: By Corollary 3 and Problems 1 and  the set  is uncountable. Explain in detail.

Show that every infinite set  contains a countably infinite set, i.e., an infinite sequence of distinct terms. 
[Hint: Fix any  cannot consist of  alone, so there is another element 

 
Again,  so there is an  (Why?) Continue thusly ad infinitum to obtain the required sequence

 Why are all  distinct? 

 Exercise 1.4.E. 1

A B B −A

B −A

(B −A) ∪ A ⊇ B. (Why?) (1.4.E.1)

1. ]

 Exercise 1.4.E. 2

f A ⊆ .Df

A f [A]

f A f [A]

[ Hints:  ( i) If A = { } ,  then un

f [A] = {f ( ) , f ( ) , … , f ( ) , …}u1 u2 un (1.4.E.2)

f [A] [f [A]],f −1

[f [A]] = Af −1 (1.4.E.3)

 Exercise 1.4.E. 3

a, b (a < b). f [0, 1)

f(x) = a +x(b −a). (1.4.E.4)

f [a, b) = {x|a ≤ x < b} 2, [a, b)

1, is(a, b) = {x|a < x < b}

 Exercise 1.4.E. 4

a, b(a < b)

3, (a, b) −R

 Exercise 1.4.E. 5

A

∈ A; Aa1 a1

∈ A −{ } . (Why?)a2 a1 (1.4.E.5)

A ≠ { , } ,a1 a2 ∈ A −{ , } .a3 a1 a2

{ } .an an ]

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/22253?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/01%3A_Set_Theory/1.04%3A_Some_Theorems_on_Countable_Sets/1.4.E%3A_Problems_on_Countable_and_Uncountable_Sets_(Exercises)


1.4.E.2 https://math.libretexts.org/@go/page/22253

From Problem  prove that if  is infinite, there is a map  that is one to one but not onto  
[Hint: With  as in Problem  define  If, however,  is none of the  put . Observe that 

 is never true, so  is not onto  Show, however, that  is one to one.

Conversely (cf. Problem 6), prove that if there is a map  that is one to one but not onto  then  contains an
infinite sequence  of distinct terms. 
[Hint: As  is not onto  there is  such that  (Why?) Fix  and define 

 
To prove distinctness, show that each  is distinct from all  with  For  this is true since  whereas 

 Then proceed inductively.]

1.4.E: Problems on Countable and Uncountable Sets (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated
by LibreTexts.

 Exercise 1.4.E. 6

5, A f : A → A A.

an 5, f ( ) = .an an+1 x ,an f(x) = x

f(x) = a1 f A. f

 Exercise 1.4.E. 7

f : A → A A, A

{ }an

f A, ∈ Aa1 ∉ f [A].a1 a1

= f ( ) , = f ( ) , … , = f ( ) , …  ad infinitum. a2 a1 a3 a2 an+1 an (1.4.E.6)

an am m > n. ,a1 ∉ f [A],a1

∈ f [A](m > 1).am
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2.1: Axioms and Basic Definitions
Real numbers can be constructed step by step: first the integers, then the rationals, and finally the irrationals. Here, however, we
shall assume the set of all real numbers, denoted  as already given, without attempting to reduce this notion to simpler concepts.
We shall also accept without definition (as primitive concepts) the notions of the sum  and the product,  or  of
two real numbers, as well as the inequality relation  (read "less than" ). Note that  means "x is in  i.e., "x is a real
number."

It is an important fact that all arithmetic properties of reals can be deduced from several simple axioms, listed (and named) below.

Axioms of Addition and Multiplication

1. (closure laws) The sum  and the product  any real numbers are real numbers themselves. In symbols,

2. (commutative laws)

3. (associative laws)

4. (existence of neutral elements)

(a) There is a (unique) real number, called zero (0), such that, for all real .

(b) There is a (unique) real number, called one (1), such that 1  and, for all real 

In symbols,

(a)

(b)

(The real numbers 0 and 1 are called the neutral elements of addition and multiplication, respectively.)

5. (existence of inverse elements)

(a) For every real  there is a (unique) real, denoted  such that .

(b) For every real  other than  there is a (unique) real, denoted , such that .

In symbols,

(a)

(b)

(The real numbers  and  are called, respectively, the additive inverse (or the symmetric) and the multiplicative inverse (or
the reciprocal) of 

6. (distributive law)

,E1

(a+b) (a ⋅ b) (ab),

< x ∈ E1 ,E1,

Definition

x+y, xy,

(∀x, y ∈ ) (x+y) ∈  and (xy) ∈E
1

E
1

E
1 (2.1.1)

(∀x, y ∈ ) x+y = y +x and xy = yxE
1 (2.1.2)

(∀x, y, z ∈ ) (x+y)+z = x+(y +z) and (xy)z = x(yz)E
1 (2.1.3)

x, x+0 = x

1 ≠ 0 x, x ⋅ 1 = x.

(∃!0 ∈ ) (∀x ∈ ) x+0 = x;E1 E1 (2.1.4)

(∃1 ∈ ) (∀x ∈ ) x ⋅ 1 = x, 1 ≠ 0.E
1

E
1 (2.1.5)

x, −x, x+(−x) = 0

x 0, x−1 x ⋅ = 1x−1

(∀x ∈ ) (∃!−x ∈ ) x+(−x) = 0;E
1

E
1 (2.1.6)

(∀x ∈ |x ≠ 0) (∃! ∈ ) x = 1.E
1

x
−1

E
1

x
−1 (2.1.7)

−x x−1

x. )

(∀x, y, z ∈ ) (x+y)z = xz+yzE1 (2.1.8)
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Axioms of Order

7. (trichotomy) For any real  and  we have

but never two of these relations together.

8. (transitivity)

9. (monotonicity of addition and multiplication) For any , we have

(a)

(b) \[x<y \text{ and } z>0 \text{ implies ] x z<y z.\]

Note 1: The uniqueness assertions in Axioms 4 and 5 are actually redundant since they can be deduced from other axioms. We
shall not dwell on this.

Note 2: Zero has no reciprocal; i.e., for no  is  In fact,  For, by Axioms VI and IV,

Cancelling  i.e., adding  on both sides  we obtain  by Axioms 3 and 5 (a).

Note 3: Due to Axioms 7 and 8, real numbers may be regarded as given in a certain order under which smaller numbers precede
the larger ones. (This is why we speak of "axioms of order.") The ordering of real numbers can be visualized by "plotting" them as
points on a directed line ("the real axis") in a well-known manner. Therefore,  is also often called "the real axis," and real
numbers are called "points"; we say "the point x instead of "the number x.

Observe that the axioms only state certain properties of real numbers without specifying what these numbers are. Thus we may treat
the reals as just any mathematical objects satisfying our axioms, but otherwise arbitrary. Indeed, our theory also applies to any
other set of objects (numbers or not), provided they satisfy our axioms with respect to a certain relation of order  and certain
operations  and  which may, but need not, be ordinary addition and multiplication. Such sets exist indeed. We now give
them a name.

A field is any set  of objects, with two operations  and  defined in it in such a manner that they satisfy Axioms 1-6
listed above (with  replaced by  of course).

If  is also endowed with a relation  satisfying Axioms 7 to 9, we call  an ordered field.

In this connection, postulates 1 to 9 are called axioms of an (ordered) field. 
By Definition  is an ordered field. Clearly, whatever follows from the axioms must hold not only in  but also in any other
ordered field. Thus 
we shall henceforth state our definitions and theorems in a more general way, speaking of ordered fields in general instead of 
alone.

An element  of an ordered field is said to be positive if  or negative if 

Here and below,  means the same as  We also write  for  or  similarly for 

Definition

x y,

eitherx < y or y < x or x = y (2.1.9)

(∀x, y, z ∈ ) x < y and y < z implies x < zE1 (2.1.10)

x, y, z ∈ E1

x < y implies x+z < y +z; (2.1.11)

x 0x = 1. 0x = 0.

0x+0x = (0+0)x = 0x = 0x+0. (2.1.12)

0x( −0x ), 0x = 0,

E1

(<)

(+) (⋅),

Definition 1

F (+) (. )

E1 F ,

F < F

1,E1 E1

E1

Definition 2

x x > 0 x < 0.

" x > y " " y < x. " " x ≤ y " " x < y x = ;y′′

" x ≥ y. "
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For any elements  of a field, we define their difference

If  we also define the quotient of  by 

also denoted by .

Note 4: Division by 0 remains undefined.

For any element  of an ordered field, we define its absolute value,

It follows that  always; for if  then

and if  then

Moreover,

for,

and

Thus, in all cases,

Similarly one shows that

As we have noted, all rules of arithmetic (dealing with the four arithmetic operations and inequalities) can be deduced from
Axioms 1 through 9 and thus apply to all ordered fields, along with . We shall not dwell on their deduction, limiting ourselves to
a few simple corollaries as examples.

(i) ;

 ii) .

Proof

By Axiom 6,

Thus

Definition 3

x, y

x−y = x+(−y) (2.1.13)

y ≠ 0, x y

= x
x

y
y
−1 (2.1.14)

x/y

Definition 4

x

|x| ={
x

−x

 if x ≥ 0 and 

 if x < 0
(2.1.15)

|x| ≥ 0 x ≥ 0,

|x| = x ≥ 0 (2.1.16)

x < 0,

|x| = −x > 0. ( Why? ) (2.1.17)

−|x| ≤ x ≤ |x|, (2.1.18)

if x ≥ 0,  then |x| = x; (2.1.19)

if x < 0,  then x < |x| since |x| > 0. (2.1.20)

x ≤ |x|. (2.1.21)

−|x| ≤ x. (2.1.22)

E1

 Corollary 2.1.1

a(−b) = (−a)b =−(ab)

( (−a)(−b) = ab

a(−b)+ab = a[(−b)+b] = a ⋅ 0 = 0. (2.1.23)
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By definition, then,  is the additive inverse of  i.e.,

Similarly, we show that

and that

Finally, (ii) is obtained from (i) when  is replaced by 

In an ordered field,  implies

(Hence  

Proof

If  we may multiply by  Axiom 9(b) to obtain

If  then  so we may multiply the inequality  by  and obtain

i.e., by Corollary 1,

whence

This page titled 2.1: Axioms and Basic Definitions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

a(−b)+ab = 0. (2.1.24)

a(−b) ab,

a(−b) =−(ab). (2.1.25)

(−a)b =−(ab)

−(−a) = a. (2.1.26)

a −a.□

 Corollary 2.1.2

a ≠ 0

= (a ⋅ a) > 0a
2 (2.1.27)

1 = > 0. )12

a > 0, a(

a ⋅ a > 0 ⋅ a = 0,  i.e.,  > 0.a2 (2.1.28)

a < 0, −a > 0; a < 0 −a

a(−a) < 0(−a) = 0; (2.1.29)

− < 0,a2 (2.1.30)

> 0 □a2 (2.1.31)
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2.2: Natural Numbers. Induction
The element 1 was introduced in Axiom 4(b). Since addition is also assumed known, we can use it to define, step by step, the
elements

If this process is continued indefinitely, we obtain what is called the set  of all natural elements in the given field  In
particular, the natural elements of  are called natural numbers. Note that

*A more precise approach to natural elements is as follows.  subset  of a field  is said to be inductive iff

Such subsets certainly exist; e.g., the entire field  is inductive since

Define  as the intersection of all inductive sets in .

The set  so defined is inductive itself. In fact, it is the "smallest" inductive subset of  (i . e ., contained in any other such
subset).

Proof

We have to show that

Now, by definition, the unity 1 is in each inductive set; hence it also belongs to the intersection of such sets, i.e., to  Thus
 as claimed.

Next, take any  Then, by our definition of  is in each inductive set  thus, by property  of such sets, also 
 is in each such  ; hence  is in the intersection of all inductive sets, i.e.,

and so  is inductive, indeed.

Finally, by definition,  is the common part of all such sets and hence contained in each. 

For applications, Theorem 1 is usually expressed as follows.

(first induction law). A proposition  involving a natural  holds for all  in a field  if

Proof

Let  be the set of all those  for which  is true,

2 = 1 +1, 3 = 2 +1, 4 = 3 +1,  etc. (2.2.1)

N F .
E1

(∀n ∈ N) n +1 ∈ N (2.2.2)

A S F

(i)

(ii)

1 ∈ S and 

(∀x ∈ S) x +1 ∈ S

(2.2.3)

(2.2.4)

F

1 ∈ F  and (∀x ∈ F ) x +1 ∈ F . (2.2.5)

N F

 Theorem 2.2.1

N F

(i)

(ii)

1 ∈ N ,  and 

(∀x ∈ N) x +1 ∈ N .

(2.2.6)

(2.2.7)

N .
1 ∈ N ,

x ∈ N . N , x S; (ii)
x +1 S x +1

x +1 ∈ N (2.2.8)

N

N □

 Theorem 2.2.1′

P (n) n n ∈ N F

(i)

(ii)

 it holds for n = 1,  i.e., P (1) is true; and 

 whenever P (n) holds for n = m,  it holds for n = m +1,  i.e., 

(2.2.9)

(2.2.10)

P (m)⟹ P (m +1). (2.2.11)

S n ∈ N P (n)

S = {n ∈ N |P (n)} (2.2.12)
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We have to show that actually each  is in  i.e., 

First, we show that  is inductive.

Indeed, by assumption  is true; so 1 .

Next, let  This means that  is true. By assumption (ii), however, this implies  i.e.,  Thus

 is inductive.

Then, by Theorem 1 (second clause),  and all is proved. 

This theorem is used to prove various properties of  "by induction."

(a) If  then also  and .

To prove the first property, fix any  Let  mean

Then

(i)  is true, for as  the definition of  yields , i.e., .

(ii)  for  Indeed,

Thus, by Theorem  holds for all  i.e.,

for any .

To prove the same for  we let  mean

and proceed similarly.

(b) If  then  or .

For an inductive proof, let  mean

Then proceed as in (a).

(c) In an ordered field, all naturals are .

Indeed, let  mean that

Then

(i)  holds since  
(ii)  for  since

Thus Theorem  yields the result.

(d) In an ordered field,  and  implies  
For an inductive proof, fix any  and let  mean

n ∈ N S, N ⊆ S

S

(i), P (1) ∈ S

x ∈ S. P (x) P (x +1), x +1 ∈ S.

1 ∈ S and (∀x ∈ S) x +1 ∈ S (2.2.13)

S

N ⊆ S, □

N

 Example 2.2.1

m, n ∈ N , m +n ∈ N mn ∈ N

m ∈ N . P (n)

m +n ∈ N (n ∈ N) (2.2.14)

P (1) m ∈ N , N m +1 ∈ N P (1)

P (k) ⇒ P (k +1) k ∈ N .

P (k) ⇒

⇒

m +k ∈ N ⇒ (m +k) +1 ∈ N  

m +(k +1) ∈ N ⇒ P (k +1)

(2.2.15)

(2.2.16)

, P (n)1′ n;

(∀n ∈ N) m +n ∈ N

m ∈ N

mn, P (n)

mn ∈ N (n ∈ N)

n ∈ N , n −1 = 0 n −1 ∈ N

P (n)

n −1 = 0 or n −1 ∈ N (n ∈ N) (2.2.17)

≥ 1

P (n)

n ≥ 1 (n ∈ N). (2.2.18)

P (1) 1 = 1
P (m) ⇒ P (m +1) m ∈ N ,

P (m) ⇒ m ≥ 1 ⇒ (m +1) > 1 ⇒ P (m +1) (2.2.19)

1′

m, n ∈ N m > n m −n ∈ N

m ∈ N P (n)
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Use (b).

(e) In an ordered field,  and  implies  
For, by  would imply  hence  or  contrary to .

Our next theorem states the so-called well-ordering property of .

In an ordered field, each nonvoid set  has a least member (i.e., one that exceeds no other element of .

Proof

The following is just an outline of a proof:

Given  let  be the proposition "Any subset of  containing elements  has a least member" 
Use Theorem  and Example (e) . 

This theorem yields a new form of the induction law.

A proposition  holds for all 

(i')  holds and 
(ii') whenever  holds for all naturals less than some  then  
also holds for .

Proof

Assume  and  Seeking a contradiction, suppose there are some  call them "bad") for which  fails.
Then these "bad" naturals form a nonvoid subset of  call it .

By Theorem  has a least member  Thus  is the least natural for which  fails. It follows that all  less than 
do satisfy  But then, by our assumption (ii'),  also holds for  which is impossible for, by construction, 
is "bad" (it is in  This contradiction shows that there are no "bad" naturals. Thus all is proved. 

Note 1: All the preceding arguments hold also if, in our definition of  and all formulations, the unity 1 is replaced by 0 or by
some . Then, however, the conclusions must be changed to say that  holds for all integers  (instead of "n
\geq 1 "). We then say that "induction starts with "

An analogous induction law also applies to definitions of concepts .

 notion  involving a natural  is regarded as defined for each   if

(i)  is defined for  and

(ii) some rule is given that expresses  in terms of .

(Note 1 applies here, too.)

 itself need not be a number; it may be of quite general nature.

We shall adopt this principle as a kind of logical axiom, without proof (though it can be proved in a similar manner as Theorems 
and  The underlying intuitive idea is a "step-by-step" process - first, we define  then, as  is known, we may use it to
define  next, once both are known, we may use them to define  and so on, ad infinitum. Definitions based on that
principle are called inductive or recursive. The following examples are important.

m −n ≤ 0 or m −n ∈ N (n ∈ N). (2.2.20)

m, n ∈ N m < n +1 m ≤ n

(d), m > n m −n ∈ N , m −n ≥ 1, m ≥ n +1, m < n +1

N

 Theorem  (well-ordering of N)2.2.2

A ⊆ N A)

∅ ≠ A ⊆ N , P (n) A ≤ n (n ∈ N).
1′

□

 Theorem  (second induction law)2.2.2′

P (n) n ∈ N

P (1)
P (n) m ∈ N , P (n)
n = m

( )i′ ( ) .ii′ n ∈ N( P (n)
N , A

2, A m. m P (n) n m

P (n). P (n) n = m, m

A). □

N

k(±k ∈ N) P (n) n ≥ k

k.

C(n)

A C(n) n n ∈ N (in )E1

it n = 1

C(n +1) C(1), … , C(n)

C(n)

1′

).2′ C(1); C(1)
C(2); C(3);
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(f) For any element  of a field, we define its  power  and its -multiple  by

(i)  
(ii)  (respectively, .

We may think of it as a step-by-step definition:

(g) For each natural number  we define its factorial  by

e.g.  etc. We also define .

(h) The sum and product of n field elements  denoted by

or

are defined recursively.

Sums are defined by

Thus

Products are defined by

(i) Given any objects  the ordered n-tuple

is defined inductively by

(i)  (i.e., the ordered "one-tuple"  is  itself  and

(ii)  i.e., the ordered  tuple is a pair  in which the first term 
is itself an ordered  -tuple,  for example,

This page titled 2.2: Natural Numbers. Induction is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon
(The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a

 Example  (continued)2.2.1

x nth xn n nx

= 1x = xx1

= xxn+1 xn (n +1)x = nx +x)

= x, = x, = x,  etc.x1 x2 x1 x3 x2 (2.2.21)

n, n!

1! = 1, (n +1)! = n!(n +1); (2.2.22)

, 2! = 1!(2) = 2, 3! = 2!(3) = 6, 0! = 1

, , … , ,x1 x2 xn

 and ∑
k=1

n

xk ∏
k=1

n

xk (2.2.23)

+ +⋯ +  and  ⋯ ,  respectivelyx1 x2 xn x1x2 xn (2.2.24)

(i)

(ii)

=∑
k=1

1

xk x1

=( )+ , n = 1, 2, …∑
k=1

n+1

xk ∑
k=1

n

xk xn+1

(2.2.25)

(2.2.26)

+ + = ( + ) +x1 x2 x3 x1 x2 x3 (2.2.27)

+ + + = ( + + ) + ,  etc.x1 x2 x3 x4 x1 x2 x3 x4 (2.2.28)

(i)

(ii)

=∏
k=1

1

xk x1

=( ) ⋅∏
k=1

n+1

xk ∏
k=1

n

xk xn+1

(2.2.29)

(2.2.30)

, , … , , … ,x1 x2 xn

( , , … , )x1 x2 xn (2.2.31)

( ) =x1 x1 ( )x1 x1 )

( , , … , ) = (( , … , ) , ) ,x1 x2 xn+1 x1 xn xn+1 (n +1)− (y, )xn+1 y

n ( , … , ) ;x1 xn

( , , ) = (( , ) , ) ,  etc.x1 x2 x3 x1 x2 x3 (2.2.32)
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2.2.E: Problems on Natural Numbers and Induction (Exercises)

Complete the missing details in Examples  and .

Prove Theorem 2 in detail.

Suppose  in an ordered field. Prove by induction on  that 
(a)  
(b) if all  are greater than zero, then 

Prove by induction that 
(i) ; 
(ii)  if . 
Hence deduce that 
(iii)  if ; 
(iv)  if  proof by contradiction.

Prove the Bernoulli inequalities: For any element  of an ordered field, 
(i)  if ; 
(ii)  if 

For any field elements  and natural numbers  prove that 

 
[Hint: For problems involving two natural numbers, fix  and use induction on .

Prove that in any field, 

 
Hence for  

 Exercise 2.2.E. 1

(a), (b), (d)

 Exercise 2.2.E. 2

 Exercise 2.2.E. 3

< , k = 1, 2, … ,xk yk n

<∑n
k=1 xk ∑n

k=1 yk

,xk yk

<∏
k=1

n

xk ∏
k=1

n

yk (2.2.E.1)

 Exercise 2.2.E. 4

= 11n

a < b ⇒ <an bn a > 0

0 ≤ < 1an 0 ≤ a < 1

< ⇒ a < ban bn b > 0;

 Exercise 2.2.E. 5

ε

(1 +ε ≥ 1 +nε)n ε > −1

(1 −ε ≥ 1 −nε)n ε < 1; n = 1, 2, 3, …

 Exercise 2.2.E. 6

a, b m, n,

 (i)  = ;aman am+n

 (iii) (ab = ;)n anbn

 (v) n(ma) = (nm) ⋅ a;

 (ii)  =( )am n
amn

 (iv) (m +n)a = ma +na

 (vi) n(a +b) = na +nb

(2.2.E.2)

m n]

 Exercise 2.2.E. 7

− = (a −b) , n = 1, 2, 3, …an+1 bn+1 ∑
k=0

n

akbn−k (2.2.E.3)

r ≠ 1
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(sum of  terms of a geometric series).

For  define 

 
Verify Pascal's law, 

 
Then prove by induction on  that 

(i)  and 

(ii) for any field elements  and , 

 
What value must  take for (ii) to hold for all  and 

Show by induction that in an ordered field  any finite sequence  has a largest and a least term (which need not be 
 or  Deduce that all of  is an infinite set, in any ordered field.

Prove in  that 
(i) ; 
(ii) ; 
(iii) ; 
(iv) .

2.2.E: Problems on Natural Numbers and Induction (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

a = a∑
k=0

n

r
k 1 −rn+1

1 −r
(2.2.E.4)

n

 Exercise 2.2.E. 8

n > 0

( ) = {
n

k

,n!
k!(n−k)!

0,

0 ≤ k ≤ n

 otherwise 
(2.2.E.5)

( ) =( )+( ) .
n +1

k +1

n

k

n

k +1
(2.2.E.6)

n

(∀k|0 ≤ k ≤ n)( ) ∈ N ;
n

k

a b

(a +b = ( ) , n ∈ N  (the binomial theorem). )n ∑
k=0

n
n

k
akbn−k (2.2.E.7)

00 a b?

 Exercise 2.2.E. 9

F , … ,x1 xn

x1 ).xn N

 Exercise 2.2.E. 10

E1

k = n(n +1)∑n
k=1

1
2

= n(n +1)(2n +1)∑n
k=1 k2 1

6

= (n +1∑n
k=1 k3 1

4
n2 )2

= n(n +1)(2n +1)(3 +3n −1)∑n
k=1 k4 1

30
n2
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2.3: Integers and Rationals
All natural elements of a field  their additive inverses, and 0 are called the integral elements of  briefly integers.

An element  is said to be rational iff  for some integers  and   is irrational iff it is not rational.

We denote by  the set of all integers, and by  the set of all rationals, in  Every integer  is also a rational since  can be
written as  with  
Thus

In an ordered field,

If  and  are integers (or rationals) in  so are  and .

Proof

For integers, this follows from Examples (a) and (d) in Section 2; one only has to distinguish three cases:

(i) ;

(ii) ;

(iii) .

The details are left to the reader (see Basic Concepts of Mathematics, Chapter  Theorem 1 .

Now let  and  be rationals, say,

where  and  and  are  by the first part of the proof (since 

where  and  and  are integers by the first part of the proof (since .

Thus  and  are fractions with integral numerators and denominators. Hence, by definition,  and  

In any field  the set  of all rationals is a field itself, under the operations defined in  with the same neutral elements 0
and 1. Moreover,  is an ordered field if  is. (We call  the rational subfield of 

Proof

We have to check that  satisfies the field axioms.

The closure law 1 follows from Theorem 1.

Axioms 2, 3, and 6 hold for rationals because they hold for all elements of  similarly for Axioms 7 to 9 if  is ordered.

Axiom 4 holds in  because the neutral elements 0 and 1 belong to  indeed, they are integers, hence certainly rationals.

To verify Axiom 5, we must show that  and  belong to  if  does. If, however,

F , F ,

x ∈ F x =
p

q
p q (q ≠ 0); x

J R F . p p

p/q q = 1

R ⊇ J ⊃ N (2.3.1)

N = {x ∈ J|x > 0}. (Why?) (2.3.2)

 Theorem 2.3.1

a b F , a+b ab

a, b ∈ N

−a ∈ N , b ∈ N

a ∈ N , −b ∈ N

2, §7, )

a b

a =  and b =
p

q

r

s
(2.3.3)

qs ≠ 0; qs pr integers p, q, r, s ∈ J).

a±b =  and ab =
ps±qr

qs

pr

qs
(2.3.4)

qs ≠ 0; qs pr p, q, r, s ∈ J)

a±b ab a±b ∈ R ab ∈ R.

□

 Theorem 2.3.2

F , R F ,

R F R F . )

R

F ; F

R R;

−x x−1 R x

x = (p, q ∈ J, q ≠ 0)
p

q
(2.3.5)
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then

where again  by the definition of  thus .

If, in addition,  then  and

Thus . 

Note. The representation

is not unique in general; in an ordered field, however, we can always choose  i.e.,  take  if .

Among all such  there is a least one by Theorem 2 of  If , with this minimal  we say that the rational  is
given in lowest terms.

This page titled 2.3: Integers and Rationals is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The
Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

−x =
−p

q
(2.3.6)

−p ∈ J J; −x ∈ R

x ≠ 0, p ≠ 0,

x =  implies  = . (Why?)
p

q
x−1 q

p
(2.3.7)

∈ Rx−1
□

x = (p, q ∈ J)
p

q
(2.3.8)

q > 0, q ∈ N( p ≤ 0 x ≤ 0)

q $85−6. x = p/q q ∈ N , x
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2.4: Upper and Lower Bounds. Completeness
A subset  of an ordered field  is said to be bounded below (or left bounded) iff there is  such that

 is bounded above (or right bounded) iff there is  such that

In this case,  and  are called, respectively, a lower (or left) bound and an upper (or right) bound, of  If both exist, we simply
say that  is bounded (by  and  The empty set  is regarded as ("vacuously") bounded by any p and  (cf. the end of Chapter 

.

The bounds  and  may, but need not, belong to  If a left bound  is itself in  we call it the least element or minimum of 
denoted min . Similarly, if  contains an upper bound  we write  and call  the largest element or maximum of 
However,  may well have no minimum or 
maximum.

Note 1. A finite set  always has a minimum and a maximum (see Problem 9 of §§ 5-6 )\).

Note 2. A set  can have at most one maximum and at most one minimum. For if it had  maxima  then

(since  and  is a right bound); similarly

so  after all. Uniqueness of  is proved in the same manner.

Note 3. If  has one lower bound  it has many (e.g., take any .

Similarly, if  has one upper bound  it has many (take any .

Geometrically, on the real axis, all lower (upper) bounds lie to the left (right) of  see Figure 

(1) Let

Then  is bounded above  e.g.  by  and below  e.g.  by .

We have .

(2) The set  of all naturals is bounded below (e.g., by ) and  N has no maximum, for each 
is exceeded by some  (e.g. ).

(3) Given  we define in  the open interval

the closed interval

A F p ∈ F

(∀x ∈ A) p ≤ x (2.4.1)

A q ∈ F

(∀x ∈ A) x ≤ q (2.4.2)

p q A.
A p q). ∅ q

1, §3)

p q A. p A, A,
A A q, q = max A q A.

A

A ≠ ∅

A two q, ,q ′

q ≤ q ′ (2.4.3)

q ∈ A q ′

≤ q;q ′ (2.4.4)

q = q ′ minA

A p, < p)p′

A q, > q)q ′

A; 1.

 Examples

A = {1, −2, 7}. (2.4.5)

A ( , 7, 8, 10, …) ( , −2, −5, −12, …)

minA = −2, max A = 7

N 1, 0, , −1, …1
2

1 = minN ; q ∈ N

n ∈ N , n = q +1

a, b ∈ F (a ≤ b), F

(a, b) = {x|a < x < b}; (2.4.6)

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/19031?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/02%3A_Real_Numbers_and_Fields/2.04%3A_Upper_and_Lower_Bounds._Completeness


2.4.2 https://math.libretexts.org/@go/page/19031

the half-open interval

and the half-closed interval

Clearly, each of these intervals is bounded by the endpoints a and  moreover,  and  (the latter provided 
 i.e.,   and  similarly, . But  has no maximum, 

 has no minimum, and  has neither. (Why?)

Geometrically, it seems plausible that among all left and right bounds of  (if any) there are some "closest" to  such as  and 
in Figure  i.e., a least upper bound  and a greatest lower bound  These are abbreviated

and are also called the supremum and infimum of  respectively; briefly,

However, this assertion, though valid in  fails to materialize in many other fields such as the field  of all rationals (cf. 
 Even for  it cannot be proved from Axioms 1 through 9.

On the other hand, this property is of utmost importance for mathematical analysis; so we introduce it as an axiom (for  called
the completeness axiom. It is convenient first to give a general definition.

An ordered field  is said to be complete iff every nonvoid right-bounded subset  has a supremum  i.e., a lub) in .

Note that we use the term "complete" only for ordered fields.

With this definition, we can give the tenth and final axiom for .

The Completeness Axiom

The real field  is complete in the above sense. That is, each right-bounded set  has a supremum ,
provided .

The corresponding assertion for infima can now be proved as a theorem.

In a complete field  ( such as ), every nonvoid left-bounded subset  has an infimum a glb .

Proof

Let  be the (nonvoid) set of all lower bounds of  (such bounds exist since  is left bounded  Then, clearly, no member
of  exceeds any member of  and so  is right bounded by an element of  Hence, by the assumed completeness of 

 has a supremum in  call it 

We shall show that  is also the required infimum of  thus completing the proof.

Indeed, we have

(i)  is a lower bound of  For, by definition,  is the least upper bound of  But, as shown above, each  is an
upper bound of  Thus

[a, b] = {x|a ≤ x ≤ b}; (2.4.7)

(a, b] = {x|a < x ≤ b}; (2.4.8)

[a, b) = {x|a ≤ x < b}. (2.4.9)

b; a ∈ [a, b] a ∈ [a, b)
[a, b) ≠ ∅, a < b), a = min[a, b] = min[a, b); b = max[a, b] = max(a, b] [a, b)
(a, b] (a, b)

A A, u v

1, v u.

lubA and glbA (2.4.10)

A,

v = supA, u = inf A (2.4.11)

,E1 R

§§11 −12). ,E1

),E1

 Definition

F A ⊂ F ( F

E1

 Definition

E1 A ⊂ E1 (supA) in E1

A ≠ ∅

 Theorem 2.4.1

F E1 A ⊂ F (i. e. , )

B A A ).
B A, B A.

F , B F , p.

p A,

p A. p B. x ∈ A

B.

(∀x ∈ A) p ≤ x (2.4.12)
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(ii)  is the greatest lower bound of  For  is not exceeded by any member of  But, by definition,  contains
all lower bounds of  so  is not exceeded by any of them, i.e.,

Note 4. The lub and glb of  (if they exist) are unique. For inf  is, by definition, the maximum of the set  of all lower bounds of
 and hence unique, by Note  similarly for the uniqueness of sup 

Note 5. Unlike min  and max  the glb and lub of  need not belong to A. For example, if  is the interval  in 
then, as is easily seen,

though  Thus sup  and inf  may exist, though max  and min  do not.

On the other hand, if

then also

In an ordered field  we have  iff

(i)  and

(ii) each field element  is exceeded by some  i.e.,

Equivalently,

(ii')

Similarly,  iff

Proof

Condition (i) states that  is an upper bound of  while (ii) implies that no smaller element  is such a bound (since it is
exceeded by some  in A). When combined, (i) and (ii) state that  is the least upper bound.

Moreover, any element  can be written as  Hence (ii) can be rephrased as 

The proof for inf  is quite analogous. 

Let  and  in an ordered field  If each element  of  satisfies  so does sup , respectively),
provided it exists in 

In fact, the condition

means that  is a right bound of  However, sup  is the least right bound, so sup  similarly for inf 

p A. p = supB B. B

A; p

p = g1bA = infA (2.4.13)

A A B

A, 2; A.

A A, A A (a, b) (a < b)E1

a = inf A and b = supA (2.4.14)

a, b ∉ A. A A A A

q = max A(p = minA) (2.4.15)

q = supA(p = inf A). (Why?) (2.4.16)

 Theorem 2.4.2

F , q = supA(A ⊂ F )

(∀x ∈ A) x ≤ q

p < q x ∈ A;

(∀p < q)(∃x ∈ A) p < x. (2.4.17)

(∀ε > 0)(∃x ∈ A) q −ε < x; (ε ∈ F ) (2.4.18)

p = inf A

(∀x ∈ A) p ≤ x  and  (∀ε > 0)(∃x ∈ A) p +ε > x. (2.4.19)

q A, p

x q

p < q q −ε(ε > 0). ( ) .ii′

A □

 Corollary 2.4.1

b ∈ F A ⊂ F F . x A x ≤ b(x ≥ b), A

F .

(∀x ∈ A) x ≤ b (2.4.20)

b A. A A ≤ b; A.
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In any ordered field,  implies

as well as

provided the suprema and infima involved exist.

Proof

Let  and .

As  is a right bound of ,

But  so  contains all elements of  Thus

so, by Corollary  also

as claimed.

Similarly, one gets inf .

Finally, if  we can fix some  Then

and all is proved. 

This page titled 2.4: Upper and Lower Bounds. Completeness is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

 Corollary 2.4.2

∅ ≠ A ⊆ B

supA ≤ supB and  inf A ≥ inf B (2.4.21)

infA ≤ supA (2.4.22)

p = inf B q = supB

q B

x ≤ q for all x ∈ B. (2.4.23)

A ⊆ B, B A.

x ∈ A ⇒ x ∈ B ⇒ x ≤ q (2.4.24)

1,

supA ≤ q = supB, (2.4.25)

A ≥ inf B

A ≠ ∅, x ∈ A.

inf A ≤ x ≤ supA (2.4.26)

□
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2.4.E: Problems on Upper and Lower Bounds (Exercises)

Complete the proofs of Theorem 2 and Corollaries 1 and 2 for infima. 
Prove the last clause of Note 

Prove that  is complete iff each nonvoid left-bounded set in  has an infimum.

Prove that if  are right bounded (left bounded) in  so is 

Prove that if  is an open interval  then 

In an ordered field  let  Let  and let  denote the set of all products  i.e., 

 

 
In both cases, assume that the right-side sup  (respectively, inf  exists.

From Problem 5  with  obtain a new proof of Theorem 1. 
[Hint: If  is left bounded, show that  is right bounded and use its supremum. 

Let  and  be subsets of an ordered field  Assuming that the required lub and glb exist in  prove that 
(i) if  then ; 
(ii) if  then ; 
(iii) if  then . 

 Exercise 2.4.E. 1

4.

 Exercise 2.4.E. 2

F F

 Exercise 2.4.E. 3

, , … ,A1 A2 An F ,

⋃
k=1

n

Ak (2.4.E.1)

 Exercise 2.4.E. 4

A = (a, b) (a < b),

a = infA and b = supA. (2.4.E.2)

 Exercise 2.4.E. 5

F , ∅ ≠ A ⊂ F . c ∈ F cA cx(x ∈ A);

cA = {cx|x ∈ A}. (2.4.E.3)

 (i) if c ≥ 0 , then 

sup(cA) = c ⋅ supA and  inf(cA) = c ⋅ infA

 (ii) if c < 0 , then 

sup(cA) = c ⋅ infA and  inf(cA) = c ⋅ supA

(2.4.E.4)

A A)

 Exercise 2.4.E. 6

( ii ) c = −1,
A (−1)A ]

 Exercise 2.4.E. 7

A B F . F ,
(∀x ∈ A)(∀y ∈ B)x ≤ y, supA ≤ infB
(∀x ∈ A)(∃y ∈ B)x ≤ y, supA ≤ supB
(∀y ∈ B)(∃x ∈ A)x ≤ y, infA ≤ infB

[ Hint for (i) :  By Corollary 1, (∀y ∈ B) supA ≤ y,  so  supA ≤ infB. ( Why? )]
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For any two subsets  and  of an ordered field  let  denote the set of all sums  with  and  i.e., 

 
Prove that if  and  exist in  then 

 
similarly for infima. 
[Hint for sup: By Theorem  we must show that 
(i)  and 
(ii') . 
Fix any  By Theorem 2, 

 
Then 

 
as required. 

In Problem 8 let  and  consist of positive elements only, and let 

 
Prove that if  and  exist in  then 

 
similarly for infima. 
[Hint: Use again Theorem 2  For  take 

 
and 

 
show that 

 
For inf  let  and  choose  with 

 Exercise 2.4.E. 8

A B F , A+B x+y x ∈ A y ∈ B;

A+B = {x+y|x ∈ A, y ∈ B}. (2.4.E.5)

supA = p supB = q F ,

p+q = sup(A+B); (2.4.E.6)

2,
(∀x ∈ A)(∀y ∈ B)x+y ≤ p+q( which is easy )
(∀ε > 0)(∃x ∈ A)(∃y ∈ B)x+y > (p+q) −ε

ε > 0.

(∃x ∈ A)(∃y ∈ B) p− < x and q− < y. (Why?)
ε

2

ε

2
(2.4.E.7)

x+y > (p− )+(q− )= (p+q) −ε,
ε

2

ε

2
(2.4.E.8)

]

 Exercise 2.4.E. 9

A B

AB = {xy|x ∈ A, y ∈ B}. (2.4.E.9)

supA = p supB = q F ,

pq = sup(AB); (2.4.E.10)

( ) .ii′ sup(AB),

0 < ε < (p+q) min{p, q} (2.4.E.11)

x > p−  and y > q− ;
ε

p+q

ε

p+q
(2.4.E.12)

xy > pq−ε+ > pq−ε.
ε2

(p+q)2
(2.4.E.13)

(AB), s = infB r = infA; d < 1,

0 < d < .
ε

1 +r+s
(2.4.E.14)
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Now take  and  with 

 
and show that 

 
Explain!

Prove that 
(i) if  then ; 
(ii) if  then .

Prove the principle of nested intervals: If  are closed intervals in a complete ordered field  with 

 
then 

 
[Hint: Let 

 
Show that  is bounded above by each . 
Let  (Does it exist?) 
Show that 

 
i.e., 

Prove that each bounded set  in a complete field  is contained in a smallest closed interval  (so  is contained
in any other . 
Show that this fails if "closed" is replaced by "open." 

.

x ∈ A y ∈ B

x < r+d and y < s+d, (2.4.E.15)

xy < rs+ε. (2.4.E.16)

 Exercise 2.4.E. 10

(∀ε > 0)a ≥ b−ε, a ≥ b

(∀ε > 0)a ≤ b+ε, a ≤ b

 Exercise 2.4.E. 11

[ , ]an bn F ,

[ , ] ⊇ [ , ] , n = 1, 2, …an bn an+1 bn+1 (2.4.E.17)

[ , ] ≠ ∅.⋂
n=1

∞

an bn (2.4.E.18)

A = { , , … , , …} .a1 a2 an (2.4.E.19)

A bn
p = supA.

(∀n) ≤ p ≤ ,an bn (2.4.E.20)

p ∈ [ , ] . ]an bn (2.4.E.21)

 Exercise 2.4.E. 12

A ≠ ∅ F [a, b] [a, b]
[c, d] ⊇ A)

[ Hint: Take a = infA, b = supA]
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Prove that if  consists of positive elements only, then  iff 
(i)  and 
(ii) . 
[Hint: Use Theorem 2. 

2.4.E: Problems on Upper and Lower Bounds (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 2.4.E. 13

A q = supA
(∀x ∈ A)x ≤ q

(∀d > 1)(∃x ∈ A)q/d < x

]
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2.5: Some Consequences of the Completeness Axiom
The ancient Greek geometer and scientist Archimedes was first to observe that even a large distance  can be measured by a small
yardstick  one only has to mark  off sufficiently many times. Mathematically, this means that, given any  and any  there
is an  such that  This fact, known as the Archimedean property, holds not only in  but also in many other ordered
fields. Such fields are called Archimedean. In particular, we have the following theorem.

Any complete field F  is Archimedean.

That is, given any  in such a field, there is a natural  such that 

Proof

(by contradiction) Suppose this fails. Thus, given , assume that there is no  with .

Then

i.e.,  is an upper bound of the set of all products  Let

Clearly,  is bounded above  by  and  so, by the assumed completeness of  has a supremum, say, 
.

As  is an upper bound, we have (by the definition of  that  for all  hence also  i.e.,

for all  since .

Thus  (which is less than  for ) is another upper bound of all  i.e., of the set 

This is impossible, however, since  is the least upper bound of 

This contradiction completes the proof. 

In any Archimedean (hence also in any complete) field  the set  of all natural elements has no upper bounds, and the set 
of all integers 
has neither upper nor lower bounds. Thus

Proof

Given any  one can use Archimedean property (with  to find an  such that

Similarly, there is an  such that

This proves our last assertion and shows that  can be a right bound of  for  or a left bound of 
for 

y

x; x x > 0 y,
n ∈ N nx > y. E1

 Theorem 2.5.1

(e. g. , )E1

x, y ∈ F (x > 0) n ∈ F nx > y.

y, x ∈ F (x > 0) n ∈ N nx > y

(∀n ∈ N) nx ≤ y (2.5.1)

y nx(n ∈ N).

A = {nx|n ∈ N} (2.5.2)

A ( y) A ≠ ∅; F , A

q = supA

q A) nx ≤ q n ∈ N , (n +1)x ≤ q;

nx ≤ q −x (2.5.3)

n ∈ N( n ∈ N ⇒ n +1 ∈ N)

q −x q x > 0 nx A.

q = supA A.

□

 corollary 2.5.1

F , N J

(∀y ∈ F )(∃m, n ∈ N) −m < y < n (2.5.4)

y ∈ F , x = 1) n ∈ N

n ⋅ 1 > y,  i.e., n > y. (2.5.5)

m ∈ N

m > −y,  i.e.,  −m < y. (2.5.6)

noy ∈ F N( y < n ∈ N), J(
y > −m ∈ J). □
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In any Archimedean (hence also in any complete) field  each left (right) bounded set  of integers  has a
minimum (maximum, respectively\)).

Proof

Suppose  and  has a lower bound .

Then Corollary 1 (last part) yields a natural  with  so that

and so .

Thus, by adding  to each  we obtain a set  call it  of naturals.

Now, by Theorem 2 of  has a minimum; call it  As  is the least of all sums  is the least of
all  so  exists, as claimed.

Next, let  have a right bound  Then look at the set of all additive inverses  of points  call it 

Clearly,  is left bounded  so it has a minimum, say, . Then  (Verify!) 

In particular, given any  Archimedean), let  denote the greatest integer  (called the integral part of  We thus
obtain the following corollary.

Any element  of an Archimedean field  has an integral part  It is the unique integer  such that

(It exists, by Theorem 2.)

Any ordered field has the so-called density property:

If  in  there is  such that  e.g. take

We shall now show that, in Archimedean fields,  can be chosen rational, even if  and  are not. We refer to this as the
density of rationals in an Archimedean field

(density of rationals) Between any elements  and   of an Archimedean field  (such as ), there is a rational 
with

Let  (the integral part of  The idea of the proof is to start with  and to mark off a small "yardstick"

several  times, until

then  is the desired rational.

We now make it precise. As  is Archimedean, there are  such that

 Theorem 2.5.2

F , A (∅ ≠ A ⊂ J)

∅ ≠ A ⊆ J, A y

m, −m < y,

(∀x ∈ A) −m < x, (2.5.7)

x +m > 0

m x ∈ A, ( A +m)

§§5 −6, A +m p. p x +m, p −m

x ∈ A; p −m = minA

A z. −x x ∈ A; B.

B (by −z), u = minB −u = max A. □

x ∈ F (F [x] ≤ x x).

 corollary 2.5.2

x F [x]. n

n ≤ x < n +1 (2.5.8)

a < b F , x ∈ F a < x < b;

x = .
a +b

2
(2.5.9)

x a b

 Theorem 2.5.3

a b (a < b) F E1 r ∈ F

a < r < b. (2.5.10)

p = [a] a). p

< b −a
1

n
(2.5.11)

(m)

p +  lands inside (a, b)
m

n
(2.5.12)

r = p + m

n

F m, n ∈ N
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We fix the least such  (it exists, by Theorem 2 in  Then

(by the minimality of  Hence

since  Setting

we find

Note. Having found one rational ,

we can apply Theorem 3 to find another ,

then a third ,

and so on. Continuing this process indefinitely, we obtain infinitely many rationals in 

This page titled 2.5: Some Consequences of the Completeness Axiom is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the
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n(b −a) > 1 and m( ) > a −p
1

n
(2.5.13)

m §§5 −6).

a −p < ,  but  ≤ a −p
m

n

m −1

n
(2.5.14)

m).

a < p + ≤ a + < a +(b −a),
m

n

1

n
(2.5.15)

< b −a.1
n

r = p + ,
m

n
(2.5.16)

a < r < a +b −a = b. □ (2.5.17)

r1

a < < b,r1 (2.5.18)

∈ Rr2

< < b,r1 r2 (2.5.19)

∈ Rr3

< < b,r2 r3 (2.5.20)

(a, b).
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2.6: Powers with Arbitrary Real Exponents. Irrationals
In complete fields, one can define  for any  and  (for  see §§5-6, Example  First of all, we have the
following theorem.

Given  in a complete field  and a natural number , there always is a unique element  such that

It is called the  th root of  denoted

(Note that  by definition.)

Proof

A direct proof, from the completeness axiom, is sketched in Problems 1 and 2 below. We shall give a simpler proof in
Chapter 4,§9, Example (a). At present, we omit it and temporarily take Theorem 1 for granted. Hence we obtain the
following result.

Every complete field  (such as ) has irrational elements, i.e., elements that are not rational.

In particular,  is irrational.

Proof

By Theorem 1,  has the element

Seeking a contradiction, suppose  is rational, i.e.,

for some  in lowest terms (see §7, final note).

Then  and  are not both even (otherwise, reduction by 2 would yield a smaller  From  we obtain

so  is even.

Only even elements have even squares, however. Thus  itself must be even; i.e.,  for some  It follows that

and, by the same argument,  must be even.

This contradicts the fact that  and  are not both even, and this contradiction shows that  must be irrational. 

Note 1. Similarly, one can prove the irrationality of  where  and  is not the square of a natural. See Problem 3 below for
a hint.

Note 2. Theorem 2 shows that the field  of all rationals is not complete (for it contains no irrationals), even though it is
Archimedean (see Problem 6 ). Thus the Archimedean property does not impleteness (but see Theorem 1 of §10).

Next, we define  for any rational number .

ar a > 0 r ∈ E1 r ∈ N , (f)).

 Theorem 2.6.1

a ≥ 0 F , n ∈ E1 p ∈ F , p ≥ 0,

= a.pn (2.6.1)

n a,

 or  .a−−√n a1/n (2.6.2)

≥ 0,a−−√n

 Theorem 2.6.2

F E1

2
–

√

F

p =  with  = 22
–

√ p2 (2.6.3)

2
–

√

=2
–

√
m

n
(2.6.4)

m, n ∈ N

m n n). m/n = ,2
–

√

= 2 ;m2 n2 (2.6.5)

m2

m m = 2r r ∈ N .

4 = = 2 ,  i.e., 2 =r2 m2 n2 r2 n2 (2.6.6)

n

m n 2
–

√ □

a−−√ a ∈ N a

R

ar r > 0
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Given  in a complete field  and a rational number

we define

Here we must clarify two facts.

(1) If  we have

If  we get

Thus Definition 1 agrees with our previous definitions of  and  

(2) If  is written as a fraction in two different ways,

then, as is easily seen,

and so our definition is unambiguous (independent of the particular representation of 

Indeed,

whence

i.e.,

cf. §§5-6, Problem 6.

By definition, however,

Substituting this in  we get

whence

Thus Definition 1 is valid, indeed.

By using the results of Problems 4 and 6 of §§5-6, the reader will easily obtain analogous formulas for powers with positive
rational exponents, namely,

 Definition

a ≥ 0 F ,

r = (m, n ∈ N ⊆ )
m

n
E1 (2.6.7)

= .ar am−−−
√n (2.6.8)

n = 1,

= = = .ar am/1 am−−−
√1

am (2.6.9)

m = 1,

= = .ar a1/n a−−√n (2.6.10)

am a−−√n (m, n ∈ N).

r

r = = ,
m

n

p

q
(2.6.11)

= = ,am−−−
√n

ap−−
√q

ar (2.6.12)

r).

=  implies mq = np,
m

n

p

q
(2.6.13)

= ,amq apn (2.6.14)

= ;( )am q ( )ap n (2.6.15)

=  and  = .( )am−−−
√n n

am ( )ap−−
√q q

ap (2.6.16)

= ,( )am q ( )ap n

= ,( )am−−−
√n nq

( )ap−−
√q nq

(2.6.17)

= .am−−−
√n

ap−−
√q

(2.6.18)

aras

a

= ; = ; (ab = ; <  if 0 < a < 1 and r > sar+s ( )ar s ars )r arbr ar as

< b iff  < (a, b, r > 0); >  if a > 1 and r > s; = 1ar br ar as 1r
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Henceforth we assume these formulas known, for rational .

Next, we define  for any real  and any element  in a complete field 

Let  denote the set of all members of  of the form  with  and  i.e.,

By the density of rationals in  (Theorem 3 of §10), such rationals  do exist; thus .

Moreover,  is right bounded in  Indeed, fix any rational number . By the formulas in  we have, for any positive
rational ,

since  and  implies

Thus  is an upper bound of all  in .

Hence, by the assumed completeness of  sup  exists. So we may define

We also put

If  (so that  we put

where

as above.

Summing up, we have the following definitions.

Given  in a complete field , and , we define the following.(i) If  and , then

(ii) If  and , then , also written 

(iii) . (This defines powers with negative exponents as well.)

We also define  for any real , and  for any , ;  remains undefined.

The power  is also defined if  and  is a rational  with  because  has sense in this case. (Why?) This does not
work for other values of . Therefore, in general, we assume .

Again, it is easy to show that the formulas in (1) remain also valid for powers with real exponents (see Problems } 8-13 below),
provided  is complete.
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r, s > 0

ar r > 0 a > 1 F .

Aar F ,ax x ∈ R 0 < x ≤ r;

= { |0 < x ≤ r, x rational}.Aar ax (2.6.19)

E1 x ≠ ∅Aar

Aar F . y > r (1),
x ≤ r

= = >ay ax+(y−x) axay−x ax (2.6.20)

a > 1 y −x > 0

> 1.ay−x (2.6.21)

ay ax Aar

F , Aar

= sup .ar Aar (2.6.22)

= .a−r 1

ar
(2.6.23)

0 < a < 1 > 1),1
a

=  and  = ,ar ( )
1

a

−r

a−r 1

ar
(2.6.24)

= sup ,( )
1

a

r

A1/a,r (2.6.25)

 Definition

a > 0 F r ∈ E1 r > 0 a > 1

= sup = sup{ |0 < x ≤ r, x rational }ar Aar ax (2.6.26)

r > 0 0 < a < 1 =ar 1
(1/a)r (1/a .)−r

= 1/a−r ar

= 00r r > 0 = 1a0 a ∈ F a ≠ 0 00

ar a < 0 r m

n
n =ar am−−−

√n

r a > 0

F
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2.6.E: Problems on Roots, Powers, and Irrationals (Exercises)

Let  in  let  and  be elements of an ordered field . 
Prove that 
(i) if  then  and ; 
(ii) if  then  and . 
[Hint: For (i), put 

 
Use the Bernoulli inequality (Problem 5 (ii) in §§5-6) to find  such that 

 
i.e., 

 
Solving for  show that this holds if 

 
For  if  then 

 
Use (i) with  and  replaced by 1  and 1

Prove Theorem 1 assuming that 
(i) ; 
(ii)  (the cases  and  are trivial). 

 

 
Show that  is bounded below (by 1 ) and  (e.g., why?). 
By completeness, put  inf  
Then show that  (i.e.,  is the required . 
Indeed, if  then Problem 1 would yield an  with 

 
Similarly, use Problem 1 to exclude . 
To prove uniqueness, use Problem 4(ii) of §§5-6. 
Case (ii) reduces to (i) by considering 1  instead of 

 Exercise 2.6.E. 1

n ∈ N ;E1 p > 0 a > 0 F

> a,pn (∃x ∈ F )p > x > 0 > axn

< a,pn (∃x ∈ F )x > p < axn

x = p−d,  with 0 < d < p. (2.6.E.1)

d

= (p−d > a,xn )n (2.6.E.2)

> .(1 − )
d

p

n
a

pn
(2.6.E.3)

d,

0 < d < < p.  (Why does such a d exist? )
−apn

npn−1
(2.6.E.4)

(ii), < a,pn

> .
1

pn
1

a
(2.6.E.5)

a p /a /p. ]

 Exercise 2.6.E. 2

a > 1
0 < a < 1 a = 0 a = 1

[ Hints: ( i) Let 

A = {x ∈ F |x ≥ 1, > a} .xn (2.6.E.6)

A A ≠ ∅ a+1 ∈ A−
p = A.

= apn p )a−−√n

> a,pn x ∈ A

x < p = infA.  (Contradiction!)  (2.6.E.7)

< apn

/a a. ]
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Prove Note 1. 
[Hint: Suppose first that  is not divisible by any square of a prime, i.e., 

 
where the  are distinct primes. (We assume it known that each  is the product of [possibly repeating] primes.) Then
proceed as in the proof of Theorem 2, replacing "even" by "divisible by ." 
The general case,  reduces to the previous case since 

Prove that if  is rational and  is not, then  is irrational; so also are  and  if . 
[Hint: Assume the opposite and find a contradiction.]

 Prove the density of irrationals in a complete field  If , there is an irrational  with 

 
(hence infinitely many such irrationals  See also Chapter 1, §9, Problem  
[Hint: By Theorem 3 of §10, 

 
Put  see Problem 4]. 

Prove that the rational subfield  of any ordered field is Archimedean. 
[Hint: If 

 
then  for .

Verify the formulas in  for powers with positive rational exponents 

Prove that 
(i)  and 
(ii)  for  and . 
[Hints: For  if  and  use Problem 9 in §§8-9 to get 
Verify that 

 Exercise 2.6.E. 3

a

a = ⋯ ,p1p2 pm (2.6.E.8)

pk a ∈ N

pk
a = b,p2 = p . ]a−−√ b√

 Exercise 2.6.E. 4

r q r±q rq, q/r, r/q r ≠ 0

 Exercise 2.6.E. 5

⇒ 5. F : a < b(a, b ∈ F ) x ∈ F

a < x < b (2.6.E.9)

x). 4.

(∃r ∈ R) a < r < b , r ≠ 0. (Why?)2
–

√ 2
–

√ (2.6.E.10)

x = r/ ;2
–

√

 Exercise 2.6.E. 6

R

x =  and y = (k,m, p, q ∈ N),
k

m

p

q
(2.6.E.11)

nx > y n = mp+1]

 Exercise 2.6.E. 7

(1) r, s.

 Exercise 2.6.E. 8

=ar+s aras

= /ar−s ar as r, s ∈ E1 a ∈ F (a > 0)
(i), r, s > 0 a > 1,

AarAas = { |x, y ∈ R, 0 < x ≤ r, 0 < y ≤ s}axay

= { |z ∈ R, 0 < z ≤ r+s} =az Aa,r+s
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Hence deduce that 

 
by Definition 2. 
For  if  and  then by , 

 
so 

 
For the cases  or  or  use the above results and Definition 2

From Definition 2 prove that if  then 

 
for .

Prove for  that 
(i)  if ; 
(ii)  if . 
[Hints: (i) By Problems 8 and 9, 

 
since  if  and . 
(ii) For the case  use Definition 2(ii).]

Prove that 

 
for  and positive . 
[Hint: Proceed as in Problem 

Given  in  and  prove that 
(i)  if  and 
(ii)  if . 
[Hint: 

= sup( ) =aras Aa,r+s ar+s (2.6.E.12)

(ii), r > s > 0 a > 1, (i)

=ar−sas ar (2.6.E.13)

= .ar−s ar

as
(2.6.E.14)

r < 0 s < 0, 0 < a < 1, (ii)(iii). ]

 Exercise 2.6.E. 9

r > 0 (r ∈ ) ,E1

a > 1⟺ > 1ar (2.6.E.15)

a ∈ F (a > 0)

 Exercise 2.6.E. 10

r, s ∈ E1

r < s ⇔ <ar as a > 1
r < s ⇔ >ar as 0 < a < 1

= = >as ar+(s−r) aras−r ar (2.6.E.16)

> 1as−r a > 1 s−r > 0
0 < a < 1,

 Exercise 2.6.E. 11

(a ⋅ b =  and  =)r arbr ( )
a

b

r ar

br
(2.6.E.17)

r ∈ E1 a, b ∈ F

8. ]

 Exercise 2.6.E. 12

a, b > 0 F r ∈ ,E1

a > b ⇔ >ar br r > 0,
a > b ⇔ <ar br r < 0
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if  by Problems 9 and 11].

Prove that 

 
for  and . 
[Hint: First let  and  To show that 

 
use Problem 13 in §§8-9. Thus prove that 
(i)  which is easy, and 
(ii) . 
Fix any  and put  Then 

 
Fix that  Now 

 
so 

 
Combining all and using the formulas in  for rationals  obtain 

 
thus proving (ii)].

2.6.E: Problems on Roots, Powers, and Irrationals (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

a > b⟺ > 1⟺ > 1
a

b
( )
a

b

r

(2.6.E.18)

r > 0

 Exercise 2.6.E. 13

=( )ar s ars (2.6.E.19)

r, s ∈ E1 a ∈ F (a > 0)
r, s > 0 a > 1.

= = sup = sup{ |x, y ∈ R, 0 < xy ≤ rs} ,( )ar s ars Aa,rs axy (2.6.E.20)

(∀x, y ∈ R|0 < xy ≤ rs) ≤ ,axy ( )ar
s

(∀d > 1)(∃x, y ∈ R|0 < xy ≤ rs) < d( )ar
s

axy

d > 1 b = .ar

= = sup = sup{ |y ∈ R, 0 < y ≤ s} .( )ar s bs Abs by (2.6.E.21)

y.

= sup = sup{ |x ∈ R, 0 < x ≤ r} ;ar Aar ax (2.6.E.22)

(∃x ∈ R|0 < x ≤ r) < . (Why?)ar d
1

2y ax (2.6.E.23)

(1) x, y,

< < = d ,( )ar s d
1

2 ( )ar y d
1

2 ( )d
1

2y ax
y

axy (2.6.E.24)
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2.7: The Infinities. Upper and Lower Limits of Sequences

The Infinities

As we have seen, a set  in E^{1} has a lub (\mathrm{glb}) if A is bounded above (respectively, below), but not otherwise.

In order to avoid this inconvenient restriction, we now add to  two new objects of arbitrary nature, and call them "minus
infinity"  and "plus infinity" , with the convention that  and  for all .  
It is readily seen that with this convention, the laws of transitivity and trichotomy (Axioms 7 and 8) remain valid.

The set consisting of all reals and the two infinities is called the extended real number system. We denote it by  and call its
elements extended real numbers. The ordinary reals are also called finite numbers, while  are the only two infinite elements of 

. (Caution: They are not real numbers.)

At this stage we do not define any operations involving . (This will be done later. However, the notions of upper and lower
bound, maximum, minimum, supremum, and infimum are defined in  exactly as in  In particular, 

Thus in  all sets are bounded.

It follows that in  every set  has a lub and a glb. For if  has none in  it still has the upper bound  in  which in
this case is the unique (hence also the least) upper bound; thus sup  I Similarly, inf  if there is no other lower
bound.? As is readily seen, all properties of lub and glb stated in §§8-9 remain valid in  (with the same proof). The only
exception is Theorem 2  in the case  (respectively,  and  make no sense. Part (ii) of
Theorem 2 is valid.

We can now define intervals in  exactly as in  §§8-9, Example (3), allowing also infinite values of  For example,

Intervals with finite endpoints are said to be finite; all other intervals are called infinite. The infinite intervals

are actually subsets of  as is  Thus we shall speak of infinite intervals in  as well.

Upper and Lower Limits
In Chapter 1, §§1-3 we already mentioned that a real number  is called the limit of a sequence  iff

where  and .

This may be stated as follows:

For sufficiently large  becomes and stays as close to  as we like (" -close").

We also define (in  and )

Note that  and  make sense in  too, since the symbols  do not occur on the right side of the formulas. Formula 
means that  becomes arbitrarily larger than any  given in advance) for sufficiently large  The interpretation of 

 is analogous. A more general and unified approach will now be developed for  (allowing infinite terms  too).

Let  be any sequence in  For each  let  be the set of all terms from  onward, i.e.,

A ≠ ∅

E1

(−∞) (+∞) −∞ < +∞ −∞ < x < +∞ x ∈ E1

E∗

±∞
E∗

±∞
E∗ .E1

−∞ = min  and  +∞ = maxE∗ E∗ (2.7.1)

E∗

E∗ A ≠ ∅ A ,E1 +∞ ,E∗

A = +∞. A = −∞
E∗

( )ii′ q = +∞ p = −∞) since +∞ −ε −∞ +ε

E∗ E1 a, b, x.

(−∞, a)

(a, +∞)

(−∞, +∞)

[−∞, +∞]

= {x ∈ | −∞ < x < a} = {x ∈ |x < a}E∗ E1

= {x ∈ |a < x}E1

= {x ∈ | −∞ < x < +∞} =E∗ E1

= {x ∈ | −∞ ≤ x ≤ +∞} ;  etc. E∗

(−∞, a), (−∞, a], (a, +∞), [a, +∞), a ∈ E1 (2.7.2)

,E1 (−∞, +∞). E1

p { } ⊆ (p = lim )xn E1 xn

(∀ε > 0)(∃k)(∀n > k) | −p| < ε,  i.e., p −ε < < p −εxn xn (2.7.3)

ε ∈ E1 n, k ∈ N

n(n > k), xn p ε

E1 E∗

lim
n→∞

xn

lim
n→∞

xn

= +∞⟺ (∀a ∈ ) (∃k)(∀n > k) > a andE1 xn

= −∞⟺ (∀b ∈ ) (∃k)(∀n > k) < b.E1 xn

(2.7.4)

(2.7.5)

(2) (3) ,E1 ±∞ (2)
xn a ∈ E1 n(n > k).

(3) E∗ ,xn

{ }xn .E∗ n, An xn
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For example,

The  form a contracting sequence (see Chapter 1, §8) since

Now, for each  let

also denoted

(These infima and suprema always exist in  as noted above.) Since  Corollary 2 of §§8-9 yields

Thus

and so  while  in  We also see that each  is an upper bound of all  and hence

This, in turn, shows that this sup (call it  is a lower bound of all  and so

We put

For each sequence  we define its upper limit  and its lower limit  denoted

as follows.

We put 

as before. Then we set

Here and below, inf  is the inf of all  and  is the sup of all .

For any sequence in 

{ , , …}xn xn+1 (2.7.6)

= { , , …} , = { , , …} ,  etc.A1 x1 x2 A2 x2 x3 (2.7.7)

An

⊇ ⊇ ⋯ .A1 A2 (2.7.8)

n,

= inf  and  = suppn An qn An (2.7.9)

=  and  = .pn inf
k≥n

xk qn sup
k≥n

xk (2.7.10)

,E∗ ⊇ ,An An+1

inf ≤ inf ≤ sup ≤ supAn An+1 An+1 An (2.7.11)

≤ ≤ ⋯ ≤ ≤ ≤ ⋯ ≤ ≤ ≤ ⋯ ≤ ≤p1 p2 pn pn+1 qn+1 qn q2 q1 (2.7.12)

{ } ↑,pn { } ↓qn .E∗ qm pn

≥ (= lub  of all  ) .qm sup
n

pn pn (2.7.13)

)L–– ,qm

≤ .L–– inf
m

qm (2.7.14)

= .inf
m

qm L
¯¯̄̄

(2.7.15)

 Definition

{ } ⊆ ,xn E∗ L¯¯̄̄ ,L
––

= =  and  = lim =L
¯¯̄̄

lim
¯ ¯¯̄¯̄¯

xn lim sup
n→∞

xn L–– xn lim inf
n→∞

xn (2.7.16)

(∀n)

=  and  = ,qn sup
k≥n

xk pn inf
k≥n

xk (2.7.17)

= =  and  = = ,  all in  .L
¯¯̄̄

lim
¯ ¯¯̄¯̄¯

xn inf
n

qn L–– lim– –– xn sup
n

pn E∗ (2.7.18)

nqn ,qn supn pn pn

 Corollary 2.7.1

,E∗

≤ ≤ ≤ .inf
n

xn lim– –– xn lim
¯ ¯¯̄¯̄¯

xn sup
n

xn (2.7.19)
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For, as we noted above,

Also,

with  as above.

(a) Let

Here

Hence

as easily follows by Theorem 2 in §§8-9 and the Archimedean property. (Verify!) Also,

since all  are  so is  Thus here 

(b) Consider the sequence

Here

Thus

On the other hand,  for all  (Why?) Thus

(i) If  for infinitely many  then

(ii) If  for all but finitely many  then

= ≤ = .L–– sup
n

pn inf
m

qm L¯¯̄̄ (2.7.20)

≥ = inf ≥ inf =  and L–– pn An A1 inf
n

xn (2.7.21)

≤ = sup ≤ sup = ,L
¯¯̄̄

qn An A1 sup
n

xn (2.7.22)

An

 Example 2.7.1

= .xn

1

n
(2.7.23)

= sup{1, , … , , …} = 1, = , = .q1
1

2

1

n
q2

1

2
qn

1

n
(2.7.24)

= = inf{1, , … , , …} = 0,L
¯¯̄̄

inf
n

qn

1

2

1

n
(2.7.25)

= = 0, = = 0, … , = = 0.p1 inf
k≥1

1

k
p2 inf

k≥2

1

k
pn inf

k≥n

1

k
(2.7.26)

pn 0, = .L
¯¯̄̄

supn pn = = 0.L–– L
¯¯̄̄

1, −1, 2, − , … , n, − , …
1

2

1

n
(2.7.27)

= −1 = , = − = , … ; = − = .p1 p2 p3
1

2
p4 p2n−1

1

n
p2n (2.7.28)

= = sup{−1, − , … , − , …} = 0.lim– –– n xn sup
n

pn

1

2

1

n
(2.7.29)

= +∞qn n.

= = +∞.lim
¯ ¯¯̄¯̄¯

xn inf
n

qn (2.7.30)

 Theorem 2.7.1

≥ bxn n,

≥ b  as well .lim
¯ ¯¯̄¯̄¯

xn (2.7.31)

≤ axn n,
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Similarly for lower limits (with all inequalities reversed).

Proof

(i) If  for infinitely many  then such  must occur in each set

Hence

so  by Corollary 1 of §§8-9.

(ii) If  except finitely many  let  be the last of these "exceptional" values of 

Then for  i.e., the set

is bounded above by  so

Hence certainly 

(i) If  then  for infinitely many 

(ii) If  then  for all but finitely many 

Similarly for lower limits (with all inequalities reversed).

Proof

Assume the opposite and find a contradiction to Theorem 1. 

To unify our definitions, we now introduce some useful notions.

By a neighborhood of  briefly  we mean, for  any interval of the form

If  respectively  is an infinite interval of the form

We can now combine formulas (1)-(3) into one equivalent definition.

An element  (finite or not) is called the limit of a sequence  in  iff each  (no matter how small it is) contains
all but finitely many  i.e. all  from some  onward. In symbols,

We shall use the notation

Indeed, if  then  means

≤ a  as well .lim¯ ¯¯̄¯̄¯ xn (2.7.32)

≥ bxn n, n

= { , , …} .Am xm xm+1 (2.7.33)

(∀m) = sup ≥ b;qm Am (2.7.34)

= ≥ b,L
¯¯̄̄

infm qm

≤ axn n, n0 n.

n > , ≤ a,n0 xn

= { , , …}An xn xn+1 (2.7.35)

a;

(∀n > ) = sup ≤ a.n0 qn An (2.7.36)

= ≤ a. □L
¯¯̄̄

infn qn

 corollary 2.7.2

> a,lim¯ ¯¯̄¯̄¯ xn > axn n.

< b,lim
¯ ¯¯̄¯̄¯

xn < bxn n.

□

p, ,Gp p ∈ ,E1

(p −ε, p +ε), ε > 0. (2.7.37)

p = +∞( , p = −∞), Gp

(a, +∞] (respectively, [−∞, b)),  with a, b ∈ .E1 (2.7.38)

 Definition

p ∈ E∗ { }xn E∗ Gp

,xn xn xk

(∀ ) (∃k)(∀n > k) ∈ .Gp xn Gp (2.7.39)

p = lim  or  .xn lim
n→∞

xn (2.7.40)

p ∈ ,E1 ∈xn Gp

p −ε < < p +ε,xn (2.7.41)
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as in (1). If, however,  it means

as in (2) and (3).

We have  in  iff

(i) each neighborhood  contains  for infinitely many  and

(ii') if  then  for at most finitely many 

Proof

If  Corollary 2 yields (ii')

It also shows that any interval  with  contains infinitely many  (for there are infinitely many 
and only finitely many  by 

Now if 

is such an interval, so we obtain  The cases  are analogous; we leave them to the reader.

Conversely, assume  and 

Seeking a contradiction, let  say,

Then Corollary 2  yields  for infinitely many  contrary to our assumption 

Similarly,  would contradict 

Thus necessarily 

We have  in  iff

Proof

Suppose

If  then every  is an interval ; therefore, Corollary 2(ii) and its analogue for  imply (with
 treated as both  and  that

Thus by Definition  as claimed.

Conversely, if so, then any  (no matter how small) contains all but finitely many  Hence so does any interval 
with  for it contains some small 

Now, exactly as in the proof of Theorem  one excludes

p = ±∞,

> a ( respectively,  < b) ,xn xn (2.7.42)

 Theorem 2.7.2

q = lim¯ ¯¯̄¯̄¯ xn E∗

Gq xn n,

q < b, ≥ bxn n.

q = ,lim
¯ ¯¯̄¯̄¯

xn

(a, b), a < q < b, xn > a,xn

≥ bxn ( )).ii′

q ∈ ,E1

= (q −ε, q +ε)Gq (2.7.43)

( ) .i′ q = ±∞

( )i′ ( ) .ii′

q < ;L
¯¯̄̄

q < b < .lim
¯ ¯¯̄¯̄¯

xn (2.7.44)

(i) > bxn n, (i ) .i′

q > lim
¯ ¯¯̄¯̄¯

xn ( ) .i′

q = . □lim¯ ¯¯̄¯̄¯ xn

 Theorem 2.7.3

q = lim xn E∗

= = q.lim– –– xn lim
¯ ¯¯̄¯̄¯

xn (2.7.45)

= = q.lim– –– xn lim
¯ ¯¯̄¯̄¯

xn (2.7.46)

q ∈ ,E1 Gq (a, b), a < q < b lim– –– xn

q lim
¯ ¯¯̄¯̄¯

xn lim– –– xn

a < < b for all but finitely many n.xn (2.7.47)

2, q = lim ,xn

Gq .xn (a, b)
a < q < b, .Gq

2,

q ≠  and q ≠ .lim– –– xn lim
¯ ¯¯̄¯̄¯

xn (2.7.48)
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This settles the case  The cases  are quite analogous. 
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2.7.E: Problems on Upper and Lower Limits of Sequences in E ∗ E∗ (Exercises)

Complete the missing details in the proofs of Theorems 2 and  Corollary  and Examples (a) and (b).

State and prove the analogues of Theorems 1 and 2 and Corollary 2 for 
.

Find  and  if 
(a)  (constant); 
(b)  ; 
(c)  and 
(d)  
Does  exist in each case?

 A sequence  is said to cluster at  and  is called its cluster point, iff each  contains  for infinitely many
values of . 
Show that both  and  are cluster points  largest). 
[Hint: Use Theorem 2 and its analogue for . 
To show that no  (or  is a cluster point, assume the opposite and find a contradiction to Corollary 2.]

 Prove that 
(i)  and 
(ii)  if .

Prove that 

 
iff  is bounded above (below) in .

Prove that if  and  are bounded in  then 

 
[Hint: Prove the first inequality and then use that and Problem 5  for the others.]

 Exercise 2.7.E. 1

3, 1,

 Exercise 2.7.E. 2

lim
– ––

xn

 Exercise 2.7.E. 3

lim
¯ ¯¯̄¯̄¯

xn lim– –– xn

= cxn

= −nxn

= n;xn

= (−1 n −nxn )n

lim xn

 Exercise 2.7.E. 4

⇒ 4. { }xn q ∈ ,E∗ q Gq xn

n

L–– L
¯¯̄̄

(  the least and   the L–– L
¯¯̄̄

L––
p < L–– q > )L

¯¯̄̄

 Exercise 2.7.E. 5

⇒ 5.

(− ) = −lim
¯ ¯¯̄¯̄¯

xn lim– –– xn

(a ) = a ⋅lim¯ ¯¯̄¯̄¯ xn lim¯ ¯¯̄¯̄¯ xn 0 ≤ a < +∞

 Exercise 2.7.E. 6

< +∞ ( > −∞)lim¯ ¯¯̄¯̄¯ xn lim
– ––

xn (2.7.E.1)

{ }xn E1

 Exercise 2.7.E. 7

{ }xn { }yn ,E1

+ ≥ ( + ) ≥ + ≥ ( + ) ≥ + .lim
¯ ¯¯̄¯̄¯

xn lim
¯ ¯¯̄¯̄¯

yn lim
¯ ¯¯̄¯̄¯

xn yn lim
¯ ¯¯̄¯̄¯

xn lim– –– yn lim– –– xn yn lim– –– xn lim– –– yn (2.7.E.2)

(i)
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 Prove that if  in  then 

 
similarly for .

 Prove that if  is monotone, then  exists  Specifically, if  then 

 
and if  then 

 Prove that 
(i) if lim  and  then also  and 
(ii) if  and  then also .

Prove that if  for all  then 

2.7.E: Problems on Upper and Lower Limits of Sequences in  (Exercises) is shared under a CC BY 1.0 license and was authored, remixed,
and/or curated by LibreTexts.

 Exercise 2.7.E. 8

⇒ 8. p = lim xn ,E1

( + ) = p + ;lim– –– xn yn lim– –– yn (2.7.E.3)

L
¯¯̄̄

 Exercise 2.7.E. 9

⇒ 9. { }xn lim xn in .E∗ { } ↑,xn

lim = ,xn sup
n

xn (2.7.E.4)

{ } ↓,xn

lim = .xn inf
n

xn (2.7.E.5)

 Exercise 2.7.E. 10

⇒ 10.

= +∞xn (∀n) ≤ ,xn yn lim = +∞,yn

lim = −∞xn (∀n) ≤ ,yn xn lim = −∞yn

 Exercise 2.7.E. 11

≤xn yn n,

≤  and  ≤ .lim– –– xn lim– –– yn lim
¯ ¯¯̄¯̄¯

xn lim
¯ ¯¯̄¯̄¯

yn (2.7.E.6)

E∗
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3.1: The Euclidean n-Space, Eⁿ
By definition, the Euclidean -space  is the set of all possible ordered -tuples of real numbers, i.e., the Cartesian product

In particular, ,

and so on.  itself is a special case of In a familiar way, pairs  can be plotted as points of the  -plane, or as
"vectors" (directed line segments) joining  to such points. Therefore, the pairs  themselves are called points or vectors in

 similarly for .

 there is no actual geometric representation, but it is convenient to use geometric language in this case, too. Thus
any ordered -tuple  of real numbers will also be called a point or vector in  and the single numbers 

 are called its coordinates or components. A point in  is often denoted by a single letter (preferably with a bar or
an arrow above it), and then its  components are denoted by the same letter, with subscripts (but without the bar or arrow). For
example,

 is a point (vector) in  with coordinates  and 4 (in this order). The formula  means that 
 is a point (vector) in  since such "points" are ordered  -tuples,  and  are equal  iff the

corresponding coordinates are the same, i.e.,   (see Problem 1 below).

The point whose coordinates are all 0 is called the  ero-vector or the origin, denoted  or  The vector whose  th component is 
 and the other components are  is called the  th basic unit vector, denoted  There are exactly  such vectors,

In  we often write  and  for  and  for  Similarly in  Single real numbers are called scalars (as
opposed to vectors).

Given  and  in  we define the following.

1. The sum of  and ,

2. The dot product, or inner product, of  and 

3. The distance between  and 

4. The absolute value, or length, of 

(three formulas that are all equal by Definitions 2 and 3 .

5. The inverse of 

6. The product of  by a scalar 

n En n

× ×⋯ × (n times).E1 E1 E1 (3.1.1)

= × = {(x, y)|x, y ∈ }E2 E1 E1 E1

= × × = {(x, y, z)|x, y, z ∈ } ,E3 E1 E1 E1 E1 (3.1.2)

E1 (n = 1).En (x, y) xy

(0, 0) (x, y)
;E2 E3

In (n > 3),En

n ( , , … , )x1 x2 xn ,En

, , … ,x1 x2 xn En

n

= ( , … , ) , = ( , … , ) , etc. ;x̄̄̄ x1 xn u⃗  u1 un (3.1.3)

= (0, −1, 2, 4)x̄̄̄ E4 0, −1, 2, ∈x̄̄̄ En

= ( , … , )x̄̄̄ x1 xn .En n x̄̄̄ ȳ̄̄ ( = )x̄̄̄ ȳ̄̄

= , =x1 y1 x2 y2 … , =xn yn

z 0
→

.0¯̄̄ k

1, 0, k .e ⃗ k n

= (1, 0, 0, … , 0), = (0, 1, 0, … , 0), … , = (0, … , 0, 1)e ⃗ 1 e ⃗ 2 e ⃗ n (3.1.4)

,E3 , ,i¯ j¯ k⃗  ,e ⃗ 1 (x, y, z) ( , , ) .x1 x2 x3 .E2

 Definition

= ( , … , )x̄̄̄ x1 xn = ( , … , )ȳ̄̄ y1 yn ,En

x̄̄̄ ȳ̄̄

+ = ( + , + , … , + ) (hence  + = ).x̄̄̄ ȳ̄̄ x1 y1 x2 y2 xn yn x̄̄̄ 0¯̄̄ x̄̄̄ (3.1.5)

x̄̄̄ ,ȳ̄̄

⋅ = + +⋯ + .x̄̄̄ ȳ̄̄ x1y1 x2y2 xnyn (3.1.6)

x̄̄̄ ,ȳ̄̄

ρ( , ) = .x̄̄̄ ȳ̄̄ + +⋯ +( − )x1 y1
2 ( − )x2 y2

2 ( − )xn yn
2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√ (3.1.7)

,x̄̄̄

| | = = ρ( , ) =x̄̄̄ + +⋯ +x2
1 x2

2 x2
n

− −−−−−−−−−−−−−−
√ x̄̄̄ 0¯̄̄ ⋅x̄̄̄ x̄̄̄

− −−−
√ (3.1.8)

)

,x̄̄̄

− = (− , − , … , − ) .x̄̄̄ x1 x2 xn (3.1.9)

x̄̄̄ c ∈ ,E1

c = c = (c , c , … , c ) ;x̄̄̄ x̄̄̄ x1 x2 xn (3.1.10)
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in particular,  and .

7. The difference of  and 

In particular,  and  (Verify!)

Note 1. Definitions  yield scalars, while the rest are vectors.

Note 2. We shall not define inequalities  in  nor shall we define vector products other than the dot product 
which is a scalar.

Note 3. From Definitions 3, 4, and 7, we obtain  (Verify!)

Note 4. We often write  for  where .

Note 5. In  Thus, by Definition 4,

where  is defined as in Chapter 2, §§1, Definition 4. Thus the two definitions agree.

We call  a unit vector iff its length is  i.e.,  Note that if , then  is a unit vector, since

The vectors  and  are said to be orthogonal or perpendicular  iff  and  iff  or  for
some  Note that  and .

If  and  are vectors in  then

 here.

For any vectors  and  and any  we have

(a)  and a  are vectors in  (closure laws);

(b)  (commutativity of vector addition);

(c)  (associativity of vector addition);

(d)  i.e.,  is the neutral element of addition;

(e)  i.e.,  is the additive inverse of ;

(f)  and  (distributive laws);

(g) ;

(h) .

Proof

Assertion (a) is immediate from Definitions 1 and  The rest follows from corresponding properties of real numbers.

(−1) = (− , − , … , − ) = − , 1 = ,x̄̄̄ x1 x2 xn x̄̄̄ x̄̄̄ x̄̄̄ 0 =x̄̄̄ 0¯̄̄

x̄̄̄ ,ȳ̄̄

− = = ( − , − , … , − ) .x̄̄̄ ȳ̄̄ yx
−→

x1 y1 x2 y2 xn yn (3.1.11)

− =x̄̄̄ 0¯̄̄ x̄̄̄ − = − .0¯̄̄ x̄̄̄ x̄̄̄

2 −4

(<) (n ≥ 2),En (2),

ρ( , ) = | − |.x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

/cx̄̄̄ (1/c) ,x̄̄̄ c ∈ , c ≠ 0E1

, = ( ) = .E1 x̄̄̄ x1 x1

| | = = | | ,x̄̄̄ x2
1

−−
√ x1 (3.1.12)

| |x1

x̄̄̄ 1, |x| = 1. ≠x̄̄̄ 0¯̄̄ /| /x̄̄̄ x̄̄̄

= = 1.
∣

∣
∣

x̄̄̄

| |x̄̄̄

∣

∣
∣ +⋯ +

x2
1

|x̄̄̄|2
x2

n

|x̄̄̄|2

− −−−−−−−−−−−−−

√ (3.1.13)

x̄̄̄ ȳ̄̄ ( ⊥ )x̄̄̄ ȳ̄̄ ⋅ = 0x̄̄̄ ȳ̄̄ parallel( ∥ )x̄̄̄ ȳ̄̄ = tx̄̄̄ ȳ̄̄ = tȳ̄̄ x̄̄̄

t ∈ .E1 ⊥x̄̄̄ 0¯̄̄ ∥x̄̄̄ 0¯̄̄

 Example 3.1.1

= (0, −1, 4, 2)x̄̄̄ = (2, 2, −3, 2)ȳ̄̄ ,E4

+x̄̄̄ ȳ̄̄

−x̄̄̄ ȳ̄̄

ρ( , )x̄̄̄ ȳ̄̄

( + ) ⋅ ( − )x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

= (2, 1, 1, 4);

= (−2, −3, 7, 0);

= | − | = = ;x̄̄̄ ȳ̄̄ + + +22 32 72 02− −−−−−−−−−−−−−
√ 62−−√

= 2(−2) +1(−3) +7 +0 = 0.

So( + ) ⊥ ( − )x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

 Theorem 3.1.1

, ,x̄̄̄ ȳ̄̄ ∈z̄̄̄ En a, b ∈ ,E1

+x̄̄̄ ȳ̄̄ x̄̄̄ En

+ = +x̄̄̄ ȳ̄̄ ȳ̄̄ x̄̄̄

( + ) + = +( + )x̄̄̄ ȳ̄̄ z̄̄̄ x̄̄̄ ȳ̄̄ z̄̄̄

+ = + = ,x̄̄̄ 0¯̄̄ 0¯̄̄ x̄̄̄ x̄̄̄ 0¯̄̄

+(− ) = ,x̄̄̄ x̄̄̄ 0¯̄̄ −x̄̄̄ x̄̄̄

a( + ) = a +ax̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ (a +b) = a +bx̄̄̄ x̄̄̄ x̄̄̄

(ab) = a(b )x̄̄̄ x̄̄̄

1 =x̄̄̄ x̄̄̄

6.
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For example, to prove (b) , let  Then by definition, we have

The right sides in both expressions, however, coincide since addition is commutative  Thus  as
claimed; similarly for the rest, which we leave to the reader. 

If  is a vector in  then, with  as above,

Moreover, if  for some  then necessarily , .

Proof

By definition,

Thus

Adding up componentwise, we obtain

as asserted.

Moreover, if the  are replaced by any other  the same process yields

i.e., the two  -tuples coincide, whence . 

Note 6. Any sum of the form

is called a linear combination of the vectors  (whose number  is arbitrary). Thus Theorem 2 shows that  can be
expressed, in a unique way, as a linear combination of the  basic unit vectors. In  we write

Note 7. If, as above, some vectors are numbered (e.g., , we denote their components by attaching a second
subscript; for example, the components of  are .

For any vectors  and  and any  we have

(a)  and  iff ;

(b) ;

(c)  (commutativity of inner products);

(d) distributive .

= ( , … , ) , = ( , … , ) .x̄̄̄ x1 xn ȳ̄̄ y1 yn

+ = ( + , … , + )  and  + = ( + , … , + ) .x̄̄̄ ȳ̄̄ x1 y1 xn yn ȳ̄̄ x̄̄̄ y1 x1 yn xn (3.1.14)

in .E1 + = + ,x̄̄̄ ȳ̄̄ ȳ̄̄ x̄̄̄

□

 Theorem 3.1.2

= ( , … , )x̄̄̄ x1 xn ,En ē̄̄k

= + +⋯ + = .x̄̄̄ x1 ē̄̄1 x2 ē̄̄2 xn ē̄̄n ∑
k=1

n

xk ē̄̄k (3.1.15)

=x̄̄̄ ∑n
k=1 ak ē̄̄k ∈ ,ak E1 =ak xk k = 1, … , n

= (1, 0, … , 0), = (0, 1, … , 0), … , = (0, 0, … , 1).ē̄̄1 ē̄̄2 ē̄̄n (3.1.16)

= ( , 0, … , 0) , = (0, , … , 0) , … , = (0, 0, … , ) .x1 ē̄̄1 x1 x2 ē̄̄2 x2 xn ē̄̄n xn (3.1.17)

= ( , , … , ) = ,∑
k=1

n

xk ē̄̄k x1 x2 xn x̄̄̄ (3.1.18)

xk ∈ ,ak E1

( , … , ) = = ( , … , ) ,a1 an x̄̄̄ x1 xn (3.1.19)

n = , k = 1, … , nak xk □

( ∈ , ∈ )∑
k=1

m

ak x̄̄̄k ak E1 x̄̄̄k En (3.1.20)

x̄̄̄k m any ∈x̄̄̄ En

n ,E3

= + + .x̄̄̄ x1i¯ x2j¯ x3k¯̄̄ (3.1.21)

, , … , )x̄̄̄1 x̄̄̄2 x̄̄̄m

x̄̄̄1 , , … ,x11 x12 x1n

 Theorem 3.1.3

, ,x̄̄̄ ȳ̄̄ ∈z̄̄̄ En a, b ∈ ,E1

⋅ ≥ 0,x̄̄̄ x̄̄̄ ⋅ > 0x̄̄̄ x̄̄̄ ≠x̄̄̄ 0¯̄̄

(a ) ⋅ (b ) = (ab)( ⋅ )x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

⋅ = ⋅x̄̄̄ ȳ̄̄ ȳ̄̄ x̄̄̄

( + ) ⋅ = ⋅ + ⋅ (x̄̄̄ ȳ̄̄ z̄̄̄ x̄̄̄ z̄̄̄ ȳ̄̄ z̄̄̄ law)
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Proof

To prove these properties, express all in terms of the components of ,  and  and proceed as in Theorem 1. 

Note that (b) implies  (put .

For any vectors  and  and any  we have the following properties:

(a')  and  iff .

(b') .

(c')  or, in components,

Equality,  holds iff .

(d')  and  (triangle inequalities).

Proof

Property (a') follows from Theorem 3  since

For (b'), use Theorem  to obtain

By Definition  however,

Thus

so that  as claimed.

NOW we prove (c'). If  then  or  so  follows by (b'). (Verify!)

Otherwise,  and  for all  Then we obtain, for all 

Thus, setting

we see that the quadratic equation

has  real solutions in  so its discriminant,  must be negative; i.e.,

x̄̄̄ ,ȳ̄̄ ,z̄̄̄ □

⋅ = 0x̄̄̄ 0¯̄̄ a = 1, b = 0)

 Theorem 3.1.4

x̄̄̄ ∈ȳ̄̄ En a ∈ ,E1

| | ≥ 0,x̄̄̄ | | > 0x̄̄̄ ≠x̄̄̄ 0¯̄̄

|a | = |a|| |x̄̄̄ x̄̄̄

| ⋅ | ≤ | || |,x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

≤( )( ) (Cauchy-Schwarz inequality)( )∑
k=1

n

xkyk

2

∑
k=1

n

x2
k ∑

k=1

n

y2
k (3.1.22)

| ⋅ | = | || |,x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ ∥x̄̄̄ ȳ̄̄

| + | ≤ | | +| |x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ || | − | || ≤ | − |x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

(a)

| = ⋅ (see Definition 4).x̄̄̄|2 x̄̄̄ x̄̄̄ (3.1.23)

3(b),

(a ) ⋅ (a ) = ( ⋅ ) = | .x̄̄̄ x̄̄̄ a2 x̄̄̄ x̄̄̄ a2 x̄̄̄|2 (3.1.24)

4,

(a ) ⋅ (a ) = |a .x̄̄̄ x̄̄̄ x̄̄̄|2 (3.1.25)

|a = |xx̄̄̄|2 a2 |2 (3.1.26)

|a | = |a|| |,x̄̄̄ x̄̄̄

∥x̄̄̄ ȳ̄̄ = tx̄̄̄ ȳ̄̄ = t ;ȳ̄̄ x̄̄̄ | ⋅ | = | || |x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

≠ tx̄̄̄ ȳ̄̄ ≠ tȳ̄̄ x̄̄̄ t ∈ .E1 t ∈ E1

0 ≠ |t − = = −2t + .x̄̄̄ ȳ̄̄|2 ∑
k=1

n

(t − )xk yk
2

t2∑
k=1

n

x2
k ∑

k=1

n

xkyk ∑
k=1

n

y2
k (3.1.27)

A = , B = 2 ,  and C = ,∑
k=1

n

x2
k

∑
k=1

n

xkyk ∑
k=1

n

y2
k

(3.1.28)

0 = A −Bt +Ct2 (3.1.29)

no t, −4AC,B2

4 −4( )( ) < 0,( )∑
k=1

n

xkyk

2

∑
k=1

n

x2
k

∑
k=1

n

y2
k

(3.1.30)
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proving (c').

To prove (d'), use Definition 2 and Theorem 3(d), to obtain

But  by (c'). Thus we have

whence  as required.

Finally, replacing here  by  we have

Similarly, replacing  by  we get  Hence

i.e.,  proving the second formula in (d'). 

For any points  and  we have

(i)  and  iff ;

(ii) ;

(iii) triangle inequality ;

Proof

(i) By Definition 3 and Note  therefore, by Theorem 4 , .

Also,  iff  i.e., iff  Hence  iff  and assertion  follows.

(ii) By Theorem  so (ii) follows.

(iii) By Theorem 4 ,

Note 8. We also have  (Prove it!) The two triangle inequalities have a simple geometric interpretation
(which explains their name). If  and  are treated as the vertices of a triangle, we obtain that the length of a side,  never
exceeds the sum of the two other sides and is never less their difference.

As  is a special case of  (in which "vectors" are single numbers), all our theory applies to  as well. In particular, distances
in  are defined by  and obey the three laws of Theorem  Dot products in  become ordinary products 
(Why?) From Theorems  we have

This page titled 3.1: The Euclidean n-Space, Eⁿ is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon
(The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.

| + = ( + ) ⋅ ( + ) = ⋅ + ⋅ +2 ⋅ = | +| +2 ⋅ .x̄̄̄ ȳ̄̄|2 x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ x̄̄̄ x̄̄̄ ȳ̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ x̄̄̄|2 ȳ̄̄|2 x̄̄̄ ȳ̄̄ (3.1.31)

⋅ ≤ | || |x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

| + ≤ | +| +2| || | = (| | +| || ,x̄̄̄ ȳ̄̄|2 x̄̄̄|2 ȳ̄̄|2 x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ )2 (3.1.32)

| + | ≤ | | +| |,x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

x̄̄̄ − ,x̄̄̄ ȳ̄̄

| − | +| | ≥ | − + | = | |,  or | − | ≥ | | −| |,x̄̄̄ ȳ̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ ȳ̄̄ x̄̄̄ x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ (3.1.33)

ȳ̄̄ − ,ȳ̄̄ x̄̄̄ | − | −| | −| |.x̄̄̄ ȳ̄̄ ȳ̄̄ x̄̄̄

| − | ≥ ±(| | −| |),x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ (3.1.34)

| − | ≥ || | −| ||,x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ square

 Theorem 3.1.5

, ,x̄̄̄ ȳ̄̄ ∈ ,z̄̄̄ En

ρ( , ) ≥ 0,x̄̄̄ ȳ̄̄ ρ( , ) = 0x̄̄̄ ȳ̄̄ =x̄̄̄ ȳ̄̄

ρ( , ) = ρ( , )x̄̄̄ ȳ̄̄ ȳ̄̄ x̄̄̄

ρ( , ) ≤ ρ( , ) +ρ( , )(x̄̄̄ z̄̄̄ x̄̄̄ ȳ̄̄ ȳ̄̄ z̄̄̄ )

3, ρ( , ) = | − |;x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ ( )a′ ρ( , ) = | − | ≥ 0x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

| − | > 0x̄̄̄ ȳ̄̄ − ≠ 0,x̄̄̄ ȳ̄̄ ≠ .x̄̄̄ ȳ̄̄ ρ( , ) ≠ 0x̄̄̄ ȳ̄̄ ≠ ,x̄̄̄ ȳ̄̄ (i)

4 ( ) , | − | = |(−1)( − )| = | − |,b′ x̄̄̄ ȳ̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ x̄̄̄

( )d′

ρ( , ) +ρ( , ) = | − | +| − | ≥ | − + − | = ρ( , ). □x̄̄̄ ȳ̄̄ ȳ̄̄ z̄̄̄ x̄̄̄ ȳ̄̄ ȳ̄̄ z̄̄̄ x̄̄̄ ȳ̄̄ ȳ̄̄ z̄̄̄ x̄̄̄ z̄̄̄

|ρ( , ) −ρ( , )| ≤ ρ( , ).x̄̄̄ ȳ̄̄ z̄̄̄ ȳ̄̄ x̄̄̄ z̄̄̄

, ,x̄̄̄ ȳ̄̄ z̄̄̄ ρ( , )x̄̄̄ z̄̄̄

E1 En E1

E1 ρ(x, y) = |x −y| 5. E1 xy.
4 ( ) ( ) ,b′ d′

|a||x| = |ax|; |x +y| ≤ |x| + |y|; |x −y| ≥ ||x| − |y|| (a, x, y ∈ ) .E1 (3.1.35)
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3.1.E: Problems on Vectors in E n En (Exercises)

Prove by induction on  that 

 
[Hint: Use Problem 6(ii) of Chapter 1, §§1-3, and Example (i) in Chapter 2, §§5-6.]

Complete the proofs of Theorems 1 and 3 and Notes 3 and 8.

Given  and  in  express  and  as linear combinations of
the basic unit vectors. Also, compute their absolute values, their inverses, as well as their mutual sums, differences, dot
products, and distances. Are any of them orthogonal? Parallel?

With  and  as in Problem  find scalars  and  such that 

 
when 

A finite set of vectors  is said to be dependent iff there are scalars  not all zero, such that 

 
and independent otherwise. Prove the independence of the following sets of vectors: 
(a)  in ; 
(b)  and  in  
(c)  and  in  
(d) the vectors  and  of Problem 3.

Prove (for  and  that 

 

where  is the angle between the vectors  and  we denote  by . 

 Exercise 3.1.E. 1

n

( , , … , ) = ( , , … , )  iff  = , k = 1, 2, … , n.x1 x2 xn y1 y2 yn xk yk (3.1.E.1)

 Exercise 3.1.E. 2

 Exercise 3.1.E. 3

= (−1, 2, 0, −7), = (0, 0, −1, −2),x̄̄̄ ȳ̄̄ = (2, 4, −3, −3)z̄̄̄ ,E4 , ,x̄̄̄ ȳ̄̄ z̄̄̄

 Exercise 3.1.E. 4

, ,x̄̄̄ ȳ̄̄ z̄̄̄ 3, a, b, c

a +b +c = ,x̄̄̄ ȳ̄̄ z̄̄̄ ū̄̄ (3.1.E.2)

(i)ū̄̄

 (iii) ū̄̄

= ;ē̄̄1

= (−2, 4, 0, 1);

 (ii)  = ;ū̄̄ ē̄̄3

 (iv)  = .ū̄̄ 0¯̄̄
(3.1.E.3)

 Exercise 3.1.E. 5

, , … ,x̄̄̄ x̄̄̄2 x̄̄̄m , … , ,a1 am

= ,∑
k=1

m

ak x̄̄̄k 0
¯̄̄

(3.1.E.4)

, , … ,ē̄̄1 ē̄̄2 ē̄̄n En

(1, 2, −3, 4) (2, 3, 0, 0) ;E4

(2, 0, 0), (4, −1, 3), (0, 4, 1) ;E3

, ,x̄̄̄ ȳ̄̄ z̄̄̄

 Exercise 3.1.E. 6

E2 )E3

⋅ = | || | cos α,x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ (3.1.E.5)

α 0x
−→

;0y
→

α ⟨ , ⟩x̄̄̄ ȳ̄̄
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[Hint: Consider the triangle  with sides  and  (see Definition 7 ). By the law of cosines, 

 
Now substitute  and 

 
Then simplify.]

Motivated by Problem  define in  

 
(Why does an angle with such a cosine exist?) Prove that 
(i)  iff  i.e., ; 
(ii) .

Continuing Problems 3 and  find the cosines of the angles between the sides,  and  of the triangle  with 
 and  as in Problem 3.

Find a unit vector in  with positive components, that forms equal angles with the axes, i.e., with the basic unit vectors (see
Problem 7).

Prove for  that if  is orthogonal to each of the basic unit vectors ,  then  Deduce that 

Prove that  and  are parallel iff 

 
where  is to be replaced by  if .

Use induction on  to prove the Lagrange identity (valid in any field), 

,0¯̄̄ x̄̄̄ȳ̄̄ = , = ,x̄̄̄ 0x
−→

ȳ̄̄ 0y
→

= −xy
−→

y ⃗  x⃗ 

| + | −2| || | cos α = | − .x⃗ |
2

y ⃗ |
2

x⃗  y ⃗  y ⃗  x⃗ |
2

(3.1.E.6)

| = ⋅ , | = ⋅ ,x⃗ |
2

x⃗  x⃗  y ⃗ |
2

y ⃗  y ⃗ 

| − = ( − ) ⋅ ( − ) = ⋅ + ⋅ −2 ⋅ . (Why?)y ⃗  x⃗ |2 y ⃗  x⃗  y ⃗  x⃗  y ⃗  y ⃗  x⃗  x⃗  x⃗  y ⃗  (3.1.E.7)

 Exercise 3.1.E. 7

6, En

⟨ , ⟩ = arccos  if   and   are nonzero. x̄̄̄ ȳ̄̄
⋅x̄̄̄ ȳ̄̄

| || |x̄̄̄ ȳ̄̄
x̄̄̄ ȳ̄̄ (3.1.E.8)

⊥x̄̄̄ ȳ̄̄ cos⟨ , ⟩ = 0,x̄̄̄ ȳ̄̄ ⟨ , ⟩ =x̄̄̄ ȳ̄̄ π
2

⟨ , ⟩ = 1∑n
k=1 cos2 x̄̄̄ ē̄̄k

 Exercise 3.1.E. 8

7, , ,xy
−→

yz
→

zx
−→

,x̄̄̄ȳ̄̄z̄̄̄

, ,x̄̄̄ ȳ̄̄ z̄̄̄

 Exercise 3.1.E. 9

,E4

 Exercise 3.1.E. 10

En ū̄̄ ē̄̄1 , … , ,ē̄̄2 ē̄̄n = .ū̄̄ 0
¯̄̄

=  iff  (∀ ∈ ) ⋅ = 0.ū̄̄ 0
¯̄̄

x̄̄̄ E
n

x̄̄̄ ū̄̄ (3.1.E.9)

 Exercise 3.1.E. 11

x̄̄̄ ȳ̄̄

= = ⋯ = = c (c ∈ ) ,
x1

y1

x2

y2

xn

yn

E
1 (3.1.E.10)

" / =" cxk yk " = 0 "xk = 0yk

 Exercise 3.1.E. 12

n

( )( )− = .∑
k=1

n

x2
k

∑
k=1

n

y2
k

( )∑
k=1

n

xkyk

2

∑
1≤i<k≤n

( − )xiyk xkyi
2 (3.1.E.11)
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Hence find a new proof of Theorem 4 .

Use Problem 7 and Theorem 4  vectors  and  in  are parallel iff 
.

(i) Prove that  iff  or  for some ; equivalently, iff  (see Problem 7  
(ii) Find similar conditions for . 
[Hint: Look at the proof of Theorem 4

3.1.E: Problems on Vectors in  (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

( )c′

 Exercise 3.1.E. 13

( )( "equality") to show that two nonzero c′ x̄̄̄ ȳ̄̄ En

cos⟨ , ⟩ = ±1x̄̄̄ ȳ̄̄

 Exercise 3.1.E. 14

| + | = | | +| | +| |x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ ȳ̄̄ = tx̄̄̄ ȳ̄̄ = tȳ̄̄ x̄̄̄ t ≥ 0 cos⟨ , ⟩ = 1x̄̄̄ ȳ̄̄ ).

| − | = | | +| |x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄

( ) . ]d′

En

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/22259?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/03%3A_Vector_Spaces_and_Metric_Spaces/3.01%3A_The_Euclidean_n-Space_E/3.1.E%3A_Problems_on_Vectors_in_(En)_(Exercises)
https://creativecommons.org/licenses/by/1.0


3.2.1 https://math.libretexts.org/@go/page/19036

3.2: Lines and Planes in Eⁿ
To obtain a line in  or  passing through two points  and  we take the vector

and, so to say, "stretch" it indefinitely in both directions, i.e., multiply  by all possible scalars  Then the set of all points 
of the form

is the required line. It is natural to adopt this as a definition in  as well.

Below, .

The line  through the points  (also called the line through  in the direction of the vector  ) is the set of
all points  of the form

where  varies over  We call  a variable real parameter and  a direction vector for  Thus

The formula

is called the parametric equation of the line. (We briefly say "the line  ) It is equivalent to  simultaneous
equations in terms of coordinates, namely,

Note 1. As the vector  is anyway being multiplied by all real numbers , the line (as a set of points) will not change if  is
replaced by some   In particular, taking  we may replace  by  unit
vector.  We may as well assume that  is a unit vector itself.

If we let  vary not over all of  but only over some interval in  we obtain what is called a line segment. In particular, we
define the open line segment  the closed line segment  the half-open line segment  and the half-closed line
segment  as we did for .

Given  we set

In all cases,  and  are called the endpoints of the segment;  is its length; and  is its midpoint.

Note that in  line segments simply become intervals,  etc.

To describe a plane in  we fix one of its points,  and a vector  perpendicular to the plane (imagine a vertical pencil
standing at  on the horizontal plane of the table). Then a point  lies on the plane iff . It is natural to accept this as a
definition in  as well.

E2 E3 ā̄̄ ,b
¯̄

= = −u⃗  ab
→

b
¯̄

ā̄̄ (3.2.1)

u⃗  t ∈ .E1 x̄̄̄

= + tx̄̄̄ ā̄̄ u⃗  (3.2.2)

En

≠ā̄̄ b
¯̄

 Definition: parametric equation of the line

ab¯ ¯¯̄¯ , ∈ā̄̄ b¯̄ En ,ā̄̄ = −u⃗  b¯̄ ā̄̄

∈x̄̄̄ En

= + t = + t( − ),x̄̄̄ ā̄̄ u⃗  ā̄̄ b
¯̄

ā̄̄ (3.2.3)

t .E1 t u⃗  .ab
¯ ¯¯̄¯

Line  = { ∈ | = + t  for some t ∈ } , = − ≠ .ab
¯ ¯¯̄¯

x̄̄̄ En x̄̄̄ ā̄̄ u⃗  E1 u⃗  b
¯̄

ā̄̄ 0¯̄̄ (3.2.4)

= + t ,  or  = + t( − ),x̄̄̄ ā̄̄ u⃗  x̄̄̄ ā̄̄ b
¯̄

ā̄̄ (3.2.5)

= + t . "x̄̄̄ ā̄̄ u⃗  n

= + t = + t ( − ) , k = 1, 2, … , n.xk ak uk ak bk ak (3.2.6)

u⃗  t u⃗ 

c \vec{u}\left(c \in E^{1}\right, c ≠ 0). c = 1/| |,u⃗  u⃗  /| |, au⃗  u⃗ 

. u⃗ 

t E⊥ ,E⊥

L( , ),ā̄̄ b¯̄ L[ , ],ā̄̄ b¯̄ L( , ],ā̄̄ b¯̄

L[ , ),ā̄̄ b
¯̄

E1

 Definition: endpoints of the segment

= − ,u⃗  b
¯̄

ā̄̄

 (i) L( , ) = { + t |0 < t < 1};ā̄̄ b
¯̄

ā̄̄ u⃗ 

 (iii) L( , ] = { + t |0 < t ≤ 1};ā̄̄ b
¯̄

ā̄̄ u⃗ 

 (ii) L[ , ] = { + t |0 ≤ t ≤ 1}ā̄̄ b
¯̄

ā̄̄ u⃗ 

 (iv) L[ , ) = { + t |0 ≤ t < 1}ā̄̄ b
¯̄

ā̄̄ u⃗ 

ā̄̄ b
¯̄

ρ( , ) = | − |ā̄̄ b
¯̄

b
¯̄

ā̄̄ ( + )1
2 ā̄̄ b

¯̄

,E1 (a, b), [a, b],

,E3 ,ā̄̄ =u⃗  ab
→

ā̄̄ x̄̄̄ ⊥u⃗  ax
−→

En
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Given a point  and a vector  we define the plane (also called hyperplane if ) through , orthogonal to 
to be the set of all  such that  i.e.,  or, in terms of components,

We briefly say

(this being the equation of the plane). Removing brackets in (3), we have

An equation of this form is said to be linear in 

A set  is a plane (hyperplane) iff  is exactly the set of all  satisfying  for some fixed  and 

Proof

Add proof here and it will automatically be hidden Indeed, as we saw above, each plane has an equation of the form
(4).

Conversely, any equation of that form (with, say,  can be written as

Then, setting  and  for  we transform it into  which is, by definition, the equation of a plane
through  orthogonal to 

Thus, briefly, planes are exactly all sets with linear equations (4). In this connection, equation (4) is called the general
equation of a plane. The vector  is said to be normal to the plane. Clearly, if both sides of (4) are multiplied by a
nonzero scalar  one obtains an equivalent equation (representing the same set). Thus we may replace  by  i.e., 
by  without affecting the plane. In particular, we may replace  by the unit vector  as in lines is called the
normalization of the equation). Thus

and

are the normalized (or normal) equations of the plane (3) and line (1), respectively.

Note 2. The equation  (for a fixed  represents a plane orthogonal to the basic unit vector  or, as we shall say, to the kth
axis. The equation results from (4) if we take  so that  while   For example,  is the equation
of a plane orthogonal to  it consists of all  with  (while the other coordinates of  are arbitrary  In  it is a
line. In  it consists of  alone.

 Definition: plane

∈ā̄̄ En u ≠ ,0
→

n > 3 ā̄̄ ,u⃗ 

∈x̄̄̄ En ⊥ ,u⃗  ax
−→

⋅ ( − ) = 0,u⃗  x̄̄̄ ā̄̄

( − ) = 0,  where  ≠  (i.e., not all values    are 0). ∑
k=1

n

uk xk ak u⃗  0
→

uk (3.2.7)

 "the plane  ⋅ ( − ) = 0" or "the plane  ( − ) = 0"u⃗  x̄̄̄ ā̄̄ ∑
k=1

n

uk xk ak (3.2.8)

+ +⋯ + = c,  or  ⋅ = c,  where c = , ≠ .u1x2 u2x2 unxn u⃗  x̄̄̄ ∑
k−1

n

ukak u⃗  0
→

(3.2.9)

, , … , .x1 x2 xn

 Theorem 3.2.1

A ⊆ E
n

A ∈x̄̄̄ E
n (4) c ∈ E

1

= ( , … , ) ≠ .u⃗  u1 un 0
¯̄̄

≠ 0)u1

( − )+ + +⋯ + = 0.u1 x1
c

u1
u2x2 u3x3 unxn (3.2.10)

= c/a1 u1 = 0ak k ≥ 2, (3),
= (c/ , 0, … , 0) ,ā̄̄ u1 u = ( , … , ) . □u1 un

u⃗ 

q, uk q ,uk u⃗ 

q ,u⃗  u⃗  /| |,u⃗  u⃗ 

⋅ ( − ) = 0
u⃗ 

| |u⃗ 
x̄̄̄ ā̄̄ (3.2.11)

= + tx̄̄̄ ā̄̄
u⃗ 

| |u⃗ 
(3.2.12)

= cxk k) e ⃗ k
=u⃗  e ⃗ k = 1,uk = 0ui (i ≠ k). = cx1

;e ⃗ 1 ∈ ,x̄̄̄ En = cx1 x̄̄̄ ). ,E2

,E1 c
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Two planes (respectively, two lines) are said to be perpendicular to each other iff their normal vectors (respectively, direction
vectors) are orthogonal; similarly for parallelism. A plane  is said to be perpendicular to a line  iff  the
line and the plane are parallel iff .

Note 3. When normalizing, as in (5) or (6), we actually have two choices of a unit vector, namely,  If one of them is
prescribed, we speak of a directed plane (respectively, line).

(a) Let  and  in  Then the line  has the parametric equation 
 or, in coordinates, writing  for 

This may be rewritten

where  is the direction vector (composed of the denominators. Normalizing and dropping  we have

(the so-called symmetric form of the normal equations).

Similarly, for the line  we obtain

where " " stands for " ." (It is customary to use this notation.)

(b) Let  and  in  Then the plane normal to  through  has the equation 
or

or  Observe that, by formula (4), the coefficients of  are the components of the normal
vector  (here 

Now define a map  setting  (the left-hand side of the equation). This map is called
the linear functional corresponding to the given plane. (For another approach, see Problems 4-6 below.)

(c) The equation  represents a plane in  with . The point  lies on the plane
(why?), so the plane equation may be written  or  where  and  and  are as above.

This page titled 3.2: Lines and Planes in Eⁿ is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The
Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

⋅ = cu⃗  x̄̄̄ = + tx̄̄̄ ā̄̄ v ⃗  ∥ ;u⃗  v ⃗ 

⊥u⃗  v ⃗ 

± /| |.u⃗  u⃗ 

 Example 3.2.1

= (0, −1, 2), = (1, 1, 1),ā̄̄ b
¯̄ = (3, 1, −1)c̄̄ .E3 ab

¯ ¯¯̄¯

= + t( − )x̄̄̄ ā̄̄ b
¯̄

ā̄̄ x, y, z , , ,x1 x2 x3

x = 0 + t(1 −0) = t, y = −1 +2t, z = 2 − t. (3.2.13)

t = = = ,
x

1

y +1

2

z −2

−1
(3.2.14)

= (1, 2, −1)u⃗  t,

= =
x

1/ 6
–√

y +1

2/ 6
–√

z −2

−1/ 6
–√

(3.2.15)

,bc
¯ ¯¯̄

t = = = ,
x −1

2

y −1

0

z −1

−2
(3.2.16)

t = (y −1)/0 y −1 = 0

= (1, −2, 0, 3)ā̄̄ = (1, 1, 1, 1)u⃗  .E4 u⃗  ā̄̄ ( − ) ⋅ = 0,x̄̄̄ ā̄̄ u⃗ 

( −1) ⋅ 1 +( +2) ⋅ 1 +( −0) ⋅ 1 +( −3) ⋅ 1 = 0,x1 x2 x3 x4 (3.2.17)

+ + + = 2.x1 x2 x3 x4 , , ,x1 x2 x3 x4

u⃗  (1, 1, 1, 1)).

f : →E4 E1 f( ) = + + +x̄̄̄ x1 x2 x3 x4

x +3y −2z = 1 ,E3 = (1, 3, −2)u⃗  = (1, 0, 0)ā̄̄

( − ) ⋅ = 0x̄̄̄ ā̄̄ u⃗  ⋅ = 1,x̄̄̄ u⃗  = (x, y, z)x̄̄̄ ā̄̄ u⃗ 
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3.2.E: Problems on Lines and Planes in E n En (Exercises)

Let  and  be points in  Find the symmetric normal equations (see
Example  of the lines  and  Are any two of the lines perpendicular? Parallel? On the line , find some points
inside  and some outside . Also, find the symmetric equations of the line through  that is 

With  and  as in Problem  find the equations of the two planes that trisect, and are perpendicular to, the line segment 

Given a line  in  define  by 

 
Show that  is exactly the  -image of the interval  in  with  and  while  is the entire
line. Also show that  is one to one. 

A map  is called a linear functional iff 

 
Show by induction that  preserves linear combinations; that is, 

 
for any  and .

From Problem 4 prove that a map  is a linear functional iff there is  such that 

 
[Hint: If  is a linear functional, write each  as 

 and 

 obtain  as required. For the converse, use Theorem 3 in §§1-3.]

 Exercise 3.2.E. 1

= (−1, 2, 0, −7), = (0, 0, −1, 2),ā̄̄ b
¯̄ = (2, 4, −3, −3)c̄̄ .E4

(a)) , ,ab¯ ¯¯̄¯ bc¯ ¯¯̄ .ca¯ ¯¯̄¯ ab¯ ¯¯̄¯

L( , )ā̄̄ b
¯̄

L[ , ]ā̄̄ b
¯̄

c̄̄

 (i) parallel to  ;  (ii) perpendicular to  .ab
¯ ¯¯̄¯

ab
¯ ¯¯̄¯ (3.2.E.1)

 Exercise 3.2.E. 2

ā̄̄ b¯̄ 1,

L[ , ].ā̄̄ b
¯̄

 Exercise 3.2.E. 3

= + t ( = − ≠ )x̄̄̄ ā̄̄ u⃗  u⃗  b
¯̄

ā̄̄ 0
→

,En f : →E1 En

f(t) = + t  for t ∈ .ā̄̄ u⃗  E1 (3.2.E.2)

L[ , ]ā̄̄ b¯̄ f [0, 1] ,E1 f(0) = a f(1) = b, f [ ]E1

f

[ Hint: t ≠  implies  |f(t) −f ( )| ≠ 0.  Why? ]t′ t′

 Exercise 3.2.E. 4

f : →En E1

(∀ , ∈ )(∀a, b ∈ ) f(a +b ) = af( ) +bf( ).x̄̄̄ ȳ̄̄ En E1 x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ (3.2.E.3)

f

f ( ) = f ( )∑
k=1

m

ak x̄̄̄k ∑
k=1

m

ak x̄̄̄k (3.2.E.4)

∈ak E1 ∈x̄̄̄k En

 Exercise 3.2.E. 5

f : →En E1 ∈u⃗  En

(∀ ∈ )f( ) = ⋅ (" representation theorem ").x̄̄̄ En x̄̄̄ u⃗  x̄̄̄ (3.2.E.5)

f ∈x̄̄̄ En

= (§§1 −3, T heorem2). T hen\[f( ) = f ( ) = f ( ) . \]Setting\( = f ( )x̄̄̄ ∑n
k=1 xk ē̄̄k x̄̄̄ ∑m

k=1 xk ē̄̄k ∑n
k=1 xk ē̄̄k uk ē̄̄k

∈ E1

= ( , … , ) ,u⃗  u1 un f( ) = ⋅ ,x̄̄̄ u⃗  x̄̄̄
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Prove that a set  is a plane iff there is a linear functional  (Problem  not identically zero, and some  such
that 

 
(This could serve as a definition of planes in  

[Hint:  is a plane iff  Put  and use Problem  Show that  iff  by Problem 10 of
§§1-3.]

Prove that the perpendicular distance of a point  to a plane  in  is 

 

 that  
[Hint: Put  Consider the line  Find  for which  lies on both the line and plane. Find 

A globe (solid sphere) in  with center  and radius  is the set  denoted  Prove that if 
 then also  Disprove it for the sphere . [Hint: Take a line through 

3.2.E: Problems on Lines and Planes in  (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 3.2.E. 6

A ⊆ En f 4), c ∈ E1

A = { ∈ |f( ) = c} .x̄̄̄ En x̄̄̄ (3.2.E.6)

. )En

A A = { | ⋅ = c}.x̄̄̄ u⃗  x̄̄̄ f( ) = ⋅x̄̄̄ u⃗  x̄̄̄ 5. f ≠ 0 ≠u⃗  0
→

 Exercise 3.2.E. 7

p̄̄̄ ⋅ = cu⃗  x̄̄̄ En

ρ ( , ) = .p̄̄̄ x̄̄̄0
| ⋅ −c|u⃗  p̄̄̄

| |u⃗ 
(3.2.E.7)

(  is the orthogonal projection of  ,  i.e., the point on the plane such x̄̄̄0 p̄̄̄ ∥ . )px0
−→−

u⃗ 

= /| |.v ⃗  u⃗  u⃗  = + t .x̄̄̄ p̄̄̄ v ⃗  t + tp̄̄̄ v ⃗  |t|. ]

 Exercise 3.2.E. 8

,En p̄̄̄ ε > 0, { |ρ( , ) < ε},x̄̄̄ x̄̄̄ p̄̄̄ (ε).Gp̄̄̄

, ∈ (ε),ā̄̄ b
¯̄

Gp̄̄̄ L[ , ] ⊆ (ε).ā̄̄ b
¯̄

Gp~ (ε) = { |ρ( , ) = ε}Sp̄̄̄ x̄̄̄ x̄̄̄ p̄̄̄ . ]p̄̄̄

En
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3.3: Intervals in Eⁿ
Consider the rectangle in  shown in Figure 2. Its interior (without the perimeter consists of all points  such that

i.e.,

Thus it is the Cartesian product of two line intervals,  and  To include also all or some sides, we would have to
replace open intervals by closed, half-closed, or half-open ones. Similarly, Cartesian products of three line intervals yield
rectangular parallelepipeds in  We call such sets in  intervals.

1. By an interval in  we mean the Cartesian product of any  intervals  in  (some may be open, some closed or half-
open, etc.).

2. In particular, given

E2 (x, y) ∈ E2

< x <  and  < y < ;a1 b1 a2 b2 (3.3.1)

x ∈ ( , )  and y ∈ ( , ) .a1 b1 a2 b2 (3.3.2)

( , )a1 b1 ( , ) .a2 b2

.E3 En

 Definition

En n E1

= ( , … , )  and  = ( , … , )ā̄̄ a1 an b
¯̄

b1 bn (3.3.3)
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with

we define the open interval  the closed interval  the half-open interval  and the half-closed interval  as
follows:

In all cases,  and  are called the endpoints of the interval. Their distance

is called its diagonal. The  differences

are called its  edge-lengths. Their product

is called the volume of the interval (in  it is its area, in  its length) .\) The point

is called its center or midpoint. The set difference

is called the boundary of any interval with endpoints  and  it consists of 2  "faces" defined in a natural manner. (How?)

We often denote intervals by single letters, e.g..  and write  for "diagonal of  and  or vol  for "volume of
 If all edge-lengths  are equal,  is called a cube (in  a square). The interval  is said to be degenerate iff 

 for some  in which case, clearly,

Note 1. We have  iff the inequalities  hold simultaneously for all  This is impossible if  for some 
 similarly for the inequalities  or . Thus a degenerate interval is empty, unless it is closed (in which

case it contains  and  at least).

Note 2. In any interval ,

In  we can split an interval  into two subintervals  and  by drawing a line (see Figure 2  In  this is done by a plane
orthogonal to one of the axes of the form  see §§4-6, Note 2  with  In particular, if \right. 

≤ , k = 1, 2, … ,n,ak bk (3.3.4)

( , ),ā̄̄ b¯̄ [ , ],ā̄̄ b¯̄ ( , ],ā̄̄ b¯̄ [ , )ā̄̄ b¯̄

( , )ā̄̄ b
¯̄

[ , ]ā̄̄ b
¯̄

( , ]ā̄̄ b
¯̄

[a, b)

= { | < < , k = 1, 2, … ,n}x̄̄̄ ak xk bk

= ( , ) ×( , ) ×⋯ ×( , )a1 b1 a2 b2 an bn

= { | ≤ ≤ , k = 1, 2, … ,n}x̄̄̄ ak xk bk

= [ , ] ×[ , ] ×⋯ ×[ , ]a1 b1 a2 b2 an bn

= { | < ≤ , k = 1, 2, … ,n}x̄̄̄ ak xk bk

= ( , ] ×( , ] ×⋯ ×( , ]a1 b1 a2 b2 an bn

= { | ≤ < , k = 1, 2, … ,n}x̄̄̄ ak xk bk
= [ , ) ×[ , ) ×⋯ ×[ , )a1 b1 a2 b2 an bn

ā̄̄ b
¯̄

ρ( , ) = | − |ā̄̄ b
¯̄

b
¯̄

ā̄̄ (3.3.5)

n

− = (k = 1, … ,n)bk ak ℓk (3.3.6)

n

= ( − )∏
k=1

n

ℓk ∏
k=1

n

bk ak (3.3.7)

E2 E1

= ( + )c̄̄
1

2
ā̄̄ b

¯̄
(3.3.8)

[ , ] −( , )ā̄̄ b
¯̄

ā̄̄ b
¯̄

(3.3.9)

ā̄̄ ;b ⃗  n

A = ( , ),ā̄̄ b
¯̄

dA A′′ vA A

A. " −bk ak A ,E2 A

=bk ak k,

volA = ( − ) = 0.∏
k=1

n

bk ak (3.3.10)

∈ ( , )x̄̄̄ ā̄̄ b
¯̄

< <ak xk bk k. =ak bk
k; < ≤ak xk bk ≤ <ak xk bk

ā̄̄ b
¯̄

A

dA = ρ( , ) = = .ā̄̄ b
¯̄ ∑

k=1

n

( − )bk ak
2

− −−−−−−−−−−

√ ∑
k=1

n

ℓ2
k

− −−−−

√ (3.3.11)

,E2 A P Q ). ,E3

x_{k}=c\left( ), < c < .ak bk
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 the plane bisects the  th edge of  and so the  th edge-length of  and  equals  If 
is closed, so is  or  depending on our choice. (We may include the "partition"  in  or 

Now, successively draw  planes  The first plane bisects  leaving the other
edges of  changed. The resulting two subintervals  and  then are cut by the plane  bisecting the second edge in
each of them. Thus we get four subintervals (see Figure 3 for . Each successive plane doubles the number of subintervals. After 

 steps, we thus obtain  disjoint intervals, with all edges  bisected. Thus by Note  the diagonal of each of them is

Note 3. If  is closed then, as noted above, we can make any one (but only one  of the  subintervals closed by properly
manipulating each step.

The proof of the following simple corollaries is left to the reader.

No distance between two points of an interval  exceeds  its diagonal. That is, 

c = ( + ) ,1
2
ak bk k A; k P ( Q) = ( − ) .1

2
ℓk

1
2
bk ak A

P Q, = cxk P Q. )1

n = , = ( + ) , k = 1, 2, … ,n.xk ck ck
1
2
ak bk ℓj

Aun− P Q = ,x2 c2

E2

n 2n ℓk 2,

= = dA.∑
k=1

n

( )
1

2
ℓk

2
− −−−−−−−−−

⎷


 1

2
∑
k=1

n

ℓ2
k

− −−−−

√
1

2
(3.3.12)

A ) 2n

 Corollary 3.3.1

A dA, (∀ , ∈ A)ρ( , ) ≤ dAx̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄
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If an interval  contains  and  then also .

Every nondegenerate interval in  contains rational points, i.e., points whose coordinates are all rational.

(Hint: Use the density of rationals in  for each coordinate separately.)

This page titled 3.3: Intervals in Eⁿ is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The Trilla
Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

 Corollary 3.3.2

A p̄̄̄ ,q̄̄ L[ , ] ⊆ Ap̄̄̄ q̄̄

 corollary 3.3.3

En

E1
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3.3.E: Problems on Intervals in Eⁿ (Exercises)
(Here  and  denote intervals.)

Prove Corollaries 1-3.

Prove that if  then  and .

Give an appropriate definition of a "face" and a "vertex" of .

Find the edge-lengths of  in  if 

 
Is  a cube? Find some rational points in it. Find  and .

Show that the sets  and  as defined in footnote 1 are intervals, indeed. In particular, they can be made half-open (half-
closed) if  is half-open (half-closed). 

, 

 
To fix ideas, let  i.e., cut the first edge. Then let 

 
and verify that  and  Give a proof. 

In Problem  assume that  is closed, and make  closed. (Prove it!)

In Problem 5 show that  the  th edge-lengths of  and  equal  and  respectively, while for 
 the edge-length  is the same in  and  namely, . 

[Hint: If  define  and  as in Problem 

A B

 Exercise 3.3.E. 1

 Exercise 3.3.E. 2

A ⊆ B, dA ≤ dB vA ≤ vB

 Exercise 3.3.E. 3

A

 Exercise 3.3.E. 4

A = ( , )ā̄̄ b
¯̄

E4

= (1, −2, 4, 0) and  = (2, 0, 5, 3).ā̄̄ b
¯̄

(3.3.E.1)

A dA vA

 Exercise 3.3.E. 5

P Q

A

[ Hint: Let A = ( , ]ā̄̄ b
¯̄

P = { ∈ A| ≤ c} ,  and Q = { ∈ A| > c} .x̄̄̄ xk x̄̄̄ xk (3.3.E.2)

k = 1,

= (c, , … , )  and  = (c, , … , )  (see Figure 2),p̄̄̄ a2 an q̄̄ b2 bn (3.3.E.3)

P = ( , ]ā̄̄ q̄̄ Q = ( , ].p̄̄̄ b
¯̄

]

 Exercise 3.3.E. 6

5, A Q

 Exercise 3.3.E. 7

( with k fixed ) k P Q c−ak −c,bk
i ≠ k ℓi A,P , Q, = −ℓi bi ai

k = 1, p̄̄̄ q̄̄ 5. ]
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Prove that if an interval  is split into subintervals  and , then  
[Hint: Use Problem 7 to compute  and  Add up.  
Give an example. (Take  as in Problem 4 and split it by the plane 

*9. Prove the additivity of the volume of intervals, namely, if  is subdivided, in any manner, into  mutually disjoint
subintervals   then 

 
(This is true also if some  contain common faces). 
[Proof outline: For  use Problem 8. 
Then by induction, suppose additivity holds for any number of intervals smaller than a certain   Now let 

 
One of the  (say,  must have some edge-length smaller than the corresponding edge-length of  Now
cut all of  into  and  by the plane  so that  while  For
simplicity, assume that the plane cuts each  into two subintervals  and  (One of them may be empty.) 
Then 

 
Actually, however,  and  are split into fewer than  (nonempty) intervals since  by construction. Thus, by
our inductive assumption, 

 
where  and  by Problem  Complete the inductive proof by showing that 

3.3.E: Problems on Intervals in Eⁿ (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 3.3.E. 8

A P Q(P ∩Q = ∅) vA = vP +vQ.
vA, vP , vQ. ]

A = 1. )x4

 Exercise 3.3.E. 9

A m

, , … ,A1 A2 Am in ,En

vA = v .∑
i=1

m

Ai (3.3.E.4)

Ai

m = 2,
m (m > 1).

A = (  disjoint ) .⋃
i=1

m

Ai Ai (3.3.E.5)

Ai = [ , ])A1 ā̄̄ p̄̄̄ A (say, ) .ℓ1

A P = [ , ]ā̄̄ d¯̄̄ Q = A−P ( Figure 4) = c (c = )x1 p1 ⊆ PA1 ⊆ Q.A2

Ai A′
i .A′′

i

P =  and Q = .⋃
i=1

m

A′
i ⋃

i=1

m

A′′
i (3.3.E.6)

P Q m = ∅ =A′′
1 A′

2

vP = v  and vQ = v ,∑
i=1

m

A′
i ∑

i=1

m

A′′
i (3.3.E.7)

v = 0 = v ,A′′
1 A′

2 v = v +vAi A′
i A′′

i 8.

vA = vP +vQ = v . ]∑
i=1

m

Ai (3.3.E.8)
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3.4: Complex Numbers
With all the operations defined in §§1-3,  is not yet a field because of the lack of a vector multiplication satisfying the
field axioms. We shall now define such a multiplication, but only for  Thus  will become a field, which we shall call the
complex field, 

We make some changes in notation and terminology here. Points of  when regarded as elements of  will be called complex
numbers (each being an ordered pair of real numbers). We denote them by single letters (preferably z) without a bar or an arrow.
For example, . We preferably write  for  If  then  and  are called the real and imaginary
parts of  respectively,  and  denotes the complex number  called the conjugate of  (see Figure 5 .

Complex numbers with vanishing imaginary part,  are called real points of  For brevity, we simply write  for  for
example, . In particular,  is called the real unit in  Points with vanishing real part,  are called
(purely) imaginary numbers. In particular,  is such a number; we shall now denote it by  and call it the imaginary unit
in  Apart from these peculiarities, all our former definitions of §§1-3 remain valid in  In particular, if  and 

 we have

All theorems of §§1-3 are valid.

We now define the new multiplication in  which will make it a field.

 is a field, with zero element  and unity , under addition and multiplication as defined above.

Proof

We only must show that multiplication obeys Axioms 1-6 of the field axioms. Note that for addition, all is proved in
Theorem 1 of §§1-3.

Axiom 1 (closure) is obvious from our definition, for if  and  are in  so is .

To prove commutativity, take any complex numbers

(n > 1)En

.E2 E2

C.

,E2 C,

z = (x, y) (x, y) ( , ) .x1 x2 z = (x, y), x y

z, 1 z̄̄̄ (x, −y), z )

(x, 0), C. x (x, 0);

2 = (2, 0) 1 = (1, 0) = θ
¯̄̄

1 C. (0, y),

= (0, 1)θ
¯̄̄

2 i

C. = C.E2 z = (x, y)

= ( , ) ,z′ x′ y′

z ± = (x, y) ±( , ) = (x ± , y ± ) ,z′ x′ y′ x′ y′ (3.4.1)

ρ (z, ) = ,  andz′ +(x − )x′ 2
(y − )y′ 2

− −−−−−−−−−−−−−−−
√ (3.4.2)

|z| = .+x2 y2
− −−−−−

√ (3.4.3)

C,

 Definition

If z = (x, y) and  = ( , ) ,  then z = (x −y , x +y ) .z′ x′ y′ z′ x′ y′ y′ x′ (3.4.4)

 Theorem 3.4.1

= CE2 0 = (0, 0) 1 = (1, 0)

z z′ C, zz′

z = (x, y) and  = ( , )z′ x′ y′ (3.4.5)
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and verify that  Indeed, by definition,

but the two expressions coincide by the commutative laws for real numbers. Associativity and distributivity are proved in a
similar manner.

Next, we show that  satisfies Axiom 4(b), i.e., that  for any complex number  In fact, by
definition, and by axioms for ,

It remains to verify Axiom 5(b), i.e., to show that each complex number  has an inverse  such that 
 It turns out that the inverse is obtained by setting

In fact, we then get

since  by definition. This completes the proof. 

.

Proof

By definition, .

Thus  has an element  whose square is  while  has no such element, by Corollary 2 in Chapter  This is no
contradiction since that corollary holds in ordered fields only. It only shows that  cannot be made an ordered field.

However, the "real points" in  form a subfield that can be ordered by setting

Then this subfield behaves exactly like  Therefore, it is customary not to distinguish between "real points in  and "real
numbers," identifying  with  With this convention,  simply is a subset and a subfield  of  Henceforth, we shall
simply say that "x is real" or "x  instead of "  is a real point." We then obtain the following result.

Every  has a unique representation as

where  and  are real and  Specifically,

Proof

By our conventions,  and  so

Computing the right-hand expression from definitions, we have for any  that

z = z.z′ z′

z = (x −y , x +y )  and  z = ( x − y, y + x) ;z′ x′ y′ y′ x′ z′ x′ y′ x′ y′ (3.4.6)

1 = (1, 0) 1z = z z = (x, y).

E1

1z = (1, 0)(x, y) = (1x −0y, 1y +0x) = (x −0, y +0) = (x, y) = z. (3.4.7)

z = (x, y) ≠ (0, 0) z−1

z = 1.z−1

=( , − ) .z−1 x

|z|2
y

|z|2
(3.4.8)

z =( + , − + ) =( , 0) = (1, 0) = 1z−1 x2

|z|2
y2

|z|2
xy

|z|2
yx

|z|2
+x2 y2

|z|2
(3.4.9)

+ = |z ,x2 y2 |
2

□

 corollary 3.4.1

= −1; i. e. , (0, 1)(0, 1) = (−1, 0)i2

(0, 1)(0, 1) = (0 ⋅ 0 −1 ⋅ 1, 0 ⋅ 1 +1 ⋅ 0) = (−1, 0)

C i −1, E1 2, 8{1 −4.

C

C

(x, 0) < ( , 0)  iff x <  in  .x′ x′ E1 (3.4.10)

.E1 C ′′

(x, 0) x. E1 ( ) C.

∈ E1′ x = (x, 0)

 Theorem 3.4.2

z ∈ C

z = x +yi, (3.4.11)

x y i = (0, 1).

z = x +yi iff z = (x, y). (3.4.12)

x = (x, 0) y = (y, 0),

x +yi = (x, 0) +(y, 0)(0, 1). (3.4.13)

x, y ∈ E1
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Thus  for any  In particular, if  is the given number  of the theorem, we obtain 
 as required.

To prove uniqueness, suppose that we also have

Then, as shown above,  since also  we have  i.e., the two ordered pairs coincide,
and so  and  after all. 

Geometrically, instead of Cartesian coordinates  we may also use polar coordinates  where

and  is the (counterclockwise) rotation angle from the -axis to the directed line  see Figure  Clearly,  is uniquely
determined by  and  but  is not uniquely determined by  indeed, the same point of  results if  is replaced by 

. (If  then  is not defined at all.) The values  and  are called, respectively, the modulus and
argument of  By elementary trigonometry,  and  Substituting in  we obtain the
following corollary.

This page titled 3.4: Complex Numbers is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The
Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

x +yi = (x, 0) +(y ⋅ 0 −0 ⋅ 1, y ⋅ 1 +0 ⋅ 1) = (x, 0) +(0, y) = (x, y). (3.4.14)

(x, y) = x +yi x, y ∈ .E1 (x, y) z ∈ C

z = (x, y) = x +yi,

z = + i with  = ( , 0)  and  = ( , 0) .x′ y′ x′ x′ y′ y′ (3.4.15)

z = ( , ) .x′ y′ z = (x, y), (x, y) = ( , ) ,x′ y′

x = x′ y = y′
□

(x, y), r, θ,

r = = |z|+x2 y2
− −−−−−

√ (3.4.16)

θ x ;0z
→

6. z

r θ θ z; E2 θ

θ +2nπ(n = 1, 2, …) z = 0, θ r θ

z = (x, y). x = r cos θ y = r sinθ. z = x +yi,

 corollary 3.4.2

z = r(cos θ + i sinθ)(trigonometric or polar form of z). (3.4.17)
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3.4.E: Problems on Complex Numbers (Exercises)

Complete the proof of Theorem 1 (associativity, distributivity, etc.).

Verify that the "real points" in  form an ordered field.

Prove that  Deduce that  if 

Prove that 

 
Hence show by induction that 

 and 

Define 

 
Describe  geometrically. Is 

Compute 
(a) ; 
(b)  and 
(c) . 
Do it in two ways: (i) using definitions only and the notation  for  and 

Solve the equation  for  and  in .

Let 

 Exercise 3.4.E. 1

 Exercise 3.4.E. 1′

C

 Exercise 3.4.E. 2

z = |z .z̄̄̄ |2 = /|zz−1 z̄̄̄ |2 z ≠ 0.4

 Exercise 3.4.E. 3

= +  and  = ⋅z +z′¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄
z̄̄̄ z′¯ ¯¯̄

zz′¯ ¯¯̄ ¯̄
z̄̄̄ z′¯ ¯¯̄

(3.4.E.1)

= ( , n = 1, 2, … ,zn¯ ¯¯̄¯ z̄̄̄)n =∑
n

k=1 akzk¯ ¯¯̄¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄
∑

n

k=1 ā̄̄k z̄̄̄
k

 Exercise 3.4.E. 4

= cos θ + i sinθ.eθi (3.4.E.2)

eθi = 1?∣∣eθi ∣∣

 Exercise 3.4.E. 5

1+2i

3−i

(1 +2i)(3 − i);

, x ∈x+1+i

x+1−i
E1

(x, y) x +yi; ( ii) using all laws valid in a field. 

 Exercise 3.4.E. 6

(2, −1)(x, y) = (3, 2) x y E1

 Exercise 3.4.E. 7

z

z′

z′′

= r(cos θ + i sinθ)

= (cos + i sin ) ,  and r′ θ′ θ′

= (cos + i sin )r′′ θ′′ θ′′
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as in Corollary  Prove that  if 

 

Discuss the following statement: To multiply  by  means to rotate  counterclockwise by the angle  and to multiply it
by the scalar   Consider the cases  and . 
[Hint: Remove brackets in 

 
and apply the laws of trigonometry.]

By induction, extend Problem 7 to products of  complex numbers, and derive de Moivre's formula, namely, if 
 then 

 
Use it to find, for  

From Problem  prove that for every complex number  there are exactly  complex numbers  such that 

 
they are called the  th roots of  
[Hint: If 

 
the equation  yields, by Problem 8 

 
and conversely. 
While this determines  uniquely,  may be replaced by  without affecting  Thus 

 
Distinct points  result only from  (then they repeat cyclically). 
Thus  values of  are obtained.]

2. z = z′z′′

r = |z| = ,  i.e.,  | | = | | | | ,  and θ = + .r′r′′ z′z′′ z′ z′′ θ′ θ′′ (3.4.E.3)

z′ z′′ 0z′
−→

θ′′

=r′′ | | .z′′ = iz′′ = −1z′′

r(cos θ + i sinθ) = (cos + i sin ) ⋅ (cos + i sin )r′ θ′ θ′ r′′ θ′′ θ′′ (3.4.E.4)

 Exercise 3.4.E. 8

n

z = r(cos θ + i sinθ),

= (cos(nθ) + i sin(nθ)).zn rn (3.4.E.5)

n = 1, 2, …

(a) ; (b)(1 + i ; (c) .in )n 1

(1 + i)n
(3.4.E.6)

 Exercise 3.4.E. 9

8, z ≠ 0, n w

= z;wn (3.4.E.7)

n z

z = r(cos θ + i sinθ) and w = (cos + i sin ) ,r′ θ′ θ′ (3.4.E.8)

= zwn

= r and n = θ,( )r′ n
θ′ (3.4.E.9)

r′ θ θ +2kπ z.

= , k = 1, 2, …θ′ θ +2kπ

n
(3.4.E.10)

w k = 0, 1, … , n −1

n w
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Use Problem 9 to find in  

 
Describe all  th roots of 1 geometrically.

3.4.E: Problems on Complex Numbers (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 3.4.E. 10

C

 (a) all cube roots of 1;  (b) all fourth roots of 1 (3.4.E.11)

n
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3.5: Vector Spaces. The Space Cⁿ. Euclidean Spaces
I. We shall now follow the pattern of  to obtain the general notion of a vector space (just as we generalized  to define fields).

Let  be a set of arbitrary elements (not necessarily  -tuples), called "vectors" or "points," with a certain operation (call it
"addition,"  somehow defined in  Let  be any field (e.g.  or ); its elements will be called scalars; its zero and unity
will be denoted by 0 and  respectively. Suppose that yet another operation ("multiplication of scalars by vectors") has been
defined that assigns to every scalar  and every vector  a certain vector, denoted  or  and called the  -multiple of 

 Furthermore, suppose that this multiplication and addition in  satisfy the nine laws specified in Theorem 1 of §§1-3. That is,
we have closure:

Vector addition is commutative and associative. There is a unique zero-vector,  such that

and each  has a unique inverse,  such that

We have distributivity:

Finally, we have

and

In this case,  together with these two operations is called a vector space (or a linear space) over the field  is called its scalar
field, and elements of  are called the scalars of .

(a)  is a vector space over  (its scalar field).

(a')  the set of all rational points of  (i.e., points with rational coordinates is a vector space over  the rationals in 
(Note that we could take  as a scalar field for all of  this would yield another vector space,  over  not to be confused
with  over  i.e., the ordinary 

(b) Let  be any field, and let  be the set of all ordered  -tuples of elements of  with sums and scalar multiples defined
as in  (with  playing the role of  Then  is a vector space over  proof as in Theorem 1 of §§1-3).

(c) Each field  is a vector space (over itself) under the addition and multiplication defined in  Verify!

(d) Let  be a vector space over a field  and let  be the set of all possible mappings

from some arbitrary set  into  Define the sum  of two such maps by setting

Similarly, given  and  define the map  by

Vector spaces over  (respectively,  are called real (respectively, complex) linear spaces. Complex spaces can always be
transformed into real ones by restricting their scalar field  to  (treated as a subfield of .

En E1

V n

+) V . F , E1 C

1,
c ∈ F x ∈ V cx xc c

x. V

(∀x, y ∈ V )(∀c ∈ F ) x +y ∈ V  and cx ∈ V (3.5.1)

,0
→

(∀x ∈ V ) x + = x0
→

(3.5.2)

x ∈ V −x,

x +(−x) = .0
→

(3.5.3)

a(x +y) = ax +ay and (a +b)x = ax +bx. (3.5.4)

1x = x (3.5.5)

(ab)x = a(bx) (3.5.6)

(a, b ∈ F ; x, y ∈ V ).

V F ; F

F V

 Example 3.5.1

En E1

,Rn En R, .E1

R ;En En R,
En ,E1 . )En

F F n n F ,
En F ).E1 F n F (

F F .

V F , W

f : A → V (3.5.7)

A ≠ ∅ V . f +g

(f +g)(x) = f(x) +g(x) for all x ∈ A. (3.5.8)

a ∈ F f ∈ W , af

(af)(x) = af(x). (3.5.9)

E1 C)
C E1 C)

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/19039?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/03%3A_Vector_Spaces_and_Metric_Spaces/3.05%3A_Vector_Spaces._The_Space_C._Euclidean_Spaces


3.5.2 https://math.libretexts.org/@go/page/19039

II. An important example of a complex linear space is  the set of all ordered -tuples

of complex numbers  (now treated as scalars), with sums and scalar multiples defined as in  In order to avoid confusion with
conjugates of complex numbers, we shall not use the bar notation  for a vector in this section, writing simply  for it. Dot
products in  are defined by

where  is the conjugate of the complex number  (see §8), and hence a scalar in  Note that  if . Thus, for
vectors with real components,

as in  The reader will easily verify (exactly as for ) that, for  and  we have the following properties:

1.  thus  is a scalar, not a vector.

2.  and  moreover,  iff  (Thus the dot product of a vector by itself is a real number 

3.  conjugate of  Commutativity fails in general.

4.  Hence .

5.  and .

Observe that (5') follows from (5) by (3). (Verify!)

III. Sometimes (but not always) dot products can also be defined in real or complex linear spaces other than  or  in such a
manner as to satisfy the laws (1)-(5), hence also (5'), listed above, with  replaced by  if the space is real. If these laws hold, the
space is called Euclidean. For example,  is a real Euclidean space and  is a complex one.

In every such space, we define absolute values of vectors by

(This root exists in  by formula (ii).) In particular, this applies to  and  Then given any vectors  and a scalar  we
obtain as before the following properties:

(a')  and  iff .

(b') .

(c') Triangle inequality: .

(d') Cauchy-Schwarz inequality:  and  iff  (i.e.,  or  for some scalar 

We prove only (d') ;\) the rest is proved as in Theorem 4 of §§1-3.

If  all is trivial, so let  where  and  has modulus  and let  For any (variable 
 consider  By definition and (5),(3), and (4),

since  Now, since ,

Similarly,

,C n n

x = ( , … , )x1 xn (3.5.10)

xk .En

x̄̄̄ x

C n

x ⋅ y = ,∑
k=1

n

xk ȳ̄̄k (3.5.11)

ȳ̄̄k yk C. =ȳ̄̄k yk ∈yk E1

x ⋅ y = ,∑
k=1

n

xkyk (3.5.12)

.En En x, y ∈ C n a, b ∈ C,

x ⋅ y ∈ C; x ⋅ y

x ⋅ x ∈ ,E1 x ⋅ x ≥ 0; x ⋅ x = 0 x = .0
→

≥ 0. )

x ⋅ y = (=y ⋅ x¯ ¯¯̄¯̄¯̄¯ y ⋅ x).

(ax) ⋅ (by) = (a )(x ⋅ y).b¯̄ ( ) (ax) ⋅ y = a(x ⋅ y) = x ⋅ ( y)iv′ ā̄̄

(x +y) ⋅ z = x ⋅ z +y ⋅ z ( ) z ⋅ (x +y) = z ⋅ x +z ⋅ y5′

En ,C n

C E1

En C n

|x| = .x ⋅ x− −−−√ (3.5.13)

E1 En .C n x, y a,

|x| ≥ 0; |x| = 0 x = 0
→

|ax| = |a||x|

|x +y| ≤ |x| + |y|

|x ⋅ y| ≤ |x||y|, |x ⋅ y| = |x||y| x∥y x = ay y = ax a).

x ⋅ y = 0, z = x ⋅ y = rc ≠ 0, r = |x ⋅ y| c 1, = cy.y′

)t ∈ ,E1 |tx + | .y′

|tx + |y′ 2 = (tx + ) ⋅ (tx + )y′ y′

= tx ⋅ tx + ⋅ tx + tx ⋅ + ⋅y′ y′ y′ y′

= (x ⋅ x) + t ( ⋅ x) + t (x ⋅ ) +( ⋅ )t2 y′ y′ y′ y′

= t.t¯ c = 1c̄̄

x ⋅ = x ⋅ (cy) = ( x) ⋅ y = rc = r = |x ⋅ y|.y′ c̄̄ c̄̄ (3.5.14)
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Thus we obtain

Here  and  are fixed real numbers. We treat them as coefficients in  of the quadratic trinomial

Now if  and  are not parallel, then  and so

for any  Thus by  the quadratic trinomial has no real roots; hence its discriminant,

is negative, so that 

If, however,  one easily obtains  by  (Verify.)

Thus  or  according to whether  or not. 

In any Euclidean space, we define distances by  Planes, lines, and line segments are defined exactly as in 
Thus

This page titled 3.5: Vector Spaces. The Space Cⁿ. Euclidean Spaces is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

⋅ x = = = r = |x ⋅ y|, x ⋅ x = |x ,  and  ⋅ = y ⋅ y = |y .y′ x ⋅ y′¯ ¯¯̄¯̄¯̄¯̄¯
r̄̄ |2 y′ y′ |2 (3.5.15)

(∀t ∈ ) |tx +cy = |x +2t|x ⋅ y| + |y .E1 |2 t2 |2 |2 (3.5.16)

|x , 2|x ⋅ y|,|2 |y|2 t

f(t) = |x +2t|x ⋅ y| + |y .t2 |2 |2 (3.5.17)

x y cy ≠ −tx,

|tx +cy| = |tx + | ≠ 0y′ (3.5.18)

t ∈ .E1 (1),

4|x ⋅ y −4(|x||y| ,|2 )2 (3.5.19)

|x ⋅ y| < |x||y|.

x∥y, |x ⋅ y| = |x||y|, ( ) .b′

|x ⋅ y| = |x||y| |x ⋅ y| < |x||y| x∥y □

ρ(x, y) = |x −y|. .En

line  = {p + t(q −p)|t ∈ } (in real and complex spaces alike).pq¯ ¯¯̄¯ E1 (3.5.20)
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3.5.E: Problems on Linear Spaces (Exercises)

Prove that  in Example  is a vector space, i.e., that it satisfies all laws stated in Theorem 1 in §§1-3; similarly for  in
Example (d).

Verify that dot products in  obey the laws  Which of these laws would fail if these products were defined by  

 
How would this affect the properties of absolute values given in 

Complete the proof of formulas  for Euclidean spaces. What change would result if property (ii) of dot products
were restated as 

Define orthogonality, parallelism and angles in a general Euclidean space following the pattern of §§1-3 (text and Problem 7

there). Show that  iff  is orthogonal to all vectors of the space.

Define the basic unit vectors  in  exactly as in  and prove 
Theorem 2 in §§1-3 for  Also, do Problem 5  of §§1-3 for .

Define hyperplanes in  as in Definition 3 of §§4-6, and prove Theorem 1 stated there, for  Do also Problems  there
for  (replacing  by  and Problem 4 there for vector spaces in general (replacing  by the scalar field 

Do Problem 3 of §§4-6 for general Euclidean spaces (real or complex). Note: Do not replace  by  in the definition of a
line and a line segment.

A finite set of vectors  in a linear space  over  is said to be independent iff 

 
Prove that if  is independent, then 

 Exercise 3.5.E. 1

F n (b) W

 Exercise 3.5.E. 2

C n (i) −( ) .v′

x ⋅ y =  instead of x ⋅ y = ?∑
k=1

n

xkyk ∑
k=1

n

xk ȳ̄̄k (3.5.E.1)

( ) −( )?a′ d′

 Exercise 3.5.E. 3

( ) −( )a′ d′

" x ⋅ x ≥ 0 and  ⋅ = ?0
→

0
→

0′′ (3.5.E.2)

 Exercise 3.5.E. 4

u = 0
→

u

 Exercise 3.5.E. 5

ek C n ,En

( replacing   by C) .C n E1 (a) C n

 Exercise 3.5.E. 6

C n .C n 4 −6
C n E1 C) E1 F ).

 Exercise 3.5.E. 7

E1 C

 Exercise 3.5.E. 8

B = { , … , }x1 xm V F

(∀ , , … , ∈ F ) ( = ⟹ = = ⋯ = = 0) .a1 a2 am ∑
i=1

m

aixi 0
→

a1 a2 am (3.5.E.3)

B
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(i) ; 
(ii) each subset of  is independent  and 
(iii) if for some scalars , 

 
then .

Let  be a vector space over  and let  By the span of  in , denoted  is meant the set of all "linear
combinations" of vectors from  i.e., all vectors of the form 

 
Show that  is itself a vector space  (a subspace of  over the same field  with the operations defined in 
(We say that A spans  Show that in  and  the basic unit vectors span the entire space.

3.5.E: Problems on Linear Spaces (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

∉ B0
→

B (∅ counts as independent );
, ∈ Fai bi

= ,∑
i=1

m

aixi ∑
i=1

m

bixi (3.5.E.4)

= , i = 1, 2, … , mai bi

 Exercise 3.5.E. 9

V F A ⊆ V . A V span(A),
A,

, ∈ F , ∈ A, m ∈ N .∑
i=1

m

aixi ai xi (3.5.E.5)

span(A) ⊆ VV ′ V ) F , V .
.V ′ En ,C n

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/22263?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/03%3A_Vector_Spaces_and_Metric_Spaces/3.05%3A_Vector_Spaces._The_Space_C._Euclidean_Spaces/3.5.E%3A_Problems_on_Linear_Spaces_(Exercises)
https://creativecommons.org/licenses/by/1.0


3.6.1 https://math.libretexts.org/@go/page/19040

3.6: Normed Linear Spaces
By a normed linear space (briefly normed space) is meant a real or complex vector space  in which every vector  is associated
with a real number , called its absolute value or norm, in such a manner that the properties  of §9 hold. That is, for
any vectors  and scalar  we have

 iff 

 and

Mathematically, the existence of absolute values in  amounts to that of a map (called a norm map)  on  i.e., a map 
 with function values  written as  satisfying the laws (i)-(iii) above. Often such a map can be chosen in

many ways (not necessarily via dot products, which may not exist in , thus giving rise to different norms on  Sometimes we
write  for  or use other similar symbols.

Note 1. From (iii), we also obtain  exactly as in 

(A) Each Euclidean space (§9) such as  or  is a normed space, with norm defined by

as follows from formulas (a')-(c') in §9. In  and  one can also equivalently define

where  This is the so-called standard norm, usually presupposed in 

(B) One can also define other, "nonstandard," norms on  and  For example, fix some real  and put

One can show that  so defined satisfies  iii) and thus is a norm (see Problems 5-7 below).

(C) Let  be the set of all bounded maps

from a set  into a normed space  i.e., such that

for some real constant  (dependent on  but not on  Define  and  as in Example (d) of §9 so that  becomes
a vector space. Also, put

i.e., the supremum of all  with  Due to boundedness, this supremum exists in  so 

It is easy to show that  is a norm on  For example, we verify (iii) as follows.

By definition, we have for  and 

E x

|x| ( ) − ( )a
′

c
′

x, y ∈ E a,

(i) |x| ≥ 0;

( ) |x| = 0i′ x = ;0
→

(ii) |ax| = |a||x|;

(iii) |x +y| ≤ |x| + |y| (triangle inequality). 

E x → |x| E,
φ : E → ,E1 φ(x) |x|,

E E.
∥x∥ |x|

|x −y| ≥ ||x| − |y|| .En

 Example 3.6.1

En ,C n

|x| = ,x ⋅ x− −−−√ (3.6.1)

En ,C n

|x| = ,∑
k=1

n

| |xk
2

− −−−−−−

√ (3.6.2)

x = ( , … , ) .x1 xn ( ) .En C n

En .C n p ≥ 1

|x = .|p ( )∑
k=1

n

| |xk
p

1
p

(3.6.3)

|x|p (i)−(

W

f : A → E (3.6.4)

A ≠ ∅ E,

(∀t ∈ A) |f(t)| ≤ c (3.6.5)

c > 0 f t). f +g af W

∥f∥ = |f(t)|,sup
t∈A

(3.6.6)

|f(t)|, t ∈ A. ,E1 ∥f∥ ∈ .E1

∥f∥ W .

f , g ∈ W x ∈ A,
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(The first inequality is true because (iii) holds in the normed space  to which  and  belong.) By (1), 
 is an upper bound of all expressions  Thus

Note 2. Formula (1) also shows that the map  is bounded and hence is a member of  Quite similarly we see that 
 for any scalar  and  Thus we have the closure laws for  The rest is easy.

In every normed (in particular, in each Euclidean) space  we define distances by

Such distances depend, of course, on the norm chosen for  thus we call them norm-induced distances. In particular, using the
standard norm in  and  (Example (A)), we have

Using the norm of Example (B), we get

instead. In the space  of Example (C) we have

Proceeding exactly as in the proof of Theorem 5 in §§1-3, we see that norm- induced distances obey the three laws stated there.
(Verify!) Moreover, by definition,

Thus we have

i.e., the distance  does not change if both  and  are "translated" by one and the same vector  We call such distances
translation-invariant.

A more general theory of distances will be given in §§11ff.

This page titled 3.6: Normed Linear Spaces is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The
Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

|(f +g)(x)| = |f(x) +g(x)|

≤ |f(x)| +|g(x)|

≤ |f(t)| + |g(t)|sup
t∈A

sup
t∈A

= ∥f∥ +∥g∥.

E f(x) g(x)
∥f∥ +∥g∥ +∥g∥ |(f +g)(x)|, x ∈ A.

∥f∥ +∥g∥ ≥ |(f +g)(x)| = ∥f +g∥.sup
x∈A

(3.6.7)

f +g W .
af ∈ W a f ∈ W . W .

E,

ρ(x, y) = |x −y|  for all x, y  ∈ E. (3.6.8)

E;
En C n

ρ(x, y) = .∑
k=1

n

| − |xk yk
2

− −−−−−−−−−−

√ (3.6.9)

ρ(x, y) =( )∑
k=1

n

| − |xk yk
p

1
p

(3.6.10)

W

ρ(f , g) = ∥f −g∥ = |f(x) −g(x)|.sup
x∈A

(3.6.11)

ρ(x +u, y +u) = |(x +u) −(y +u)| = |x −y| = ρ(x, y). (3.6.12)

ρ(x, y) = ρ(x +u, y +u) for norm-induced distances; (3.6.13)

ρ(x, y) x y u.
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3.6.E: Problems on Normed Linear Spaces (Exercises)

Show that distances in normed spaces obey the laws stated in Theorem 5 of §§1-3.

Complete the proof of assertions made in Example (C) and Note 2.

Define  for  in  or  Is this a norm? Which (if any) of the laws (i) - (iii) does it obey? How
about formula 

Do Problem 3 in §§4-6 for a general normed space  with lines defined as in  (see also Problem 7 in §9). Also, show that
contracting sequences of line segments in  are -images of contracting sequences of intervals in  Using this fact, deduce
from Problem 11 in Chapter 2 §§8-9, an analogue for line segments in , namely, if 

 
then 

Take for granted the lemma that

 
if  with  and  and 

 
(A proof will be suggested in Chapter 5, §6, Problem  Use it to prove Hölder's inequality, namely, if  and 

 then 

 
[Hint: Let 

 Exercise 3.6.E. 1

 Exercise 3.6.E. 2

 Exercise 3.6.E. 3

|x| = x1 x = ( , … , )x1 xn C n .En

(2)?

 Exercise 3.6.E. 4

E, En

E f .E1

E

L [ , ] ⊇ L [ , ] , n = 1, 2, …an bn an+1 bn+1 (3.6.E.1)

L [ , ] ≠ ∅.⋂
n=1

∞

an bn (3.6.E.2)

 Exercise 3.6.E. 5

≤ +a1/pb1/q a

p

b

q
(3.6.E.3)

a, b, p, q ∈ E1 a, b ≥ 0 p, q > 0,

+ = 1.
1

p

1

q
(3.6.E.4)

11. ) p > 1
+ = 1,1

p
1
q

| | ≤  for any  , ∈ C.∑
k=1

n

xkyk ( )∑
k=1

n

| |xk
p

1
p

( )∑
k=1

n

| |yk
q

1
q

xk yk (3.6.E.5)

A =  and B = .( )∑
k=1

n

| |xk
p

1
p

( )∑
k=1

n

| |yk
q

1
q

(3.6.E.6)
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If  or  then all  or all  vanish, and the required inequality is trivial. Thus assume  and  Then,
setting 

 
in the lemma, obtain 

 
Now add up these  inequalities, substitute the values of  and  and simplify. 

Prove the Minkowski inequality, 

 
for any real  and . 
[Hint: If  this follows by the triangle inequality in  If , let 

 
(If , all is trivial.) Then verify (writing " " for " " for simplicity) 

 
Now apply Hölder's inequality (Problem 5) to each of the last two sums, with   so that  and 

 Thus obtain 

 

Then divide by  and simplify. 

Show that Example (B) indeed yields a norm for  and . 
[Hint: For the triangle inequality, use Problem  The rest is easy. 

A sequence  of vectors in a normed space  is said to be bounded iff 

 
i.e., iff  is finite. 

A = 0 B = 0, xk yk A ≠ 0 B ≠ 0.

a =  and b =
| |xk

p

Ap

| |yk
q

Bq
(3.6.E.7)

≤ + , k = 1, 2, … , n.
| |xkyk

AB

| |xk
p

pAp

| |yk
q

qBq
(3.6.E.8)

n A B, ]

 Exercise 3.6.E. 6

≤ +( )∑
k=1

n

| + |xk yk
p

1
p

( )∑
k=1

n

| |xk
p

1
p

( )∑
k=1

n

| |yk
p

1
p

(3.6.E.9)

p ≥ 1 , ∈ Cxk yk

p = 1, C. p > 1

A = ≠ 0.∑
k=1

n

| + |xk yk
p (3.6.E.10)

A = 0 ∑ ∑n
k=1

A =∑ | + | ≤∑ | | +∑ | |xk yk | + |xk yk
p−1

xk | + |xk yk
p−1

yk | + |xk yk
p−1

(3.6.E.11)

q = p/(p −1), (p −1)q = p

1/p = 1 −1/q.

A ≤ + .(∑ )| |xk
p

1
p

(∑ )| + |xk yk
p

1
q

(∑ )| |yk
p

1
p

(∑ )| + |xk yk
p

1
q

(3.6.E.12)

=A
1
q (∑ )| + |xk yk

p
1
q ]

 Exercise 3.6.E. 7

C n En

6. ]

 Exercise 3.6.E. 8

{ }xm E ( e.g. ,  in   or  )En C n

(∃c ∈ ) (∀m) | | < c,E1 xm (3.6.E.13)

| |supm xm
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Denote such sequences by single letters,  etc. and define 

 
Also let 

 
Show that, with these definitions, the set  of all bounded infinite sequences in  becomes a normed space (in which every
such sequence is to be treated as a single vector, and the scalar field is the same as that of  ).

3.6.E: Problems on Normed Linear Spaces (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

x = { } , y = { } ,xm ym

x +y = { + } ,  and ax = {a }  for any scalar a.xm ym xm (3.6.E.14)

|x| = | | .sup
m

xm (3.6.E.15)

M E

E
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3.7: Metric Spaces
I. In §§1-3, we defined distances  for points  in  using the formula

This actually amounts to defining a certain function  of two variables   We also showed that  obeys the three laws of
Theorem 5 there. (We call them metric laws.)

Now, as will be seen, such functions  can also be defined in other sets, using quite different defining formulas. In other words,
given any set  of arbitrary elements, one can define in it, so to say, "fancy distances"  satisfying the same three laws. It
turns out that it is not the particular formula used to define  but rather the preservation of the three laws that is most important for
general theoretical purposes.

Thus we shall assume that a function  with the same three properties has been defined, in some way or other, for a set , and
propose to study the consequences of the three metric laws alone, without assuming anything else. (In particular, no operations
other than  or absolute values, or inequalities < need be defined in  ) All results so obtained will, of course, apply to distances
in  (since they obey the metric laws), but they will also apply to other cases where the metric laws hold.

The elements of  (though arbitrary) will be called "points," usually denoted by  (sometimes with bars, etc.  is called
a metric for  We symbolize it by

since it is function defined on  (pairs of elements of  into  Thus we are led to the following definition.

A metric space is a set  together with a function

(called a metric for  ) satisfying the metric laws (axioms):

For any  and  in  we have

i.  and  iff 
ii.  (symmetry law); and

iii.  triangle law

Thus a metric space is a pair  namely, a set  and a metric  for it. In general, one can define many different metrics

for the same  The resulting spaces

then are regarded as different. However, if confusion is unlikely, we simply write  for  We write " " for "
with metric " and " " for "  in ."

(1) In  we always assume

unless stated otherwise. By Theorem 5 in §§1-3,  is a metric space.

(2) However, one can define for  many other "nonstandard" metrics. For example,

ρ( , )x̄̄̄ ȳ̄̄ ,x̄̄̄ ȳ̄̄ En

ρ( , ) = = | − |.x̄̄̄ ȳ̄̄ ∑
k=1

n

( − )xk yk
2

− −−−−−−−−−−

√ x̄̄̄ ȳ̄̄ (3.7.1)

ρ , ∈x̄̄̄ ȳ̄̄ .En ρ

ρ

S ≠ ∅ ρ(x, y)
ρ

ρ S ≠ ∅

ρ, S.
En

S p, q, x, y, z ); ρ

S.

ρ : S ×S → E1 (3.7.2)

S ×S S) .E1

 Definition

S ≠ ∅

ρ : S ×S → E1 (3.7.3)

S

x, y, z S,

ρ(x, y) ≥ 0, ( ) ρ(x, y) = 0i′ x = y;
ρ(x, y) = ρ(y, x)
ρ(x, z) ≤ ρ(x, y) +ρ(y, z)( ).

(S, ρ), S ρ

ρ, , , …ρ′ ρ′′ (3.7.4)

S.

(S, ρ), (S, ) , (S, ) , …ρ′ ρ′′ (3.7.5)

S (S, ρ). p ∈ (S, ρ) p ∈ S

ρ, A ⊆ (S, ρ) A ⊆ S (S, ρ)

 Example 3.7.1

,En

ρ( , ) = | − | (the "standard metric") x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ (3.7.6)

( , ρ)En

En
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likewise satisfies the metric laws (a proof is suggested in §10, Problems 5-7; similarly for 

(3) Any set  can be "metrized" (i.e., endowed with a metric) by setting

(Verify the metric laws!) This is the so-called discrete metric. The space  so defined is called a discrete space.

(4) Distances ("mileages") on the surface of our planet are actually measured along circles fitting in the curvature of the globe
(not straight lines). One can show that they obey the metric laws and thus define a (nonstandard) metric for  (surface of the
globe).

(5) A mapping  is said to be bounded iff

For a fixed  let  be the set of all such maps (each being treated as a single "point" of  Metrize  by setting, for 

(Verify the metric laws; see a similar proof in §10.)

II. We now define "balls" in any metric space .

Given  and a real  we define the open ball or globe with center  and radius  (briefly " -globe about p",
denoted

to be the set of all  such that

Similarly, the closed -globe about p is

The  -sphere about  is defined by

Note. An open globe in  is an ordinary solid sphere (without its surface  as known from geometry. In  an open globe
is a disc (the interior of a circle). In , the globe  is simply the open interval , while  is the closed
interval 

The shape of the globes and spheres depends on the metric . It may become rather strange for various unusual metrics. For
example, in the discrete space (Example (3)), any globe of radius  consists of its center alone, while  contains the entire
space. (Why?) See also Problems 1 ,2, and 4.

III. Now take any nonempty set 

The distances  in  are, of course, also defined for points of  (since , and the metric laws remain valid in  Thus 
 is likewise a (smaller) metric space under the metric  "inherited" from  we only have to restrict the domain of  to 

(pairs of points from  The set  with this metric is called a subspace of  We shall denote it by  using the same letter 
or simply by  Note that  with some other metric  is not called a subspace of 

( , ) =  for any real p ≥ 1ρ′ x̄̄̄ ȳ̄̄ ( )∑
k=1

n

| − |xk yk
p

1/p

(3.7.7)

.C n

S ≠ ∅

ρ(x, y) = 1 if x ≠ y,  and ρ(x, x) = 0. (3.7.8)

(S, ρ)

S =

f : A → E1

(∃K ∈ ) (∀x ∈ A) |f(x)| ≤ K.E1 (3.7.9)

A ≠ ∅, W W ). W

f , g ∈ W ,

ρ(f , g) = |f(x) −g(x)|.sup
x∈A

(3.7.10)

(S, ρ)

 Definition

p ∈ (S, ρ) ε > 0, p ε ε

 or  (ε) or G(p; ε),Gp Gp (3.7.11)

x ∈ S

ρ(x, p) < ε. (3.7.12)

ε

= (ε) = {x ∈ S|ρ(x, p) ≤ ε}.G
¯ ¯¯̄

p G
¯ ¯¯̄

p (3.7.13)

ε p

(ε) = {x ∈ S|ρ(x, p) = ε}.Sp (3.7.14)

E3 (ε)),Sp ,E2

E1 (ε)Gp (p −ε, p +ε) (ε)G
¯ ¯¯̄

p

[p −ε, p +ε].

ρ

< 1 (2)Gp

A ⊆ (S, ρ).

ρ(x, y) S A A ⊆ S A.
A ρ S; ρ A ×A

A). A S. (A, ρ), ρ

A. A ρ′ (S, ρ).
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By definition, points in  have the same distances as in  However, globes and spheres in  must consist of points
from  only, with centers in  Denoting such a globe by

we see that it is obtained by restricting  (the corresponding globe in  to points of  i.e., removing all points not in 
Thus

similarly for closed globes and spheres.  is often called the relativized (to  ) globe  Note that  since 
 and 

For example, let  be the subspace of  consisting of rationals only. Then the relativized globe  consists of all rationals in
the interval

and it is assumed here that  is rational itself.

IV. A few remarks are due on the extended real number system  (see Chapter 2, §§13) . As we know,  consists of all reals and
two additional elements,  with the convention that  for all . The standard metric  does not apply to 

 However, one can metrize  in various other ways. The most common metric  is suggested in Problems 5 and 6 below.
Under that metric, globes turn out to be finite and infinite intervals in 

Instead of metrizing  we may simply adopt the convention that intervals of the form

will be called "globes" about  and  respectively (without specifying any "radii"). Globes about finite points may remain as
they are in  This convention suffices for most purposes of limit theory. We shall use it often (as we did in Chapter 2, §13).

This page titled 3.7: Metric Spaces is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The Trilla
Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

(A, ρ) (S, ρ). (A, ρ)
A A.

(ε) = {x ∈ A|ρ(x, p) < ε},G∗
p (3.7.15)

(ε)Gp S) A, A.

(ε) = A ∩ (ε);G∗
p Gp (3.7.16)

A ∩ (ε)Gp A (ε).Gp p ∈ (ε)G∗
p

ρ(p, p) = 0 < ε, p ∈ A.

R E1 (ε)G∗
p

(ε) = (p −ε, p +ε),Gp (3.7.17)

p

E∗ E∗

±∞, −∞ < x < +∞ x ∈ E1 ρ

.E∗ E∗ ρ′

.E∗

,E∗

(a, +∞] and [−∞, a), a ∈ ,E1 (3.7.18)

+∞ −∞,
.E1
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3.7.E: Problems on Metric Spaces (Exercises)
The "arrowed" problems should be noted for later work.

Show that  becomes a metric space if distances  are defined by 
(a)  or 
(b) , 
where  and  In each case, describe  and  Do the same for the subspace of points with
nonnegative coordinates.

Prove the assertions made in the text about globes in a discrete space. Find an empty sphere in such a space. Can a sphere
contain the entire space?

Show that  in Examples  and  obeys the metric axioms.

Let  be the set of all positive integers together with the "point"  Metrize  by setting 

 
Verify the metric axioms. Describe  and .

 Metrize the extended real number system  by 

 
where the function 

 
is defined by 

 
Compute  and  Describe  and 
Verify the metric axioms (also when infinities are involved).

 In Problem  show that the function  is one to one, onto  and increasing; i.e. 

 Exercise 3.7.E. 1

E2 ρ( , )x̄̄̄ ȳ̄̄

ρ( , ) = | − | +| − |x̄̄̄ ȳ̄̄ x1 y1 x2 y2

ρ( , ) = max {| − | , | − |}x̄̄̄ ȳ̄̄ x1 y1 x2 y2

= ( , )x̄̄̄ x1 x2 = ( , ) .ȳ̄̄ y1 y2 (1)G
0
¯̄̄ (1).S

0
¯̄̄

 Exercise 3.7.E. 2

 Exercise 3.7.E. 3

ρ (3) (5)

 Exercise 3.7.E. 4

M ∞. M

ρ(m, n) = − ,  with the convention that  = 0.
∣
∣
∣

1

m

1

n

∣
∣
∣

1

∞
(3.7.E.1)

( ) , ( ) ,G∞
1
2

S∞
1
2

(1)G1

 Exercise 3.7.E. 5

⇒ 5. E∗

(x, y) = |f(x) −f(y)|,ρ′ (3.7.E.2)

f : [−1, 1]E∗
⟶
 onto 

(3.7.E.3)

f(x) =  if x is finite, f(−∞) = −1,  and f(+∞) = 1.
x

1 +|x|
(3.7.E.4)

(0, +∞), (0, −∞), (−∞, +∞), (0, 1), (1, 2),ρ′ ρ′ ρ′ ρ′ ρ′ (n, +∞).ρ′ (1), (1),G0 G+∞ ( ) .G−∞
1
2

 Exercise 3.7.E. 6

⇒ 6. 5, f [−1, 1],

x <  implies f(x) < f ( )  for x, ∈ .x′ x′ x′ E∗ (3.7.E.5)
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Also show that the  -image of an interval  is the interval  Hence deduce that globes in  (with  as
in Problem 5) are intervals in  (possibly infinite). 
[Hint: For a finite  put 

 
Solving for  (separately in the cases  and  show that 

 
thus  is uniquely determined by  i.e.,  is one to one and onto-each  corresponds to some  (How about 

 
To show that  is increasing, consider separately the three cases ,  and  (also for infinite 
and 

Continuing Problems 5 and  consider  as a subspace of  with  as in Problem  Show that globes in 
 are exactly all open intervals in  For example,  is a globe. What are its center and radius under  and under

the standard metric 

Metrize the closed interval  in  by setting 

 
with the conventions  and  Verify the metric axioms. Describe  for arbitrary .

Prove that if  is a metric for  then another metric  for  is given by 
(i) ; 

(ii) . 
In case  show that globes  of radius  are the same under  and  In case (ii), prove that any  in  is
also a globe  in  of radius 

 
and any globe of radius  in  is also a globe in  (Find the converse formula for  as well!) 
[Hint for the triangle inequality in (ii): Let  and  so that  The required
inequality is 

 
Simplify it and show that it follows from 

f (a, b) ⊆ E∗ (f(a), f(b)). E∗ ρ′

E∗

x,

y = f(x) = .
x

1 +|x|
(3.7.E.6)

x x ≥ 0 x < 0),

(∀y ∈ (−1, 1)) x = (y) = ;f −1 y

1 −|y|
(3.7.E.7)

x y, f y ∈ (−1, 1) x ∈ .E1

±1?)

f x < 0 < x′ x < < 0x′ 0 < x < x′ x

). ]x′

 Exercise 3.7.E. 7

6, ( , )E1 ρ′ ( , )E∗ ρ′ ρ′ 5.

( , )E1 ρ′ .E∗ (0, 1) ρ′

ρ?

 Exercise 3.7.E. 8

[0, +∞] E∗

ρ(x, y) = − ,
∣

∣
∣

1

1 +x

1

1 +y

∣

∣
∣ (3.7.E.8)

1 +(+∞) = +∞ 1/(+∞) = 0. (1)Gp p ≥ 0

 Exercise 3.7.E. 9

ρ S, ρ′ S

(x, y) = min{1, ρ(x, y)}ρ′

(x, y) =ρ′ ρ(x,y)

1+ρ(x,y)

(i), (ε)Gp ε ≤ 1 ρ .ρ′ (ε)Gp (S, ρ)

( )Gp ε′ (S, )ρ′

= ,ε′ ε

1 +ε
(3.7.E.9)

< 1ε′ (S, )ρ′ (S, ρ). ε

a = ρ(x, z), b = ρ(x, y), c = ρ(y, z) a ≤ b +c.

≤ + .
a

1 +a

b

1 +b

c

1 +c
(3.7.E.10)

a ≤ b +c. ]
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Prove that if  and  are metric spaces, then a metric  for the set  is obtained by setting, for 
and , 
(i)  or 

(ii) . 
[Hint: For brevity, put  etc. The triangle inequality in (ii), 

 
is verified by squaring both sides, isolating the remaining square root on the right side, simplifying, and squaring again.
Simplify by using the triangle inequalities valid in  and  i.e., 

 
Reverse all steps, so that the required inequality becomes the last step. 

Prove that 

 
in any metric space  
[Caution: The formula  valid in  cannot be used in  Why? 

Prove that 

 
[Hint: Use induction. 

3.7.E: Problems on Metric Spaces (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 3.7.E. 10

(X, )ρ′ (Y , )ρ′′ ρ X ×Y , ∈ Xx1 x2

, ∈ Yy1 y2

ρ (( , ) , ( , )) = max { ( , ) , ( , )} ;x1 y1 x2 y2 ρ′ x1 x2 ρ′′ y1 y2

ρ (( , ) , ( , )) =x1 y1 x2 y2 +ρ′( , )x1 x2
2 ρ′′( , )y1 y2

2
− −−−−−−−−−−−−−−−−−−

√

= ( , ) , = ( , ) ,ρ′
12 ρ′ x1 x2 ρ′′

12 ρ′′ y1 y2

≤ + ,+( )ρ′
13

2
( )ρ′′

13

2
− −−−−−−−−−−−

√ +( )ρ′
12

2 ( )ρ′′
12

2
− −−−−−−−−−−−

√ +( )ρ′
23

2
( )ρ′′

23

2
− −−−−−−−−−−−

√ (3.7.E.11)

X Y ,

≤ +  and  ≤ + .ρ′
13 ρ′

12 ρ′
23 ρ′′

13 ρ′′
12 ρ′′

23 (3.7.E.12)

]

 Exercise 3.7.E. 11

|ρ(y, z) −ρ(x, z)| ≤ ρ(x, y) (3.7.E.13)

(S, ρ).

ρ(x, y) = |x −y|, ,En (S, ρ). ]

 Exercise 3.7.E. 12

ρ ( , ) +ρ ( , ) +⋯ +ρ ( , ) ≥ ρ ( , ) .p1 p2 p2 p3 pn−1 pn p1 pn (3.7.E.14)

]
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3.8: Open and Closed Sets. Neighborhoods
I. Let  be an open globe in  or an open interval  in  Then every  can be enclosed in a small globe 

 Figures 7 and 8 . (This would fail for "boundary" points; but there are none inside an open  or .

This suggests the following ideas, for any .

A point  is said to be interior to a set  iff  contains some  i.e.,  together with some globe  belongs to 
We then also say that  is a neighborhood of  The set of all interior points of  ("the interior of  is denoted  Note: 

 and 

 set  is said to be open iff  coincides with its interior  Such are  and 

(1) As noted above, an open globe  has interior points only, and thus is an open set in the sense of Definition  (See
Problem 1 for a proof.)

(2) The same applies to an open interval  in  (See Problem 

(3) The interior of any interval in  never includes its endpoints  and . In fact, it coincides with the open interval 
(See Problem 

(4) The set  of all rationals in  has no interior points at all  because it cannot contain any 
Indeed, any such  contains irrationals (see Chapter 2, §§11-12, Problem 5  so it is not entirely contained in 

(Hausdorff property). Any two points  and   in  are centers of two disjoint globes.

More precisely,

A (S, ρ) ( , )ā̄̄ b
¯̄

.En p ∈ A

(δ) ⊆ A(Gp ) Gq ( , ). )ā̄̄ b¯̄

(S, ρ)

 Definition

p A ⊆ (S, ρ) A ;Gp p, ,Gp A.
A p. A A′′ .A0

= ∅∅0 = S!S0

 Definition

A A ⊆ (S, ρ) A ( = A) .A0 ∅ S.

 Example 3.8.1

(r)Gq 2.

( , )ā̄̄ b
¯̄

.En 2. )

En ā̄̄ b
¯̄

( , ).ā̄̄ b
¯̄

4. )

R E1 ( = ∅)R0 = (p −ε, p +ε).Gp

Gp ), R.

 Theorem 3.8.1

p q (p ≠ q) (S, ρ)

(∃ε > 0) (ε) ∩ (ε) = ∅.Gp Gq (3.8.1)
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Proof

As  we have  by metric axiom  Thus we may put

It remains to show that with this .

Seeking a contradiction, suppose this fails. Then there is  so that  and  By the
triangle law,

which is impossible since 

Note. A look at Figure 9 explains the idea of this proof, namely, to obtain two disjoint globes of equal radius, it suffices to choose 
 The reader is advised to use such diagrams in  as a guide.

II. We can now define closed sets in terms of open sets.

A set  is said to be closed iff its complement  is open, i.e., has interior points only.

That is, each  (outside  is in some globe  so that

(Continued).

(5) The sets  and  are closed, for their complements,  and  are open, as noted above. Thus a set may be both closed and
open ("clopen").

(6) All closed globes in  and all closed intervals in  are closed sets by Definition  Indeed (see Figures 9 and  if 
 or , then any point  outside  can be enclosed in a globe  disjoint from  so, by Definition 

p ≠ q, ρ(p, q) > 0 ( ) .i′

ε = ρ(p, q) > 0.
1

2
(3.8.2)

ε, (ε) ∩ (ε) = ∅Gp Gq

x ∈ (ε) ∩ (ε)Gp Gq ρ(p, x) < ε ρ(x, q) < ε.

ρ(p, q) ≤ ρ(p, x) +ρ(x, q) < ε +ε = 2ε;  i.e., ρ(p, q) < 2ε, (3.8.3)

ρ(p, q) = 2ε. □

ε ≤ ρ(p, q).1
2

E2

 Definition

A ⊆ (S, ρ) −A = S −A

p ∈ −A A) ⊆ −AGp

A ∩ = ∅.Gp (3.8.4)

 Example 3.8.1

∅ S S ∅,

(S, ρ) En 3. 10),

A = (r)G
¯ ¯¯̄

q A = [ , ]ā̄̄ b
¯̄

p A (δ)Gp A; 3, A
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is closed (see Problem 12 .

(7) A one-point set  (also called "singleton") in  is always closed, for any  outside  is in a globe disjoint
from  by Theorem 1 In a discrete space (§§11,) Example (3)),  is also open since it is an open  lobe, 
why?  so it is "clopen. " Hence, in such a space, all sets are "clopen". For  implies  similarly for 

 Thus  and  have interior points only, so both are open.

(8) The interval  in  is neither open nor closed. (Why?)

III. (The rest of this section may be deferred until Chapter (4, §10.)

The union of any finite or infinite family of open sets , denoted

is open itself. So also is

for finitely many open sets. (This fails for infinitely many sets  see Problem 11 below.)

Proof

We must show that any point  of  is interior to .

Now if  is in some  and it is an interior point of  (for  is open, by assumption). Thus there is a globe

as required.

For finite intersections, it suffices to consider two open sets  and  (for  sets, all then follows by induction). We must
show that each  is interior to 

Now as  and  is open, we have some  Similarly, there is  Then the smaller of the two
globes, call it  is in both  and  so

and  is interior to  indeed. 

If the sets  are closed, so is

(even for infinitely many sets). So also is

for finitely many closed sets  (Again, this fails for infinitely many sets 

Proof

Let  To prove that  is closed, we show that  is open.

Now by set theory (see Chapter 1, §§1-3, Theorem 2) ,

)

{q} (S, ρ) p {q}(p ≠ q)

{q} {q} g {q} = ( )(Gq
1
2

); p ∈ A {p} = ( )⊆ A;Gp
1
2

−A. A −A

(a, b] E1

 Theorem 3.8.2

(i ∈ I)Ai

,⋃
i∈I

Ai (3.8.5)

⋂
i=1

n

Ai (3.8.6)

;Ai

p A =⋃i Ai A

p ∈ , p⋃i Ai ,Ai Ai Ai

⊆ ⊆ A,Gp Ai (3.8.7)

A B n

p ∈ A ∩ B A ∩ B.

p ∈ A A ( ) ⊆ A.Gp δ ′ ( ) ⊆ B.Gp δ ′′

,Gp A B,

⊆ A ∩ BGp (3.8.8)

p A ∩ B, □

 Theorem 3.8.3

(i ∈ I)Ai

⋂
i∈I

Ai (3.8.9)

⋃
i=1

n

Ai (3.8.10)

.Ai . )Ai

A = .⋂i∈I Ai A −A
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where the  are open (for the  are closed  Thus by Theorem  is open, as required.

The second assertion (as to  follows quite similarly. 

 nonempty set  is open iff  is a union of open globes.

For if  is such a union, it is open by Theorem  Conversely, if  is open, then each  is in some  All such 
 cover all of  so  Also,  since all  are in  Thus

Every finite set  in a metric space  is closed.

Proof

If  is closed by Example  If  let

Now by Example  each  is closed; hence so is  by by theorem 

Note. The family of all open sets in a given space  is denoted by ; that of all closed sets, by  Thus  means that 
 is open; "A  means that  is closed. By Theorems 2 and  we have

similarly for  This is a kind of "closure law." We say that  and  are "closed under finite unions and intersections."

In conclusion, consider any subspace  of  As we know from §11 it is a metric space itself, so it has its own open and
closed sets (which must consist of points of  only  We shall now show that they are obtained from those of  by
intersecting the latter sets with 

Let  be a subspace of  Then the open (closed) sets in  are exactly all sets of the form  with  open 
closed  in .

Proof

Let  be open in  By Corollary  is the union of some open globes  in  (For brevity, we omit
the centers and radii; we also omit the trivial case 

by set theory (see Chapter 1, §§1-3,\) Problem 9).

Again by Corollary  is an open set in  Thus  has the form

with  open in  as asserted.

−A = − = (− ) ,⋂
i

Ai ⋃
i

Ai (3.8.11)

(− )Ai Ai ). 2, −A

)⋃n
i=1 Ai □

 corollary 3.8.1

A A ⊆ (S, ρ) A

A 2. A p ∈ A ⊆ A.Gp

(p ∈ A)Gp A, A ⊆ .⋃p∈A Gp ⊆ A⋃p∈A Gp Gp A.

A = .⋃
p∈A

Gp (3.8.12)

 corollary 3.8.2

F (S, ρ)

F = ∅, F (5). F ≠ ∅,

F = { , … , } = { } .p1 pn ⋃
k=1

n

pk (3.8.13)

(7), { }pk F 3. □

(S, ρ) G F . " A ∈ G
′′

A ∈ F
′′ A 3,

(∀A, B ∈ G) A ∪ B ∈ G and A ∩ B ∈ G; (3.8.14)

F . F G

(A, ρ) (S, ρ).
A ). (S, ρ)

A.

 Theorem 3.8.4

(A, ρ) (S, ρ). (A, ρ) A ∩ U, U

( ) S

G (A, ρ). 1, G (i ∈ I)G∗
i (A, ρ).

G = ∅.

G = = (A ∩ ) = A ∩ ,⋃
i

G∗
i ⋃

i

Gi ⋃
i

Gi (3.8.15)

1, U =⋃i Gi (S, ρ). G

A ∩ = A ∩ U,⋃
i

Gi (3.8.16)

U S,
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Conversely, assume the latter, and let  Then  and  As  is open in  there is a globe  in 
such that  As  we have

However,  is a globe in  call it  Thus

i.e.,  is an interior point of  in  We see that each  is interior to  as a set in  so  is open in 

This proves the theorem for open sets. Now let  be closed in  Then by Definition  is open in  (Of
course, when working in , we replace  by  in taking complements.) Let  so  and  is
open in  By what was shown above,  with  open in .

Thus

by set theory. Here  is closed in  since  is open there. Thus  as required.

The proof of the converse (for closed sets) is left as an exercise. 

This page titled 3.8: Open and Closed Sets. Neighborhoods is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

p ∈ G. p ∈ A p ∈ U. U (S, ρ), Gp (S, ρ)
p ∈ ⊆ U.Gp p ∈ A,

p ∈ A ∩ ⊆ A ∩ U.Gp (3.8.17)

A ∩ Gp (A, ρ), .G∗
p

p ∈ ⊆ A ∩ U = G;G∗
p (3.8.18)

p G (A, ρ). p ∈ G G, (A, ρ), G

(A, ρ).

F (A, ρ). 3, A −F (A, ρ).
(A, ρ) S A G = A −F , F = A −G, G

(A, ρ). G = A ∩ U U S

F = A −G = A −(A ∩ U) = A −U = A ∩ (−U) (3.8.19)

−U = S −U (S, ρ) U F = A ∩ (−U),

□
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3.8.E: Problems on Neighborhoods, Open and Closed Sets (Exercises)

 Verify Example . 
 

 
Use the triangle law to show that 

 Check Example  see Figure 8. 
[Hint: If  choose  less than the 2  numbers 

 
then show that 

Prove that if  in  then  contains a cube  with  and with center . 
[Hint: By Example  there is  Inscribe in  a cube of diagonal  Find its edge-length  Then
use it to find the coordinates of the endpoints,  and 

Verify Example . 
[Hint: To show that no interior points of  are outside  let  Then at least one of the inequalities  or 

 fails. (Why?) Let it be  say, so . 
Now take any globe  about  and prove that it is not contained in  (so  cannot be an interior point). For this
purpose, as in Problem  show that  with  Deduce that  but  so 

Prove that each open globe  in  is a union of cubes (which can be made open, closed, half-open, etc., as desired).
Also, show that each open interval  in  is a union of open (or closed) globes. 
[Hint for the first part: By Problem  each  is in a cube  Show that 

Show that every globe in  contains rational points, i.e., those with rational coordinates only (we express it by saying that the
set  of such points is dense in  similarly for the set  of irrational points (those with irrational coordinates). 
[Hint: First check it with globes replaced by cubes  see  Corollary  Then use Problem 3 above. 

 Exercise 3.8.E. 1

⇒ 1. (1)
[ Hint: Given p ∈ (r),  let Gq

δ = r−ρ(p, q) > 0. (Why > 0?) (3.8.E.1)

x ∈ (δ) ⇒ ρ(x, q) < r ⇒ x ∈ (r). ]Gp Gq (3.8.E.2)

 Exercise 3.8.E. 2

⇒ 2. (2);

∈ ( , ),p̄̄̄ ā̄̄ b
¯̄

δ n

−  and  − , k = 1, … ,n;pk ak bk pk (3.8.E.3)

(δ) ⊆ ( , ). ]Gp̄̄̄ ā̄̄ b¯̄

 Exercise 3.8.E. 3

∈ (r)p̄̄̄ Gq̄̄̄ ,En (r)Gq̄̄̄ [ , ]c̄̄ d
¯̄̄

≠c̄̄ d
¯̄̄

p̄̄̄

(1), (δ) ⊆ (r).Gp̄̄̄ Gq̄̄̄ ( δ)Gp̄̄̄
1
2

δ. (δ/ ).n−−√

c̄̄ ( given  ,  the center). Prove that [ , ] ⊆ (δ). ]d
¯̄̄

p̄̄̄ c̄̄ d
¯̄̄

Gp̄̄̄

 Exercise 3.8.E. 4

(3)

[ , ]ā̄̄ b
¯̄

( , ),ā̄̄ b
¯̄

∉ ( , ).p̄̄̄ ā̄̄ b
¯̄

<ak pk
<pk bk < ,a1 p1 ≤p1 a1

(δ)Gp̄̄̄ p̄̄̄ [ , ]ā̄̄ b
¯̄

p̄̄̄

3, (δ) ⊇ [ , ]Gp̄̄̄ c̄̄ d¯̄̄ < ≤ .c1 p1 a1 ∈ (δ),c̄̄ Gp̄̄̄ ∉ [ , ];c̄̄ ā̄̄ b¯̄

(δ) ⊈ [ , ]. ]Gp̄̄̄ ā̄̄ b
¯̄

 Exercise 3.8.E. 5

(r)Gq̄̄̄ En

( , ) ≠ ∅ā̄̄ b
¯̄

En

3, ∈ (r)p̄̄̄ Gq̄̄̄ ⊆ (r).Cp Gq̄̄̄ (r) = ⋃ . ]Gq̄̄̄ Cp

 Exercise 3.8.E. 6

En

Rn );En I n

( , );c̄̄ d
¯̄̄ §7, 3. ]
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Prove that if  in  there is a rational point  (Problem 6  and a rational number  such that 
 Deduce that each globe  in  is a union of rational globes (those with rational centers and radii).

Similarly, show that  is a union of intervals with rational endpoints. 
[Hint for the first part: Use Problem 6 and Example 

Prove that if the points  in  are distinct, there is an  such that the globes  are disjoint from each
other, for 

Do Problem  with  replaced by an arbitrary open set  in 

Show that every open set  in  is infinite  see Chapter  ). 
[Hint: Choose  By Problem  a line segment.]

Give examples to show that an infinite intersection of open sets may not be open, and an infinite union of closed sets may not
be closed. 
[Hint: Show that 

 
and 

Verify Example  as suggested in Figures 9 and  
[Hints: (i) For  take 

 
(ii) If  at least one of the 2  inequalities  or  fails (why?), say,  Take . 
In both  and (ii) prove that  (proceed as in Theorem 1

Prove the last parts of Theorems 3 and 4.

 Exercise 3.8.E. 7

∈ (r)x̄̄̄ Gq̄̄̄ ,En p̄̄̄ ) δ > 0

∈ (δ) ⊆ (r).x̄̄̄ Gp̄̄̄ Gq̄̄̄ (r)Gq̄̄̄ En

(r)Gq̄̄̄

(1). ]

 Exercise 3.8.E. 8

, … ,p1 pn (S, ρ) ε > 0 G( ; ε)pk
k = 1, 2, … ,n.

 Exercise 3.8.E. 9

7, (r)Gq̄̄̄ G≠ ∅ .En

 Exercise 3.8.E. 10

G≠ ∅ En (∗ even uncountable;  1, §9

(r) ⊆ G.Gq̄̄̄ 3, (r) ⊃ L[ , ],Gp̄̄̄ c̄̄ d
¯̄̄

 Exercise 3.8.E. 11

(− , ) = {0}⋂
n=1

∞
1

n

1

n
(3.8.E.4)

[ , 1 − ] = (0, 1). ]⋃
n=2

∞
1

n

1

n
(3.8.E.5)

 Exercise 3.8.E. 12

(6) 10.

(r),G
¯ ¯¯̄

q

δ = ρ(p, q) −r > 0. (Why > 0?) (3.8.E.6)

∉ [ , ],p̄̄̄ ā̄̄ b
¯̄

n ≤ak pk ≤pk bk < .p1 a1 δ = −a1 p1

(i) A∩ (δ) = ∅Gp ). ]

 Exercise 3.8.E. ∗13
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Prove that  the interior of  is the union of all open globes contained in  (assume  Deduce that  is an open
set, the largest contained in 

For sets  prove that 
(i) ; 
(ii)  and 
(iii) if  then . 

Is  
[Hint: See Example  Take 

Prove that if  and  are neighborhoods of  in  then 
(a) ; 
(b)  is a neighborhood of ; 
*(c) so is  and 
(d) so also is each set  such that  or . 

The boundary of a set  is defined by 

 
thus it consists of points that fail to be interior in  or in . 
Prove that the following statements are true: 
(i)  bd  all disjoint. 
(ii)  bd . 

 is open iff  bd  is closed iff  bd . 
, 

 
(the sphere with center  and radius  Is this true in all metric spaces? 
[Hint: Consider  in a discrete space  with more than one point in  see §11, Example (3).] 

 if  then 
. 

(vi)  hence bd .

 Exercise 3.8.E. ∗14

,A0 A, A ≠ ∅).A0 A0

A.

 Exercise 3.8.E. ∗15

A,B ⊆ (S, ρ),
(A∩B = ∩)0 A0 B0

= ;( )A0 0
A0

A ⊆ B ⊆A0 B0

[ Hint for (ii) :  is open by Problem 14. ]A0

 Exercise 3.8.E. 16

∪ = (A∪B ?A0 B0 )0

(4). A = R,B = −R. ]E1

 Exercise 3.8.E. 17

M N p (S, ρ),
p ∈ M ∩N

M ∩N p

;M 0

P ⊆ S P ⊇ M P ⊇ N

[ Hint for (c) :  See Problem 14. ]

 Exercise 3.8.E. 18

A ⊆ (S, ρ)

bdA = −[ ∪ (−A ] ;A0 )0 (3.8.E.7)

A −A

S = ∪A0 A∪ (−A ,)0

bdS = ∅, ∅ = ∅
∗( iii )A A∩ A = ∅;A A ⊇ A

(iv) InEn

bd (r) = bd (r) = (r)Gp̄̄̄ G
¯ ¯¯̄

p̄̄̄ Sp̄̄̄ (3.8.E.8)

p̄̄̄ r).
(1)Gp (S, ρ) S;

(v) In ,En ( , ) ≠ ∅,ā̄̄ b
¯̄

bd( , ] = bd[ , ) = bd( , ) = bd[ , ] = [ , ] −( , )ā̄̄ b
¯̄

ā̄̄ b
¯̄

ā̄̄ b
¯̄

ā̄̄ b
¯̄

ā̄̄ b
¯̄

ā̄̄ b
¯̄

In , = ∅;En ( )Rn 0 = (  as in Problem 6)Rn En Rn
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Verify Example ( 8 ) for intervals in .

3.8.E: Problems on Neighborhoods, Open and Closed Sets (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or
curated by LibreTexts.

 Exercise 3.8.E. 19

En
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3.9: Bounded Sets. Diameters
I. Geometrically, the diameter of a closed globe in  could be defined as the maximum distance between two of its points. In an
open globe in  there is no "maximum" distance (why?), but we still may consider the supremum of all distances inside the
globe. Moreover, this makes sense in any set  Thus we accept it as a general definition, for any such set.

The diameter of a set  in a metric space  denoted  is the supremum (in ) of all distances  with 
 in symbols,

If  we put  If  is said to be bounded  in 

Equivalently, we could define a bounded set as in the statement of the following theorem.

 set  is bounded iff  is contained in some globe. If so, the center p of this globe can be chosen at will.

Proof

If  all is trivial.

Thus let  let  and choose any  Now if  is bounded, then  so we can choose a real  
 as a suitable radius for a globe  see Figure 11 for motivation  Now if  then by the

definition of   so by the triangle law,

i.e.,  Thus  as required.

Conversely, if  then any  are also in  so  and  whence

Thus 2  is an upper bound of all  with  Therefore,

i.e.,  is bounded, and all is proved. 

En

,En

A ⊆ (S, ρ).

 Definition

A ≠ ∅ (S, ρ), dA, E∗ ρ(x, y),
x, y ∈ A;1

dA = ρ(x, y).sup
x,y∈A

(3.9.1)

A = ∅, dA = 0. dA < +∞,A ( (S, ρ)).

 Theorem 3.9.1

A A ⊆ (S, ρ) A

A = ∅,

A ≠ ∅; q ∈ A, p ∈ S. A dA < +∞, ε >
ρ(p, q) +dA (ε) ⊇ A(Gp ). x ∈ A,

dA ρ(q, x) ≤ dA;

ρ(p, x) ≤ ρ(p, q) +ρ(q, x)

≤ ρ(p, q) +dA < ε;

x ∈ (ε).Gp (∀x ∈ A)x ∈ (ε)Gp

A ⊆ (ε),Gp x, y ∈ A (ε);Gp ρ(x, p) < ε ρ(p, y) < ε,

ρ(x, y) ≤ ρ(x, p) +ρ(p, y) < ε+ε = 2ε. (3.9.2)

ε ρ(x, y) x, y ∈ A.

dA = supρ(x, y) ≤ 2ε < +∞; (3.9.3)

A □
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As a special case we obtain the following.

 set  is bounded iff there is a real  such that

(*similarly in  and other normed spaces).

Proof

By Theorem  choosing  for  is bounded iff  is contained in some globe  about  That is,

Thus  is the required .(*The proof for normed spaces is the same.) 

Note 1. In  this means that

i.e.,  is bounded by  and  This agrees with our former definition, given in Chapter 2, §§8-9.

Caution: Upper and lower bounds are not defined in  in general.

(1)  is bounded, with  by definition.

(2) Let  in  with  its diagonal. By Corollary 1 in §7  is the largest distance in  In nonclosed
intervals, we still have

Thus all intervals in  are bounded.

 Theorem 3.9.1

A A ⊆ En K > 0

(∀ ∈ A) | | < Kx̄̄̄ x̄̄̄ (3.9.4)

Cn

1( 0¯̄̄ p),A A (ε)G
0¯̄̄

.0¯̄̄

(∀ ∈ A) ∈ (ε) or ρ( , ) = | | < ε.x̄̄̄ x̄̄̄ G
0¯̄̄

x̄̄̄ 0¯̄̄ x̄̄̄ (3.9.5)

ε K □

,E1

(∀x ∈ A) −K < x < K; (3.9.6)

A −K K.

(S, ρ),

 Example 3.9.1

∅ d∅ = 0,

A = [ , ]ā̄̄ b
¯̄

,En d = ρ( , )ā̄̄ b
¯̄

d A.

d = ρ(x, y) = dA < +∞ (see Problem 10 (ii)).sup
x,y∈A

(3.9.7)

En
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(3) Each globe  in  is bounded, with  as was shown in the proof of Theorem  See,
however, Problems 5 and 6 below.

(4) All of  is not bounded, under the standard metric, for if  had a finite diameter  no distance in  would exceed 
but , a contradiction!

(5) On the other hand, under the discrete metric §11, Example (3)), any set (even the entire space) is contained in  and
hence bounded. The same applies to the metric  defined for  in Problem 5 of §§11, since distances under that metric never
exceed  and so  for any choice of .

Note 2. This shows that boundedness depends on the metric  A set may be bounded under one metric and not bounded under
another. A metric  is said to be bounded iff all sets are bounded under  (as in Example (5)).

Problem 9 of §11 shows that any metric  can be transformed into a bounded one, even preserving all sufficiently small globes; in
part (i) of the problem, even the radii remain the same if they are .

Note 3. An idea similar to that of diameter is often used to define distances between sets. If  and  in  we define 
 to be the infimum of all distances  with  and  In particular, if  (a singleton  we write 

 for  Thus

II. The definition of boundedness extends, in a natural manner, to sequences and functions. We briefly write  for a
sequence of points in , and  for a mapping of an arbitrary set  into the space  Instead of "infinite sequence
with general term " we say "the sequence ."

A sequence  is said to be bounded iff its range is bounded in  i.e., iff all its terms  are contained in
some globe in 

In  this means (by Theorem 2  that

for some fixed 

A function  is said to be bounded on a set  iff the image set  is bounded in  i.e. iff all
function values  with  are in some globe in .

In  this means that

for some fixed 

If  we simply say that  is bounded.

Note 4. If  or  we may also speak of upper and lower bounds. It is customary to call sup  also the supremum
of  on  and denote it by symbols like

In the case of sequences, we often write sup  or sup  instead; similarly for infima, maxima, and minima.

(ε)Gp (S, ρ) d (ε) ≤ 2ε < +∞,Gp 1.

En En d, En d;
ρ (−d , d ) = 2dē̄̄1 ē̄̄1

(3)Gp

ρ′ E∗

2, ⊆ (3)E∗ Gp p

ρ.
ρ ρ

ρ

≤ 1

A ≠ ∅ B ≠ ∅ (S, ρ),
ρ(A,B) ρ(x, y), x ∈ A y ∈ B. B = {p} ),
ρ(A, p) ρ(A,B).

ρ(A, p) = ρ(x, p).inf
x∈A

(3.9.8)

{ } ⊆ (S, ρ)xm
(S, ρ) f : A → (S, ρ) A S.
,xm xm

 Definition

{ } ⊆ (S, ρ)xm (S, ρ), xm
(S, ρ).

,En )

(∀m) | | < Kxm (3.9.9)

K ∈ .E1

 Definition

f : A → (S, ρ) B ⊆ A f [B] (S, ρ);
f(x), x ∈ B, (S, ρ)

,En

(∀x ∈ B) |f(x)| < K (3.9.10)

K ∈ .E1

B = A, f

S = E1 S = ,E∗ f [B]
f B

f(x) or  sup{f(x)|x ∈ B}.sup
x∈B

(3.9.11)

mxm xm
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(a) The sequence

is bounded since all terms  are in the interval  We have inf  and 

(b) The sequence

is bounded below (by 1  but not above. We have inf  and  (in .

(c) Define  by

This map is bounded on each finite interval  since   is itself an interval and hence bounded.
However,  is not bounded on all of  since  is not a bounded set.

(d) Under a bounded metric  all functions  are bounded.

(e) The so-called identity map on  is defined by

Clearly,  carries each set  onto itself; i.e.,  Thus  is bounded on  iff  is itself a bounded set in 

(f) Define  by

Then  is a bounded set in the range space  Thus  is bounded on  (briefly, bounded).

This page titled 3.9: Bounded Sets. Diameters is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon
(The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.

 Example 3.9.1

=  in xm
1

m
E1 (3.9.12)

xm (0, 2) = (1).G1 = 0xm sup = max = 1.xm xm

= m  in xm E1 (3.9.13)

) = min = 1xm xm sup = +∞xm )E∗

f : →E1 E1

f(x) = 2x. (3.9.14)

B = (a, b) f [B] = (2a, 2b)
f E1 f [ ] =E1 E1

ρ, f : A → (S, ρ)

S, f : S → (S, ρ),

f(x) = x. (3.9.15)

f B ⊆ S f [B] = B. f B B (S, ρ).

f : →E1 E1

f(x) = sinx. (3.9.16)

f [ ] = [−1, 1]E1 .E1 f E1
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3.9.E: Problems on Boundedness and Diameters (Exercises)

Show that if a set  in a metric space is bounded, so is each subset 

Prove that if the sets  in  are bounded, so is 

 
Disprove this for infinite unions by a counterexample. 
[Hint: By Theorem  each  is in some  with one and the same center . If the number of the globes is finite, we
can put max  so  contains all  Verify this in detail.

 From Problems 1 and 2 show that a set  in  is bounded iff it is contained in a finite union of globes, 

A set  in  is said to be totally bounded iff for every  (no matter how small),  is contained in a finite union of
globes of radius . By Problem 3, any such set is bounded. Disprove the converse by a counterexample. 
[Hint: Take an infinite set in a discrete space.]

Show that distances between points of a globe  never exceed 2 . (Use the triangle inequality!) Hence infer that 
. Give an example where  Thus the diameter of a globe may be less than twice its radius. 

[Hint: Take a globe  in a discrete space.]

Show that in   ), the diameter of a globe  always
equals 2  (twice its radius).  
[Hint: By Problem  is an upper bound of all  with  
To show that there is no smaller upper bound, prove that any number 

 
is exceeded by some  e.g., take  and  on some line through , 

 
choosing suitable values for  to get 

 Exercise 3.9.E. 1

A B ⊆ A.

 Exercise 3.9.E. 2

, , … ,A1 A2 An (S, ρ)

.⋃
k=1

n

Ak (3.9.E.1)

1, Ak ( ) ,Gp εk p

( , … , ) = ε,ε1 εn (ε)Gp .Ak

 Exercise 3.9.E. 3

⇒ 3. A (S, ρ)

G( ; ) .⋃
k=1

n

pk εk (3.9.E.2)

 Exercise 3.9.E. 4

A (S, ρ) ε > 0 A

ε

 Exercise 3.9.E. 5

(ε)G
¯ ¯¯̄

p ε

d (ε) ≤ 2εGp d (ε) < 2ε.Gp

( )Gp
1
2

 Exercise 3.9.E. 6

(∗ as well as in   and any other normed linear space En Cn ≠ {0} (ε)Gp

ε

5, 2ε ρ( , )x̄̄̄ ȳ̄̄ , ∈ (ε).x̄̄̄ ȳ̄̄ Gp

2ε−2r (r > 0) (3.9.E.3)

ρ( , );x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ p̄̄̄

= +t ,x̄̄̄ p̄̄̄ u
→

(3.9.E.4)

t ρ( , ) = | − | > 2ε−2r. ]x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄
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Prove that in  a set  is bounded iff it is contained in an interval.

Prove that for all sets  and  in  and each  

 
Disprove 

 
by an example.

Find  and  (if any) for sequences with general term 
(a) ; 
(b) ; 
(c) ; 

(d) . 

Which are bounded in 

Prove the following about lines and line segments. 
(i) Show that any line segment in  is a bounded set, but the entire line is not. 
(ii) Prove that the diameter of  and of  equals .

Let  be given by 

 
Show that  is bounded on an interval  iff 0  Is  bounded on 

Prove the following: 
(a) If  then . 
(b)  iff  contains at most one point. 
(c) If , then 

 
Show by an example that this may fail if .

 Exercise 3.9.E. 7

,En A

 Exercise 3.9.E. 8

A B (S, ρ) p ∈ S

ρ(A,B) ≤ ρ(A, p) +ρ(p,B). (3.9.E.5)

ρ(A,B) < ρ(A, p) +ρ(p,B) (3.9.E.6)

 Exercise 3.9.E. 9

sup , inf , max ,xn xn xn minxn
n

(−1 (2 − ))n 22−n

1 − 2
n

n(n−1)

(n+2)
2

?E1

 Exercise 3.9.E. 10

En

L( , )ā̄̄ b
¯̄

( , )ā̄̄ b
¯̄

ρ( , )ā̄̄ b
¯̄

 Exercise 3.9.E. 11

f : →E1 E1

f(x) =  if x ≠ 0,  and f(0) = 0.
1

x
(3.9.E.7)

f [a, b] ∉ [a, b]. f (0, 1)?

 Exercise 3.9.E. 12

A ⊆ B ⊆ (S, ρ), dA ≤ dB

dA = 0 A

A∩B ≠ ∅

d(A∪B) ≤ dA+dB. (3.9.E.8)

A∩B = ∅
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3.10: Cluster Points. Convergent Sequences

This page is a draft and is under active development. 

Consider the set

we may as well let  denote the sequence  in  Plotting it on the axis, we observe a remarkable fact: The points 
"cluster" close to 0, approaching 0 as  increases-see Figure 12.

To make this more precise, take any globe about 0 in , . No matter how small, it contains infinitely many (even
all but finitely many) points , namely, all from some  onward, so that

Indeed, take , so . Then

i.e., . 
This suggests the following generalizations.

A set, or sequence,  is said to cluster at a point  (not necessarily , and  is called its cluster point or
accumulation point, iff every globe  about  contains infinitely many points (respectively, terms of . (Thus only infinite
sets can cluster.

Note 1. In sequences (unlike sets) an infinitely repeating term counts as infinitely many terms. For example, the sequence 
clusters at 0 and 1 (why?); but its range, , has no cluster points (being finite). This distinction is, however, irrelevant if all
terms  are distinct, i.e., different from each other. Then we may treat sequences and sets alike.

A sequence  is said to converge or tend to a point  in , and  is called its limit, iff every globe  about 
(no matter how small) contains all but finitely many terms  In symbols, 

 
If such a  exists, we call  a convergent sequence in ; otherwise, a divergent one. The notation is 

 
In , ; thus formula (1) turns into 

A ={1, , … , , …} ;
1

2

1

m
(3.10.1)

A = 1/mxm E1.1 xm

m

E1 (ε) = (−ε, ε)G0

xm xk

(∀m > k) ∈ (ε).xm G0 (3.10.2)

k > 1/ε 1/k < ε

(∀m > k) < < ε;
1

m

1

k
(3.10.3)

∈ (−ε, ε) = (ε)xm G0

 Definition: cluster at a point

A ⊆ (S, ρ) p ∈ S p ∈ A) p

Gp p A

0, 1, 0, 1,
{0, 1}

xm

 Definition

{ } ⊆ (S, ρ)xm p S p (ε)Gp p

xm.2

(∀ε > 0)(∃k)(∀m > k) ∈ (ε),  i.e., ρ ( , p) < εxm Gp xm (3.10.4)

p { }xm (S, ρ))

→ p,  or  lim = p,  or  = p.xm xm lim
m→∞

xm (3.10.5)

En ρ ( , ) = | − |x̄̄̄m p̄̄̄ x̄̄̄m p̄̄̄

→  in   iff (∀ε > 0)(∃k)(∀m > k) | − | < εx̄̄̄m p̄̄̄ En x̄̄̄m p̄̄̄ (3.10.6)
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Since "all but finitely many" (as in Definition 2) implies "infinitely many" (as in Definition 1 ), any limit is also a cluster point.
Moreover, we obtain the following result.

If , then  is the unique cluster point of . (Thus a sequence with two or more cluster points, or none at all,
diverges.) For if , the Hausdorff property (Theorem 1 of §12) yields an  such that  

 
As ,  leaves out at most finitely many , and only these can possibly be in . (Why?) Thus  fails to
satisfy Definition 1 and hence is no cluster point. Hence  (if it exists) is unique.

(i) We have  iff  in . 
Hence 
(ii)  in  iff  and  
(iii)  in  iff .

Proof

By (2), we have  in  if  

By  however, this means that  proving our first assertion. The rest easily follows from it, since 
 in 

If  tends to  then so does each subsequence 

For  means that each  leaves out at most finitely many  This certainly still holds if we drop some terms, passing to 

Note 2. A similar argument shows that the convergence or divergence of  and its limit or cluster points, are not affected by
dropping or adding 
a finite number of terms; similarly for cluster points of sets. For example, if  tends to  so does  (the same sequence
without .

We leave the following two corollaries as exercises.

If  splits into two subsequences, each tending to the same limit  then also .

If  converges in  it is bounded there.

Of course, the convergence or divergence of  and its clustering depend on the metric  and the space  Our theory applies to
any  In particular, it applies to  with the metric  of Problem 5 in §11. Recall that under that metric, globes about 
have the form  and  respectively. Thus limits and cluster points in  coincide with those defined in
Chapter 2, §13, (formulas  and Definition 2 there). Our theory then applies to infinite limits as well, and generalizes
Chapter 2, §13.

 corollary 3.10.1

→ pxm p { }xm

p ≠ q ε

(ε) ∩ (ε) = ∅.Gp Gq (3.10.7)

→ pxm (ε)Gp xm (ε)Gq q

lim xm

 corollary 3.10.2

→ p in (S, ρ)xm ρ ( , p) → 0xm E1

→x̄̄̄m p̄̄̄ En | − | → 0x̄̄̄m p̄̄̄

→x̄̄̄m 0¯̄̄ En | | → 0x̄̄̄m

ρ ( , p) → 0xm E1

(∀ε > 0)(∃k)(∀m > k) |ρ ( , p) −0| = ρ ( , p) < ε.xm xm (3.10.8)

(1), → p,xm

ρ ( , ) = | − |x̄̄̄m p̄̄̄ x̄̄̄m p̄̄̄ . □En

 corollary 3.10.3

xm p, xmk

→ pxm Gp .xm

{ } .xmk

{ } ,xm

{ }xm p, { }xm+1

)x1

 corollary 3.10.4

{ }xm p, → pxm

 corollary 3.10.5

{ }xm (S, ρ),

{ }xm ρ S.
(S, ρ). ,E∗ ρ′ ±∞

(a, +∞] [−∞, a), ( , )E∗ ρ′

(1) −(3)
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(a) Let

(such sequences are called constant). As  any  contains all  Thus  by Definition  We see that each
constant sequence converges to the common value of its terms.

(b) In our introductory example, we showed that

and that 0 is the (unique) cluster point of the set  Here 0

(c) The sequence

has two cluster points, 0 and  so it diverges by Corollary  (It "oscillates" from 0 to  This shows that  bounded sequence
may diverge. The converse to Corollary 5 fails.

(d) The sequence

(or the set  of all naturals) has  cluster points in  for a globe of radius  (with any center  contains at most
one  and hence no  satisfies Definition 1 or 2.

However,  does cluster in  and even has a limit there, 
namely  Prove it! 

(e) The set  of all rationals in  clusters at each  Indeed, any globe

contains infinitely many rationals (see Chapter 2, §10, Theorem 3), and this means that each  is a cluster point of 

(f) The sequence

has only one cluster point,  in  yet it diverges, being unbounded (see Corollary 5  In  it has two cluster points,
0 and  (Verify!)

(g) The lim and lim of any sequence in  are cluster points (cf. Chapter 2, §13, Theorem 2 and Problem 4). Thus in  all
sequences cluster.

(h) Let

Then  clusters exactly at all its points, for if  then any globe

overlaps with  (even with  and so contains infinitely many points of  as required. Even the endpoints a and  are
cluster points of  (and of  and  On the other hand, no point outside  is a cluster point. (Why?)

(i) In a discrete space (§11, Example (3)), no set can cluster, since small globes, such as  are singletons. (Explain!)

Example  shows that a set  may equal the set of its cluster points  it 

 Example 3.10.1

= p  for all mxm (3.10.9)

p ∈ ,Gp Gp .xm → p,xm 2.

= 0  in lim
m→∞

1

m
E1 (3.10.10)

A = {1, , …} .1
2

∉ A.

0, 1, 0, 1, … (3.10.11)

1, 1. 1. ) a

= mxm (3.10.12)

N no ,E1 < 1
2

p ∈ )E1

,xm p

{ }xm ( , ) ,E∗ ρ′

+∞. ( )

R E1 p ∈ .E1

(ε) = (p −ε, p +ε)Gp (3.10.13)

p ∈ E1 R.

1, 1, 2, , 3, , … (with  =  and  = k)
1

2

1

3
x2k

1

k
x2k−1 (3.10.14)

0, ;E1 ). ( , ) ,E∗ ρ′

+∞.

E∗ ,E∗

A = [a, b], a < b. (3.10.15)

A p ∈ A,

(ε) = (p −ε, p +ε)Gp (3.10.16)

A (a, b)) A, b

A (a, b), (a, b], [a, b)). A

( ) ,Gp
1
2

(h) A (call ); i. e.A′

A = .A′ (3.10.17)
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Such sets are said to be perfect. Sometimes we have   as in Example  or  We conclude with
the following result.

 set  clusters at p iff each globe  (about p) contains at least one point of  other than .

Indeed, assume the latter. Then, in particular, each globe

contains some point of  other than  call it  We can make the  distinct by choosing each time  closer to  than 
is. It easily follows that each  contains infinitely many points of  (the details are left to the reader), as required. The
converse is obvious.

This page titled 3.10: Cluster Points. Convergent Sequences is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

A ⊆ , ⊆ A, = SA′ A′ A′ ( (e)), = ∅.A′

 corollary 3.10.6

A A ⊆ (S, ρ) Gp A p

( ) , n = 1, 2, …Gp

1

n
(3.10.18)

A p; .xn xn xn+1 p xn

(ε)Gp A

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/20141?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/03%3A_Vector_Spaces_and_Metric_Spaces/3.10%3A_Cluster_Points._Convergent_Sequences
https://creativecommons.org/licenses/by/3.0
http://www.trillia.com/index.html
http://www.trillia.com/
http://www.trillia.com/zakon-analysisI.html


3.10.E.1 https://math.libretexts.org/@go/page/22271

3.10.E: Problems on Cluster Points and Convergence (Exercises)

Is the Archimedean property (see Chapter 2, §10) involved in the proof that 

Prove Note 2 and Corollaries 4 and 6.

Verify Example (c) in detail.

Prove Corollary  
[Hint: Fix some  Use Definition 2. If  leaves out  take a larger radius  greater than 

 
Then the enlarged globe  contains all  Use Theorem 1 in §13.]

Show that  tends  in  Does it contradict Corollary 5

Show that  is a perfect set  Is  a perfect set in  Why?

 Review Problems 2 and 4 of Chapter 2, §13. (Do them if not done before.)

Verify Examples (f) and (h).

Explain Example (i) in detail.

In the following cases find the set  of all cluster points of  in  Is  Is  Is  perfect? Give a precise
proof. 
(a)  consists of all points of the form 

 Exercise 3.10.E. 1

= 0?lim
m→∞

1

m
(3.10.E.1)

 Exercise 3.10.E. 2

 Exercise 3.10.E. 3

 Exercise 3.10.E. 4

5.
(ε).Gp (ε)Gp , , … , ,x1 x2 xk r

ρ ( , p) , m = 1, 2, … , k.xm (3.10.E.2)

(r)Gp .xm

 Exercise 3.10.E. 5

= mxm to +∞ .E∗ ?

 Exercise 3.10.E. 6

E1 in : = .E1 E1 ( )E1 ′
E1 ?E∗

 Exercise 3.10.E. 7

⇒ 7.

 Exercise 3.10.E. 8

 Exercise 3.10.E. 9

 Exercise 3.10.E. 10

A′ A .E1 ⊆ A?A′ A ⊆ ?A′ A

A
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i.e.,  is the sequence 

 
(b)  is the set of all rationals in  Answer:  Why? 
(c)  is the union of the intervals 

 
(d)  consists of all points of the form 

Can a sequence  cluster at each  
[Hint: See Example (e). 

Prove that if 

 
 and if  then  is a cluster point of  

[Hint: Take  Use Theorem 2 of Chapter 2, §§8-9.]

Prove that a set  clusters at  iff every neighborhood of  (see §12, Definition 1) contains infinitely many points of 
 similarly for sequences. How about convergence? State it in terms of cubic neighborhoods in 

Discuss Example  for nondegenerate intervals in  Give a proof.

Prove that a set  clusters at  iff  (See §13, Note 

Show that in  the cluster points of any globe  form exactly the closed
globe  and that  is perfect. Is this true in other spaces? (Consider a discrete space!)

 and 1 + , n = 1, 2, … ;
1

n

1

n
(3.10.E.3)

A

{1, 2, , 1 , … , , 1 + , …} .
1

2

1

2

1

n

1

n
(3.10.E.4)

A (0, 1). = [0, 1].A′

A

[ , ] , n = 0, 1, 2, …
2n

2n +1

2n +1

2n +2
(3.10.E.5)

A

 and  + , n, k ∈ N .2−n 2−n 2−n−k (3.10.E.6)

 Exercise 3.10.E. 11

{ } ⊆xm E1 p ∈ ?E1

]

 Exercise 3.10.E. 12

p = supA or p = inf A in E1 (3.10.E.7)

(∅ ≠ A ⊆ ) ,E1 p ∉ A, p A.
(ε) = (p −ε, p +ε).Gp

 Exercise 3.10.E. 13

A ⊆ (S, ρ) p p

A; .En

 Exercise 3.10.E. 14

(h) .En

 Exercise 3.10.E. 15

A ≠ ∅ p(p ∉ A) ρ(p, A) = 0. 3. )

 Exercise 3.10.E. 16

(∗ and in any other normed space  ≠ { }),En 0¯̄̄ (ε)Gp̄̄̄

(ε),G
¯ ¯¯̄

p̄̄̄ (ε)G
¯ ¯¯̄

p̄̄̄
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(Cantor's set.) Remove from  the open middle third 

 
From the remaining closed intervals 

 
remove their open middles, 

 
Do the same with the remaining four closed intervals, and so on, ad infinitum. The set  which remains after all these
(infinitely many) removals is called Cantor's set. 
Show that  is perfect. 
[Hint: If  then either  is in one of the removed open intervals, or . In both cases,  is no cluster point of .
(Why?) Thus no  outside  is a cluster point. 
On the other hand, if  show that any  contains infinitely many endpoints of removed open intervals, all in  thus 

 Deduce that ]

3.10.E: Problems on Cluster Points and Convergence (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated
by LibreTexts.

 Exercise 3.10.E. 17

[0, 1]

( , ) .
1

3

2

3
(3.10.E.8)

[0, ]  and [ , 1] ,
1

3

2

3
(3.10.E.9)

( , )  and ( , ) .
1

9

2

9

7

9

8

9
(3.10.E.10)

P

P

p ∉ P , p p ∉ [0, 1] p P

p P

p ∈ P , (ε)Gp P ;
p ∈ .P ′ P = P ′
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3.11: Operations on Convergent Sequences

This page is a draft and is under active development. 

Sequences in  and  can be added and multiplied termwise; for example, adding  and  one obtains the sequence
with general term . This leads to important theorems, valid also for (* and other normed spaces). Theorem 1 below
states, roughly, that the limit of the sum  equals the sum of lim  and lim  (if these exist), and similarly for
products and quotients (when they are defined).

Let  and  in  or  (the complex field  Then

(i) ;

(ii) ;

(iii)  if  and for all .

This also holds if the  and  are vectors in  ("or in another normed space  while the  and a are scalars for that
space.

Proof

(i) By formula (2) of §14, we must show that

Thus we fix an arbitrary  and look for a suitable  since  and  there are  and  such that

and

(as  is arbitrary, we may as well replace it by  Then both inequalities hold for  Adding
them, we obtain

Hence by the triangle law,

as required. 

This proof of (i) applies to sequences of vectors as well, without any change.

The proof of (ii) and (iii) is sketched in Problems 1-4 below.

Note 1. By induction, parts (i) and (ii) hold for sums and products of any finite (but fixed) number of suitable convergent
sequences.

Note 2. The theorem does not apply to infinite limits .

Note 3. The assumption  in Theorem 1  iii) is important. It ensures not only that  is defined but also that at most finitely
many  can vanish (see Problem 3). Since we may safely drop a finite number of terms (see Note 2 in §14), we can achieve that
no  is  so that  is defined. It is with this understanding that part (iii) of the theorem has been formulated. The next two
theorems are actually special cases of more general propositions to be proved in Chapter 4, §§3 and 5. Therefore, we only state
them here, leaving the proofs as exercises, with some hints provided.

E1 C { }xm { } ,ym

+xm ym En

{ + }xm ym xm ym

 Theorem 3.11.1

→ q, → r,xm ym → aam E1 C ).

± → q ±rxm ym

→ aqamxm

→
xm

am

q

a
a ≠ 0 m ≥ 1, ≠ 0am

, , q,xm ym r En ), am

(∀ε > 0)(∃k)(∀m > k) | ± −(q ±r)| < ε.xm ym (3.11.1)

ε > 0 k. → qxm → r,ym k′ k′′

(∀m > ) | −q| <k′ xm

ε

2
(3.11.2)

(∀m > ) | −r| <k′′ ym

ε

2
(3.11.3)

ε ε).1

2
m > k, k = max ( , ) .k′ k′′

(∀m > k) | −q| + | −r| < ε.xm ym (3.11.4)

| −q ±( −r)| < ε,  i.e.,  | ± −(q ±r)| < ε for m > k,xm ym xm ym (3.11.5)

□

q, r, a

a ≠ 0 ( q/a

am

am 0, /xm am
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(componentwise convergence). We have  in  iff each of the  components of  tends to the corresponding
component of , i.e., iff  in  (See Problem 8 for hints.)

Every monotone sequence  has a finite or infinite limit, which equals sup_  if  and inf  if  If 
 is monotone and bounded in  its limit is finite  Corollary 1 of Chapter 2, §13).

The proof was requested in Problem 9 of Chapter 2, §13. See also Chapter 4, §5, Theorem 1. An important application is the
following.

(the number e).

Let  in  By the binomial theorem,

If  is replaced by  all terms in this expansion increase, as does their number. Thus  i.e.,  Moreover,
for ,

Thus  for  Hence  and by Theorem   This limit, denoted by  plays
an important role in analysis. It can be shown that it is irrational, and (to within   In
any case,

The following corollaries are left as exercises for the reader.

Suppose  and  exist in .

(a) If  then  for all but finitely many .

(b) If  for infinitely many  then  i.e., .

This is known as passage to the limit in inequalities. Caution: The strict inequalities  do not imply  but only 
 For example, let

Then

 Theorem 3.11.2

→x̄̄̄m p̄̄̄ ( )En ∗C n n x̄̄̄m

p̄̄̄ → , k = 1, 2, … , n,xmk pk (C).E1

 Theorem 3.11.3

{ } ⊆xn E∗
nxn { } ↑xn nxn { } ↓.xn

{ }xn ,E1 (by

 Example 3.11.1

=xn (1 + )1
n

n
.E1

xn = 1 +1 + + +⋯ +
n(n −1)

2!n2

n(n −1)(n −2)

3!n3

n(n −1) ⋯ (n −(n −1))

n!nn

= 2 +(1 − ) +(1 − )(1 − ) +⋯ +(1 − )(1 − )⋯(1 − )
1

n

1

2!

1

n

2

n

1

3!

1

n

2

n

n −1

n

1

n!

n n +1, < ,xn xn+1 { } ↑.xn

n > 1

2 < xn < 2 + +⋯ + ≤ 2 + +⋯ +
1

2!

1

n!

1

2

1

2n−1

= 2 + (1 +⋯ + ) = 2 + < 2 +1 = 3
1

2

1

2n−2

1

2

1 −( )1
2

n−1

1
2

2 < < 3xn n > 1. 2 < ≤ 3;supn xn 3, = lim .supn xn xn e,

)10−20 e = 2.71828182845904523536 …

2 < e = ≤ 3.lim
n→∞

(1 + )
1

n

n

(3.11.6)

 corollary 3.11.1

lim = pxm lim = qym E∗

p > q, >xm ym m

≤xm ym m, p ≤ q; lim ≤ limxm ym

<xm ym p < q

p ≤ q.

=  and  = 0.xm

1

m
ym (3.11.7)
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yet 

Let  in  and let  (finite or not). Then the following are true:

(a) If  (respectively, , we have  for all but finitely many .

(b) If  (respectively, ) for infinitely many  then  .

One can prove this from Corollary  with  (or ) for all .

(rule of intermediate sequence). If  and  in  and if  for all but finitely many  then also 
.

(continuity of the distance function). If

then

Proof

Hint: Show that

by Theorem 1.

This page titled 3.11: Operations on Convergent Sequences is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
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(∀m) > ;xm ym (3.11.8)

lim = lim = 0.xm ym

 corollary 3.11.2

→ pxm ,E∗ c ∈ E∗

p > c p < c) > c( < c)xm xm m

≤ cxm ≥ cxm m, p ≤ c (p ≥ c)

1, = cym = cxm m

 corollary 3.11.3

→ pxm → pym E∗ ≤ ≤xm zm ym m,

→ pzm

 Theorem 3.11.4

→ p and  → q in a metric space (S, ρ),xm ym (3.11.9)

ρ ( , ) → ρ(p, q) in  .xm ym E1 (3.11.10)

|ρ ( , ) −ρ(p, q)| ≤ ρ ( , p) +ρ (q, ) → 0xm ym xm ym (3.11.11)
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3.11.E: Problems on Limits of Sequences (Exercises)
See also Chapter 2, §13.

Prove that if  and if  is bounded in  or  then 

 
This is true also if the  are vectors and the  are scalars (or vice versa). 
[Hint: If  is bounded, there is a  such that 

 
As , 

 
so 

Prove Theorem 1 . 
[Hint: By Corollary 2(ii)(iii) in §14, we must show that . Now 

 
where  and  by Corollary 2 of §14. Hence by Problem 1, 

 
(treat  as a constant sequence and use Corollary 5 in §14). Now apply Theorem 1

Prove that if  and  in  or  then 

 

(We briefly say that the  are bounded away from  for  Hence prove the boundedness of  for . 

[Hint: For the first part, proceed as in the proof of Corollary 1 in   and  
For the second part, the inequalities 

 
lead to the desired result. 

 Exercise 3.11.E. 1

→ 0xm { }am E1 C,

→ 0.amxm (3.11.E.1)

xm am
{ }am K ∈ E1

(∀m) | | < K.am (3.11.E.2)

→ 0xm

(∀ε > 0)(∃k)(∀m > k) | | < (why?),xm
ε

K
(3.11.E.3)

| | < ε. ]amxm

 Exercise 3.11.E. 2

( ii )
−aw → 0amxm

−aq = ( −q) +( −a) q.amxm am xm am (3.11.E.4)

−q → 0xm −a → 0am

( −q) → 0 and  ( −a) q → 0am xm am (3.11.E.5)

q (i). ]

 Exercise 3.11.E. 3

→ aam a ≠ 0 E1 C,

(∃ε > 0)(∃k)(∀m > k) | | ≥ ε.am (3.11.E.6)

am 0, m > k. ) { }1
am

m > k

§14,  with  = ,xm am p = a, q = 0.

(∀m > k) ≤
∣
∣
∣

1

am

∣
∣
∣

1

ε
(3.11.E.7)

]
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Prove that if  in  or  then 

 
Use this and Theorem 1  

 
[Hint: Use Note 3 and Problem 3 to find that 

 

where  is bounded and  (Why?) 

Hence, by Problem  Proceed. 

Prove Corollaries 1 and 2 in two ways: 
(i) Use Definition 2 of Chapter 2, §13 for Corollary  treating infinite limits separately; then prove (b) by assuming the
opposite and exhibiting a contradiction to  
(ii) Prove (b) first by using Corollary 2 and Theorem 3 of Chapter 2, §13; then deduce (a) by contradiction.

Prove Corollary 3 in two ways (cf. Problem 5).

Prove Theorem 4 as suggested, and also without using Theorem 1 .

Prove Theorem 2. 
[Hint: If  then 

 
Thus by definition . 
Conversely, if so, use Theorem 1  to obtain 

 
with  as in Theorem 2 of §§1-3].

 Exercise 3.11.E. 4

→ a ≠ 0am E1 C,

→ .
1

am

1

a
(3.11.E.8)

( ii) to prove Theorem 1( iii), noting that 

= ⋅ .
xm

am
xm

1

am
(3.11.E.9)

(∀m > k) − = | −a| ,
∣
∣
∣

1

am

1

a

∣
∣
∣

1

|a|
am

1

| |am
(3.11.E.10)

{ }1
am

| −a| → 0.1
|a|

am

1, − → 0.∣∣
1
am

1
a

∣∣ ]

 Exercise 3.11.E. 5

1(a),
(a).

 Exercise 3.11.E. 6

 Exercise 3.11.E. 7

(i)

 Exercise 3.11.E. 8

→ ,x̄̄̄m p̄̄̄

(∀ε > 0)(∃q)(∀m > q) ε > | − | ≥ | − | . (Why?)x̄̄̄m p̄̄̄ xmk pk (3.11.E.11)

→ , k = 1, 2, … ,nxmk pk
(i)( ii )

→ ,∑
k=1

n

xmke ⃗ k ∑
k=1

n

pke ⃗ k (3.11.E.12)

e ⃗ k
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In Problem  prove the converse part from definitions. 

Find the following limits in  in two ways: (i) using Theorem 1, justifying each step; (ii) using definitions only. 

 
 

 
as the sum of  (constant) and 

 
Thus by Theorem 1 , 

 
Second method: Fix  and find  such that 

 
Solving for  show that this holds if  Thus take an integer  so 

 
Caution: One cannot apply Theorem 1 (iii) directly, treating  as the quotient of  and 
because  and  diverge in  (Theorem 1 does not apply to infinite limits.) As a remedy, we first divide the numerator
and denominator by a suitable power of 

Prove that 

Prove that if 

 Exercise 3.11.E. 8′

8, ( Fix ε > 0,  etc. )

 Exercise 3.11.E. 9

,E1

 (a)  ;limm→∞
m+1
m

 (c)  ;limn→∞
1

1+n2

 (b)  limm→∞
3m+2
2m−1

 (d)  limn→∞
n(n−1)

1−2n2

(3.11.E.13)

[ Solution of (a) by the first method: Treat 

= 1 +
m+1

m

1

m
(3.11.E.14)

= 1xm

= → 0 (proved in §14).ym
1

m
(3.11.E.15)

(i)

= + → 1 +0 = 1.
m+1

m
xm ym (3.11.E.16)

ε > 0 k

(∀m > k) −1 < ε.
∣
∣
∣
m+1

m

∣
∣
∣ (3.11.E.17)

m, m > .1
ε

k > ,1
ε

(∀m > k) −1 < ε.
∣
∣
∣
m+1

m

∣
∣
∣ (3.11.E.18)

(m+1)/m = m+1xm = m,am
xm am .E1

m( or n). ]

 Exercise 3.11.E. 10

| | → +∞ in   iff  → 0 ( ≠ 0) .xm E∗ 1

xm
xm (3.11.E.19)

 Exercise 3.11.E. 11

→ +∞ and  → q ≠ −∞ in  ,xm ym E∗ (3.11.E.20)
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then 

 
This is written symbolically as 

 
Do also 

 
Prove similarly that 

 
and 

 
[Hint: Treat the cases  and  separately. Use definitions.]

Find the limit (or  and ) of the following sequences in  
(a) ; 
(b)  
(c) ; 
(d) ; 

(e) . 
[Hint for  use Problem 11.]

Use Corollary 4 in §14, to find the following: 

(a) ; 

(b) .

Find the following. 
(a) ; 

(b) ; 

(c) .
[Hint: Compute  using Problem 10 of Chapter 2, §§5-6.]
What is wrong with the following "solution" of  etc.; hence the limit is 0

+ → +∞.xm ym (3.11.E.21)

" +∞ +q = +∞ if q ≠ −∞. " (3.11.E.22)

" −∞ +q = −∞ if q ≠ +∞. " (3.11.E.23)

" (+∞) ⋅ q = +∞ if q > 0 " (3.11.E.24)

" (+∞) ⋅ q = −∞ if q < 0. " (3.11.E.25)

q ∈ , q = +∞,E1 q = −∞

 Exercise 3.11.E. 12

lim– –– lim
¯ ¯¯̄¯̄¯

:E∗

= 2 ⋅ 4 ⋯ 2n = n!xn 2n

= 5n− ;xn n3

= 2 − −3 −1xn n4 n3 n2

= (−1 n!xn )n

=xn
(−1)

n

n!

(b) : = n (5 − ) ;xn n2

 Exercise 3.11.E. 13

limn→∞
(−1)n

1+n2

limn→∞
1−n+(−1)

n

2n+1

 Exercise 3.11.E. 14

limn→∞
1+2+⋯+n

n2

limn→∞ ∑n
k=1

k2

+1n3

limn→∞ ∑n
k=1

k3

−1n4

∑n
k=1 k

m

(a) : → 0, → 0,1
n2

2
n2 ?
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For each integer  let 

 
Prove by induction on  that 

 
[Hint: First prove that 

 
by adding up the binomial expansions of 

Prove that 

 
[Hint: If  put  By the binomial expansion, 

 
If  then  so  use Problem 

Prove that 

 
[Hint: If  use the binomial as in Problem 16 to obtain 

 
Use Corollary 3 with 

 
to get  hence also  by Corollary 2  10.]

 Exercise 3.11.E. 15

m ≥ 0,

= + +⋯ + .Smn 1m 2m nm (3.11.E.26)

m

= .lim
n→∞

Smn

(n+1)m+1

1

m+1
(3.11.E.27)

(m+1) = (n+1 −1 − ( )Smn )m+1 ∑
i=0

m−1 m+1

i
Smi (3.11.E.28)

(k+1 , k = 1, … ,n. ])m+1

 Exercise 3.11.E. 16

= +∞ if q > 1; = 0 if |q| < 1; = 1.lim
n→∞

qn lim
n→∞

qn lim
n→∞

1n (3.11.E.29)

q > 1, q = 1 +d, d > 0.

= (1 +d = 1 +nd+⋯ + > nd → +∞. (Why?)qn )n dn (3.11.E.30)

|q| < 1, > 1;∣∣
1
q

∣∣ lim = +∞;∣∣
1
q

∣∣
n

10. ]

 Exercise 3.11.E. 17

= 0 if |q| > 1,  and  = +∞ if 0 < q < 1.lim
n→∞

n

qn
lim
n→∞

n

qn
(3.11.E.31)

|q| > 1,

|q > n(n−1) ,n ≥ 2,  so  < → 0.|n
1

2
d2 n

|q|
n

2

(n−1)d2
(3.11.E.32)

= 0, | | = ,  and  =xn zn
n

|q|
n yn

2

(n−1)d2
(3.11.E.33)

| | → 0;zn → 0zn ( iii) of §14.  In case 0 < q < 1,  use 
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Let  Prove that 

 
[Hint: If  and  use Problem 17 with  to get  As 

 
obtain . 
If  then  What if 

(Geometric series.) Prove that if  then 

 
[Hint: 

 
where  by Problem 

Let  Prove that 

 
 

 
so  by Corollary 

Investigate the following sequences for monotonicity, , , and . (In each case, find suitable formula, or formulas, for
the general term.) 
(a) ; 
(b) ; 
(c)  
(d)  
(e) .

 Exercise 3.11.E. 18

r, a ∈ .E1

= 0 if |a| > 1.lim
n→∞

nra−n (3.11.E.34)

r > 1 a > 1, q = a1/r n → 0.a−n/r

0 < = ≤ n → 0,nra−n (n )a−n/r
r

a−n/r (3.11.E.35)

→ 0nra−n

r < 1, < n → 0.nra−n a−n a < −1?]

 Exercise 3.11.E. 19

|q| < 1,

(a+aq+⋯ +a )= .lim
n→∞

qn−1 a

1 −q
(3.11.E.36)

a (1 +q+⋯ + )= a ,qn−1 1 −qn

1 −q
(3.11.E.37)

→ 0,qn 16. ]

 Exercise 3.11.E. 20

0 < c < +∞.

= 1.lim
n→∞

c√n (3.11.E.38)

[ Hint: If c > 1,  put  = 1 + , > 0.  Expand c =  to show that c√n dn dn (1 + )dn
n

0 < < → 0,dn
c

n
(3.11.E.39)

→ 0dn 3. ]

 Exercise 3.11.E. 21

lim– –– lim
¯ ¯¯̄¯̄¯

lim

2, 5, 10, 17, 26, …
2, −2, 2, −2, …
2, −2, −6, −10, −14, … ;
1, 1, −1, −1, 1, 1, −1, −1, … ;

, , , , …3⋅2
1

4⋅6
4

5⋅10
9

6⋅14
16
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Do Problem 21 for the following sequences. 
(a)  
(b)  
(c)  
(d)  
(e) ; 
(f)  

.

Do Problem 20 as follows: If  By Theorem   exists and 

 
By Problem  cannot be  so . 
In case  consider  and use Theorem 1 .

Prove the existence of  and find it when  is defined inductively by 
(i) ; 
(ii) ; 
(iii)  hence deduce that . 
[Hint: Show that the sequences are monotone and bounded in  (Theorem 3). 
For example, in (ii) induction yields 

 
Thus  exists. To find  square the equation 

 
and use Theorem 1 to get 

 
Solving for  (noting that  obtain 

 
similarly in cases (i) and (iii). 

Find  in  or  (if any), given that 
(a) ; 
(b) ; 

 Exercise 3.11.E. 22

, , , , , … ;1
2⋅3

−8
3⋅4

27
4⋅5

−64
5⋅6

125
6⋅7

, − , , − , … ;2
9

5
9

8
9

13
9

, − , , − , , − , …2
3

2
5

4
7

4
9

6
11

6
13

1, 3, 5, 1, 1, 3, 5, 2, 1, 3, 5, 3, … , 1, 3, 5,n, … ;
0.9, 0.99, 0.999, …
+∞, 1, +∞, 2, +∞, 3, … ;

(g) −∞, 1, −∞, , … , −∞, , …1
2

1
n

 Exercise 3.11.E. 23

c ≥ 1, { } ↓. (Why?)c√n 3, p = limn→∞ c√n

(∀n) 1 ≤ p ≤ ,  i.e., 1 ≤ ≤ c.c√n pn (3.11.E.40)

16, p > 1, p = 1

0 < c < 1, 1/c
−−−

√n ( iii) 

 Exercise 3.11.E. 24

limxn xn
= , =x1 2

–
√ xn+1 2xn

−−−
√

= c > 0, =x1 xn+1 +c2 xn
− −−−−−

√
= c > 0, = ;x1 xn+1

cxn

n+1
= 0limn→∞

cn

n!

E1

< < c+1. ( Verify! )xn xn+1 (3.11.E.41)

lim = lim = pxn xn+1 p,

= ( given )xn+1 +c2 xn
− −−−−−

√ (3.11.E.42)

= +p. (Why?)p2 c2 (3.11.E.43)

p p > 0),

p = lim = (1 + ) ;xn
1

2
4 +1c2− −−−−−

√ (3.11.E.44)

]

 Exercise 3.11.E. 25

limxn E1 E∗

= (n+1 − , 0 < q < 1xn )q nq

= ( − )xn n−−√ n+1
− −−−−

√ n−−√
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(c) ; 

(d)  with ; 

(e)  with ; 

(f) . 

[Hints: 

(a)  

(b)  where  so  (Why?) 

(c) Verify that 

 
so  by Corollary 3. (Give a proof.) 
(d) See Problems 17 and 18. 
(e) Let  Prove that  Use Problem  
The following are some harder but useful problems of theoretical importance. 
The explicit hints should make them not too hard.

Let  Prove that if  in  then also 

 
(i.e.,  is also the limit of the sequence of the arithmetic means of the  
[Solution: Fix  Then 

 
Adding  inequalities, get 

 
With  so fixed, we thus have 

 
Here, with  and  fixed, 

 
Hence, as  there is  such that 

=xn
1

+kn2√

= n(n+1) ,xn cn |c| < 1

= ,xn ∑m
k=1 a

n
k

− −−−−−−
√n > 0ak

=xn
3⋅5⋅7⋯(2n+1)

2⋅5⋅8⋯(3n−1)

0 < = [ −1]< (1 + −1)= → 0. (Why?)xn nq (1 + )1
n

q
nq 1

n nq−1

= ,xn
1

1+ 1+1/n√
1 < < 1 + → 1,1 + 1

n

− −−−−
√ 1

n → .xn
1
2

≤ ≤ ,
n

+nn2
− −−−−−

√
xn

n

+1n2
− −−−−

√
(3.11.E.45)

→ 1xn

a = max ( , … , ) .a1 am a ≤ ≤ a .xn m−−√n 20. ]

 Exercise 3.11.E. 26

{ } ⊆ .xn E1 → pxn ,E1

= plim
n→∞

1

n
∑
i=1

n

xi (3.11.E.46)

p ).xn
ε > 0.

(∃k)(∀n > k) p− < < p+ .
ε

4
xn

ε

4
(3.11.E.47)

n−k

(n−k)(p− )< < (n−k)(p+ ) .
ε

4
∑
i=k+1

n

xi
ε

4
(3.11.E.48)

k

(∀n > k) (p− )< ( +⋯ + ) < (p+ ) .
n−k

n

ε

4

1

n
xk+1 xn

n−k

n

ε

4
(3.11.E.49)

k ε

(p− )= p− .lim
n→∞

n−k

n

ε

4

ε

4
(3.11.E.50)

p− ε < p− ε,1
2

1
4

k′

(∀n > ) p− < (p− ) .k′ ε

2

n−k

n

ε

4
(3.11.E.51)
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Similarly, 

 
Combining this with (i), we have, for , 

 
Now with  fixed, 

 
Hence 

 
Let  Then combining with (ii), we have 

 
and the result follows.

Show that the result of Problem 26 holds also for infinite limits 

Prove that if  in  then 

 
[Hint: Let first  Given  use density to fix  so close to 1 that 

 
As , 

 
Continue as in Problem  replacing  by  and multiplication by addition (also subtraction by division, etc., as shown
above). Find a similar solution for the case  Note the result of Problem 20.]

(∃ ) (∀n > ) (p+ )< p+ .k′′ k′′ n−k

n

ε

4

ε

2
(3.11.E.52)

= max (k, , )K ′ k′ k′′

(∀n > ) p− < ( +⋯ + ) < p+ .K ′ ε

2

1

n
xk+1 xn

ε

2
(3.11.E.53)

k

( + +⋯ + ) = 0.lim
n→∞

1

n
x1 x2 xk (3.11.E.54)

(∃ ) (∀n > ) − < ( +⋯ + ) < .K ′′ K ′′ ε

2

1

n
x1 xk

ε

2
(3.11.E.55)

K = max ( , ) .K ′ K ′′

(∀n > K) p−ε < ( +⋯ + ) < p+ε,
1

n
x1 xn (3.11.E.56)

 Exercise 3.11.E. 26′

p = ±∞ ∈ .E∗

 Exercise 3.11.E. 27

→ pxn ( > 0) ,E∗ xn

= p.lim
n→∞

⋯x1x2 xn− −−−−−−−−
√n (3.11.E.57)

0 < p < +∞. ε > 0, δ > 1

p−ε < < p < pδ < p+ε.
p

δ
(3.11.E.58)

→ pxn

(∃k)(∀n > k) < < p .
p

δ√4
xn δ√4 (3.11.E.59)

26, ε δ,
p = +∞.
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Disprove by counterexamples the converse implications in Problems 26 and  For example, consider the sequences 

 
and 

Prove the following. 
(i) If  and  in  then . 
(ii) If  and if  then . 
Disprove the converse statements by counterexamples. 
[Hint: For  let  and  Then  and 

 
so Problems 26 and  apply. 
For (ii), use Problem  See Problem 28 for examples. 

From Problem 29 deduce that 
(a) ; 
(b) ; 

(c) ; 

(d) ; 
(e) .

Prove that 

 
given 

 
[Hint: Show that the differences  form a geometric sequence, with ratio  and 
Then use the result of Problem 

 Exercise 3.11.E. 28

27.

1, −1, 1, −1, … (3.11.E.60)

, 2, , 2, , 2, …
1

2

1

2

1

2
(3.11.E.61)

 Exercise 3.11.E. 29

{ } ⊂xn E1 ( − ) = plimn→∞ xn+1 xn ,E∗ → p
xn
n

{ } ⊂ ( > 0)xn E1 xn → p ∈ ,
xn+1

xn
E∗ → pxn

−−
√n

(i), =y1 x1 = − ,n = 2, 3, …yn xn xn−1 → pyn

= ,
1

n
∑
i=1

n

yi
xn

n
(3.11.E.62)

26′

27. ]

 Exercise 3.11.E. 30

= +∞limn→∞ n!
−−

√n

= 0limn→∞
n+1
n!

= elimn→∞
nn

n!

−−
√n

=limn→∞
1
n n!

−−
√n 1

e

= 1limn→∞ n−−√n

 Exercise 3.11.E. 31

= ,lim
n→∞

xn
a+2b

3
(3.11.E.63)

= a, = b,  and  = ( + ) .x0 x1 xn+2
1

2
xn xn+1 (3.11.E.64)

dn = −xn xn−1 q = − ,1
2

= a+ .xn ∑n
k=1 dk

19. ]

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/22273?pdf


3.11.E.11 https://math.libretexts.org/@go/page/22273

 For any sequence  prove that 

 
Hence find a new solution of Problems 26 and  
[Proof for : Fix any  Put 

 
Verify that 

 
Add  on both sides and divide by  to get 

 
Now fix any  and first let  As  and  there is  such that 

 
Thus by , 

 
This clearly holds also if  Hence also 

 
As  and  were arbitrary, we may let first  then  to obtain 

 Given  prove that 

 
Hence obtain a new solution for Problem  
[Hint: Proceed as suggested in Problem  replacing addition by multiplication.]

 Exercise 3.11.E. 32

⇒ 32. { } ⊆ ,xn E1

≤ ≤ ≤ .lim– –– xn lim– ––
1

n
∑
i=1

n

xi lim
¯ ¯¯̄¯̄¯ 1

n
∑
i=1

n

xi lim
¯ ¯¯̄¯̄¯

xn (3.11.E.65)

.26′

lim
¯ ¯¯̄¯̄¯

k ∈ N .

c =  and b = .∑
i=1

k

xi sup
i≥k

xi (3.11.E.66)

(∀n > k) + +⋯ + ≤ (n−k)b.xk+1 xk+2 xn (3.11.E.67)

c n

(∀n > k) ≤ + b.
1

n
∑
i=1

n

xi
c

n

n−k

n
(3.11.E.68)

ε > 0, |b| < +∞. → 0c

n
b → b,n−k

n
> knk

(∀n > ) <  and  b < b+ .nk

c

n

ε

2

n−k

n

ε

2
(3.11.E.69)

( )i∗

(∀n > ) ≤ ε+b.nk

1

n
∑
i=1

n

xi (3.11.E.70)

b = = +∞.supi≥k xi

≤ ε+ .sup
n≥nk

1

n
∑
i=1

n

xi sup
i≥k

xi (3.11.E.71)

k ε k → +∞, ε → 0,

≤ = . ( Explain! )]lim– ––
1

n
∑
i=1

n

xi lim
k→∞

sup
i≥k

xi lim
¯ ¯¯̄¯̄¯

xn (3.11.E.72)

 Exercise 3.11.E. 33

⇒ 33. { } ⊆ , > 0,xn E1 xn

≤  and  ≤ .lim– –– xn lim– –– ⋯x1x2 xn
− −−−−−−−−

√n lim
¯ ¯¯̄¯̄¯

⋯x1x2 xn
− −−−−−−−−

√n lim
¯ ¯¯̄¯̄¯

xn (3.11.E.73)

27.
32,
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Given  with 

 
prove that 

 
Note that Problem 26 is a special case of Problem 34 (take all . [Hint for a finite  Proceed as in Problem 
However, before adding the  inequalities, multiply by  and obtain 

 
 and show that 

 
where  so 

 
Proceed. Find a proof for 

Do Problem 34 by considering  and  as in Problem 32. 

Prove that if  with  (strictly) and  and if 

 
then also 

 
[Hint: The result of Problem  with 

 Exercise 3.11.E. 34

, ∈ ( > 0) ,xn yn E1 yn

→ p ∈  and  = → +∞,xn E∗ bn ∑
i=1

n

yi (3.11.E.74)

= p.lim
n→∞

∑n
i=1 xiyi

∑n
i=1 yi

(3.11.E.75)

= 1)yn p : 26.
n−k yi

(p− ) < < (p+ ) .
ε

4
∑
i=k+1

n

yi ∑
i=k+1

n

xiyi
ε

4
∑
i=k+1

n

yi (3.11.E.76)

Put =bn ∑n
i=1 yi

= 1 − ,
1

bn
∑
i=k+1

n

xiyi
1

bn
∑
i=1

k

xiyi (3.11.E.77)

→ +∞( by assumption ),bn

→ 0  (for a fixed k).
1

bn
∑
i=1

k

xiyi (3.11.E.78)

p = ±∞. ]

 Exercise 3.11.E. 35

lim– –– lim
¯ ¯¯̄¯̄¯

[ Hint: Replace   by  ,  where  = → +∞. ]c
n

c

bn
bn ∑n

i=1 yi

 Exercise 3.11.E. 36

, ∈ ,un vn E1 { } ↑vn → +∞,vn

= p (p ∈ ) ,lim
n→∞

−un un−1

−vn vn−1
E∗ (3.11.E.79)

= p,lim
n→∞

un

vn
(3.11.E.80)

34,

=  and  = − .xn
−un un−1

−vn vn−1
yn vn vn−1 (3.11.E.81)
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leads to the final result. 

From Problem 36 obtain a new solution for Problem  Also prove that 

 
[Hint: For the first part, put 

 
For the second, put 

Let  Define inductively:  and ; 

 
Then  for 

 
Deduce that 

 
so  and  By Theorem  and  for some  Prove that  i.e., 

 
(This is Gauss's arithmetic-geometric mean of  and  
[Hint: Take limits of both sides in  to get 

Let  in  Define inductively , 

 
Prove that 

 
[Hint: Proceed as in Problem 38.]

]

 Exercise 3.11.E. 37

15.

( − ) = .lim
n→∞

Smn

nm+1

1

m+1

1

2
(3.11.E.82)

=  and  = .un Smn vn nm+1 (3.11.E.83)

= (m+1) −  and  = (m+1). ]un Smn nm+1 vn nm (3.11.E.84)

 Exercise 3.11.E. 38

0 < a < b < +∞. =a1 ab
−−

√ = (a+b)b1
1
2

=  and  = ( + ) ,n = 1, 2, …an+1 anbn
− −−−

√ bn+1
1

2
an bn (3.11.E.85)

<an+1 bn+1

− = ( + ) − = > 0.bn+1 an+1
1

2
an bn anbn

− −−−
√

1

2
( − )bn

−−
√ an

−−
√

2
(3.11.E.86)

a < < < < < b,an an+1 bn+1 bn (3.11.E.87)

{ } ↑an { } ↓.bn 3, → pan → qbn p, q ∈ .E1 p = q,

lim = lim .an bn (3.11.E.88)

a b. )
= ( + )bn+1

1
2
an bn q = (p+q). ]1

2

 Exercise 3.11.E. 39

0 < a < b .E1 = a, = ba1 b1

= ,  and  = ( + ) , n = 1, 2, …an+1
2anbn

+an bn
bn+1

1

2
an bn (3.11.E.89)

= = .ab
−−

√ lim
n→∞

an lim
n→∞

bn (3.11.E.90)
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Prove the continuity of dot multiplication, namely, if 

 
(*or in another Euclidean space; see §9), then 

3.11.E: Problems on Limits of Sequences (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 3.11.E. 40

→  and  →  in x̄̄̄n q̄̄ ȳ̄̄n r̄̄ En (3.11.E.91)

⋅ → ⋅ .x̄̄̄n ȳ̄̄n q̄̄ r̄̄ (3.11.E.92)
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3.12: More on Cluster Points and Closed Sets. Density

This page is a draft and is under active development. 

I. The notions of cluster point and closed set (§§12, 14) can be characterized in terms of convergent sequences. We start with
cluster points.

(i) A sequence  clusters at a point  iff it has a subsequence  converging to 

(ii) A set  clusters at  iff p is the limit of some sequence  of points of  other than  if so, the terms 
can be made distinct.

Proof

(i) If  then by definition each globe about  contains all but finitely many  hence infinitely many 
 Thus  is a cluster point.

Conversely, if so, consider in particular the globes

By assumption,  contains some  Thus fix

Next, choose a term

(Such terms exist since  contains infinitely many  Next, fix

and so on.

Thus, step by step (inductively), select a sequence of subscripts

that determines a subsequence (see Chapter 1, §8) such that

whence  or  (Why?) Thus we have found a subsequence  and assertion (i) is proved.

Assertion (ii) is proved quite similarly - proceed as in the proof of Corollary 6 in §§14; the inequalities  are
not needed here. 

(a) Recall that the set  of all rationals clusters at each  (§§14, Example (e)). Thus by Theorem 1(ii), each real  is the
limit of a sequence of rationals. See also Problem 6 of §§12 for  in .

(b) The sequence

 Theorem 3.12.1

{ } ⊆ (S, ρ)xm p ∈ S { }xmn p.

A ⊆ (S, ρ) p ∈ S { }xn A p; xn

p = ,limn→∞ xmn
p ,xmn

.xm p

( ) , n = 1, 2, …Gp

1

n
(3.12.1)

(1)Gp .xm

∈ (1).xm1
Gp (3.12.2)

∈ ( )  with  > .xm2 Gp

1

2
m2 m1 (3.12.3)

( )Gp
1
2

. )xm

∈ ( ) ,  with  > > ,xm3 Gp

1

3
m3 m2 m1 (3.12.4)

< < ⋯ < < ⋯m1 m2 mn (3.12.5)

(∀n) ∈ ( ) ,  i.e., ρ ( , p) < → 0,xmn
Gp

1

n
xmn

1

n
(3.12.6)

ρ ( , p) → 0,xmn → p.xmn → p,xmn

< < ⋯m1 m2

□

 Example 3.12.1

R p ∈ E1 p

p̄̄̄ En

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/20143?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/03%3A_Vector_Spaces_and_Metric_Spaces/3.12%3A_More_on_Cluster_Points_and_Closed_Sets._Density


3.12.2 https://math.libretexts.org/@go/page/20143

has two convergent subsequences,

Thus by Theorem 1(i), it clusters at 0 and 1.

Interpret Example (f) and Problem 10(a) in §14 similarly.

As we know, even infinite sets may have no cluster points (take  in . However, a bounded infinite set or sequence in  (*or 
) must cluster. This important theorem (due to Bolzano and Weierstrass) is proved next.

(i) Each bounded infinite set or sequence  in  (* or ) has at least one cluster point  there (possibly outside 

(ii) Thus each bounded sequence in  (* or ) has a convergent subsequence.

Proof

Take first a bounded sequence  in  Let

By Theorem 2(i) of Chapter 2, §13, { } clusters at  Moreover, as

we have

by Corollary 1 of Chapter 2, §13. Thus

and so { } clusters in .

Assertion (ii) now follows - for  by Theorem 1(i) above.

Next, take

If  is bounded, all  are in some square  (Why?) Let

Then

Thus by the first part of the proof,  has a convergent subsequence

For simplicity, we henceforth write  for  for  and  for . Thus  is now a subsequence,
with  and , as before.

We now reapply this process to  and obtain a subsubsequence

The corresponding terms  still tend to  by Corollary 3 of §14. Thus we have a subsequence

0, 1, 0, 1, … (3.12.7)

= 1 → 1 and  = 0 → 0.x2n x2n−1 (3.12.8)

N )E1 En

C n

 Theorem  (Bolzano-Weierstrass).3.12.1

A En C n p̄̄̄ A.

En C n

{ } ⊆ [a, b]zm .E1

p = .lim
¯ ¯¯̄¯̄¯

zm (3.12.9)

zm p.

a ≤ ≤ b,zm (3.12.10)

a ≤ inf ≤ p ≤ sup ≤ bzm zm (3.12.11)

p ∈ [a, b] ⊆ ,E1 (3.12.12)

zm E1

−E1

{ } ⊆ , = ( , ) ; , ∈ .z̄̄̄m E2 z̄̄̄m xm ym xm ym E1 (3.12.13)

{ }z̄̄̄m z̄̄̄m [ , ].ā̄̄ b
¯̄

= ( , )  and  = ( , ) .ā̄̄ a1 a2 b
¯̄

b1 b2 (3.12.14)

≤ ≤  and  ≤ ≤  in  .a1 xm b1 a2 ym b2 E1 (3.12.15)

{ }xm

→  for some  ∈ [ , ] .xmk p1 p1 a1 b1 (3.12.16)

xm ,xmk
ym ,ymk

z̄̄̄m z̄̄̄mk
= ( , )z̄̄̄m xm ym

→ ,xm p1 ≤ ≤a2 ym b2

{ }ym

→  for some  ∈ [ , ] .ymi
p2 p2 a2 b2 (3.12.17)

xmi p1

= ( , ) → ( , )  in z̄̄̄mi
xmi

ymi
p1 p2 E2 (3.12.18)
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by Theorem 2 in §15. Hence  is a cluster point of  Note that  (see above). This proves the
theorem for sequences in  (hence in 

The proof for  is similar; one only has to take subsequences n times. (*The same applies to  with real components
replaced by complex ones.)

Now take a bounded infinite set  Select from it an infinite sequence  of distinct points (see Chapter 1,
§9, Problem 5). By what was shown above,  clusters at some point  so each  contains infinitely many distinct
points  Thus by definition,  clusters at 

Note 1. We have also proved that if  then  has a cluster point in  (This applies to closed intervals
only.)

Note 2. The theorem may fail in spaces other than  For example, in a discrete space, all sets are bounded, but no set can
cluster.

II. Cluster points are closely related to the following notion.

The closure of a set  denoted  is the union of  and the set of all cluster points of  call it . Thus 

We have  in  iff each globe  about p meets , i. e.,

Equivalently,  iff

Proof

The proof is as in Corollary 6 of §14 and Theorem 1. (Here, however, the  need not be distinct or different from  ) The
details are left to the reader.

This also yields the following new characterization of closed sets (cf. §12).

A set  is closed iff one of the following conditions holds.

(i)  contains all its cluster points (or has none); i.e., .

(ii) .

(iii)  contains the limit of each convergent sequence  (if any).

Proof

Parts (i) and (ii) are equivalent since

Now let  be closed. If  then  therefore, by Definition 3 in §12, some  fails to meet 
Hence no  is a cluster point, or the limit of a sequence  (This would contradict Definitions 1 and 2 of
§14.) Consequently, all such cluster points and limits must be in  as claimed.

= ( , )p̄̄̄ p1 p2 { } .z̄̄̄m ∈ [ , ]p̄̄̄ ā̄̄ b
¯̄

E2 C).

En C n

A ⊂ ( ) .En ∗C n { }z̄̄̄m

{ }z̄̄̄m ,p̄̄̄ Gp̄̄̄

∈ A.z̄̄̄m A . □p̄̄̄

{ } ⊆ [ , ] ⊂ ,z̄̄̄m ā̄̄ b
¯̄

En { }z̄̄̄m [ , ].ā̄̄ b
¯̄

( ) .En ∗C n

 Definition

A ⊆ (S, ρ), ,A
¯ ¯¯̄

A A A′

= A ∪ .A
¯ ¯¯̄

A′

 Theorem 3.12.1

p ∈ A
¯ ¯¯̄

(S, ρ) (δ)Gp A

(∀δ > 0) A ∩ (δ) ≠ ∅.Gp (3.12.19)

p ∈ A
¯ ¯¯̄

p =  for some  { } ⊆ A.lim
n→∞

xn xn (3.12.20)

xn p.

 Theorem 3.12.1

A ⊆ (S, ρ)

A A ⊇ A′

A = A
¯ ¯¯̄

A { } ⊆ Axn

A ⊇ ⟺ A = A ∪ = . (Explain!)A′ A′ A
¯ ¯¯̄

(3.12.21)

A p ∉ A, p ∈ −A; Gp A ( ∩ A = ∅) .Gp

p ∈ −A { } ⊆ A.xn

A,

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/20143?pdf


3.12.4 https://math.libretexts.org/@go/page/20143

Conversely, suppose  is not closed, so  is not open. Then  has a noninterior point  i.e.,  but  is
entirely in  This means that each  meets  Thus

and

even though  for .

We see that (iii) and (ii), hence also (i), fail if  is not closed and hold if  is closed. (See the first part of the proof.) Thus
the theorem is proved. 

Corollary 1. .

Corollary 2. .

Corollary 3.  is always a closed set .

Corollary 4.  (the closure of  equals the union of  and .

III. As we know, the rationals are dense in  (Theorem 3 of Chapter 2, §10). This means that every globe 
 in  contains rationals. Similarly (see Problem 6 in §12), the set  of all rational points is dense in 

We now generalize this idea for arbitrary sets in a metric space 

Given  we say that  is dense in  iff each globe   meets  By Theorem  this means that each 
 is in  i.e.,

Equivalently, .

Summing up, we have the following:

This page titled 3.12: More on Cluster Points and Closed Sets. Density is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

A −A −A p; p ∈ −A noGp

−A. Gp A.

p ∈  (by Theorem 3),A
¯ ¯¯̄

(3.12.22)

p =  for some  { } ⊆ A (by the same theorem),lim
n→∞

xn xn (3.12.23)

p ∉ A( p ∈ −A)

A A

□

= ∅∅
¯̄̄

A ⊆ B⟹ ⊆A
¯ ¯¯̄

B
¯ ¯¯̄

A
¯ ¯¯̄

⊇ A

= ∪A ∪ B
¯ ¯¯̄¯̄¯̄¯̄¯̄¯

A
¯ ¯¯̄

B
¯ ¯¯̄

A ∪ B A
¯ ¯¯̄

)B
¯ ¯¯̄

E1

(δ) = (p −δ, p +δ)Gp E1 Rn .En

(S, ρ).

 Definition

A ⊆ B ⊆ (S, ρ), A B Gp p ∈ B, A. 3,

p ∈ B ;A
¯ ¯¯̄

p =  for some  { } ⊆ A.lim
n→∞

xn xn (3.12.24)

A ⊆ B ⊆ A
¯ ¯¯̄

.3

A is open iff A = .A0 (3.12.25)

A is closed iff A = ; equivalently, iff A ⊇ .A
¯ ¯¯̄

A′ (3.12.26)

A is dense in B iff A ⊆ B ⊆ .A
¯ ¯¯̄

(3.12.27)

A is perfect iff A = .A′ (3.12.28)
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3.12.E: Problems on Cluster Points, Closed Sets, and Density

Complete the proof of Theorem 1 .

Prove that  and .

Prove Theorem 2 for  Prove it for  by induction on 

Verify Note 2.

Prove Theorem 3.

Prove Corollaries 1 and 2.

Prove that . 
[Hint: Show by contradiction that  excludes  Hence  Then show that 

 etc. 

From Problem  deduce that  is closed if  and  are. Then prove Corollary  By induction, extend both assertions to
any finite number of sets.

From Theorem  prove that if the sets  are closed, so is .

Prove Corollary 3 from Theorem 3. Deduce that  and prove footnote  
[Hint: Consider Figure 7 and Example  in §12 when using Theorem 3 (twice). 

Prove that  is contained in any closed superset of  and is the intersection of all such supersets. 
[Hint: Use Corollaries 2 and 

 Exercise 3.12.E. 1

( ii )

 Exercise 3.12.E. 2

=R
¯ ¯¯̄

E1 = ( Example (a))Rn¯ ¯¯̄ ¯̄
En

 Exercise 3.12.E. 3

.E3 (  and  )En ∗ C n n.

 Exercise 3.12.E. 4

 Exercise 3.12.E. 5

 Exercise 3.12.E. 6

 Exercise 3.12.E. 7

(A ∪ B = ∪)′ A′ B′

p ∉ ( ∪ )A′ B′ p ∈ (A ∪ B .)′ (A ∪ B ⊆ ∪ .)′ A′ B′

⊆ (A ∪ B ,A′ )′ ]

 Exercise 3.12.E. 8

7, A ∪ B A B 4.

 Exercise 3.12.E. 9

4, (i ∈ I)Ai ⋂i∈I Ai

 Exercise 3.12.E. 10

=A
¯ ¯¯̄
¯ ¯¯̄

A
¯ ¯¯̄

3.
(1) ]

 Exercise 3.12.E. 11

A
¯ ¯¯̄

A

3. ]
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(i) Prove that a bounded sequence  converges to  iff  is its only cluster point. 
(ii) Disprove it for 
(a) unbounded  and 
(b) other spaces. 
[Hint: For  if  fails, some  leaves out infinitely many  These  form a bounded subsequence that, by
Theorem  clusters at some  (Why?  Thus  is another cluster point (contradiction!) 
For (ii), consider (a) Example (f) in §14 and (b) Problem 10 in §14, with (0,2] as a subspace of 

In each case of Problem 10 in §14, find . Is  closed? (Use Theorem 4.)

Prove that if  in  there is a sequence  such that  Hence  iff  
[Hint: Choose 

We have, by definition, 

 
hence 

 
(See Chapter  Find such quantifier formulas for ,  and . 
[Hint: Use Corollary 6 in  and Theorem 3 in 

Use Problem 15 to prove that 
(i)  and 
(ii) .

Show that 

 
cf.  Problem  Hence prove again that  is closed iff  bd  
[Hint: Use Theorem 4 and Problem 16 above. 

A set  is said to be nowhere dense in  iff  Show that Cantor's set  is nowhere dense. 

 Exercise 3.12.E. 12

{ } ⊆ ( )x̄̄̄m En ∗C n p̄̄̄ p̄̄̄

{ }x̄̄̄m

(i), →x̄̄̄m p̄̄̄ Gp̄̄̄ .x̄̄̄m x̄̄̄m

2, ≠ .q̄̄ p̄̄̄ ) q̄̄

. ]E1

 Exercise 3.12.E. 13

A
¯ ¯¯̄

A

 Exercise 3.12.E. 14

{ } ⊆ B ⊆bn A
¯ ¯¯̄

(S, ρ), { } ⊆ Aan ρ ( , ) → 0.an bn → pan → p.bn

∈ (1/n). ]an Gbn

 Exercise 3.12.E. 15

p ∈  iff (∃δ > 0) (δ) ⊆ A;A0 Gp (3.12.E.1)

p ∉  iff (∀δ > 0) (δ) ⊈ A,  i.e.,  (δ) −A ≠ ∅.A0 Gp Gp (3.12.E.2)

1, §§1 −3. ) p ∈ , p ∉A
¯ ¯¯̄

A
¯ ¯¯̄

p ∈ ,A′ p ∉ A′

§14, §16. ]

 Exercise 3.12.E. 16

−( ) = (−AA
¯ ¯¯̄

)0

−( )=A0 −A
¯ ¯¯̄¯̄¯̄

 Exercise 3.12.E. 17

∩ ( ) = bdA( boundary of A);A
¯ ¯¯̄

−A
¯ ¯¯̄¯̄¯̄

(3.12.E.3)

§12, 18. A A ⊇ A.
]

 Exercise 3.12.E. ∗18

A (S, ρ) ( = ∅.A
¯ ¯¯̄

)0 P (§14,  Problem 17)

[ Hint: P  is closed, so  = P . ]P
¯ ¯¯̄
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Give another proof of Theorem 2 for . 
[Hint: Let  Put 

 
Show that  is bounded and nonempty, so it has a glb, say,  Show that  clusters at 

For any set  define 

 
Prove that 

Prove that 

 
Hence deduce that a set  in  is closed iff 

.

3.12.E: Problems on Cluster Points, Closed Sets, and Density is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 3.12.E. ∗19

E1

A ⊆ [a, b].

Q = {x ∈ [a, b]|x exceeds infinitely many points (or terms) of A}. (3.12.E.4)

Q p = inf A. A p. ]

 Exercise 3.12.E. ∗20

A ⊆ (S, ρ)

(ε) = (ε).GA ⋃
x∈A

Gx (3.12.E.5)

= ( ) .A
¯ ¯¯̄ ⋂

n=1

∞

GA

1

n
(3.12.E.6)

 Exercise 3.12.E. ∗21

= {x ∈ S|ρ(x, A) = 0};  see $13,  Note 3.A
¯ ¯¯̄

(3.12.E.7)

A (S, ρ)
(∀x ∈ S) ρ(x, A) = 0⟹ x ∈ A
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3.13: Cauchy Sequences. Completeness

This page is a draft and is under active development. 

A convergent sequence is characterized by the fact that its terms  become (and stay) arbitrarily close to its limit, as 
Due to this, however, they also get close to each other; in fact,  can be made arbitrarily small for sufficiently large  and

 It is natural to ask whether the latter property, in turn, implies the existence of a limit. This problem was first studied by
Augustin-Louis Cauchy  Thus we shall call sequences Cauchy sequences. More precisely, we formulate the
following.

A sequence  is called a Cauchy sequence (we briefly say that  is Cauchy") iff, given any  (no
matter how small), we have  for all but finitely many  and  In symbols,

Observe that here we only deal with terms  not with any other point. The limit (if any) is not involved, and we do not have
to know it in advance. We shall now study the relationship between property  and convergence.

Every convergent sequence  is Cauchy.

Proof

Let  Then given  there is a  such that

As this holds for any  it also holds for any other term  with .

Thus

Adding and using the triangle inequality, we get

and  is proved. 

Every Cauchy sequence  is bounded.

Proof

We must show that all  are in some globe. First we try an arbitrary radius . Then by  there is  such that 
 for  Fix some  Then

Thus the globe  contains all  except possibly the  terms . To include them as well, we only have to
take a larger radius  greater than  Then all  are in the enlarged globe  

xm m → +∞.

ρ ( , )xm xn m

n.

(1789 −1857).

 Definition

{ } ⊆ (S, ρ)xm " { }xm ε > 0

ρ ( , ) < εxm xn m n.

(∀ε > 0)(∃k)(∀m, n > k) ρ ( , ) < ε.xm xn (3.13.1)

, ,xm xn

(1)

 Theorem 3.13.1

{ } ⊆ (S, ρ)xm

→ p.xm ε > 0, k

(∀m > k) ρ ( , p) < .xm

ε

2
(3.13.2)

m > k, xn n > k

(∀m, n > k) ρ ( , p) <  and ρ (p, ) < .xm

ε

2
xn

ε

2
(3.13.3)

ρ ( , ) ≤ ρ ( , p) +ρ (p, ) < ε,xm xn xm xn (3.13.4)

(1) □

 Theorem 3.13.2

{ } ⊆ (S, ρ)xm

xm ε (1), k

ρ ( , ) < εxm xn m, n > k. n > k.

(∀m > k)ρ ( , ) < ε,  i.e.,  ∈ (ε).xm xn xm Gxn (3.13.5)

(ε)Gxn xm k , … ,x1 xk

r, ρ ( , ) , m = 1, … , k.xm xn xm (r).Gxn □
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Note 1. In  under the standard metric, only sequences with finite limits are regarded as convergent. If  then  is
not even a Cauchy sequence in  but in  under a suitable metric (cf. Problem 5 in §11, it is
convergent (hence also Cauchy and bounded).

If a Cauchy sequence  clusters at a point  then .

Proof

We want to show that  i.e., that

Thus we fix  and look for a suitable  Now as  is Cauchy, there is a  such that

Also, as  is a cluster point, the globe  contains infinitely many  so we can fix one with 
 also  for  Hence

implying  as required. 

Note 2. It follows that a Cauchy sequence can have at most one cluster point  for  is also its limit and hence unique; see §14,
Corollary 1.

These theorems show that Cauchy sequences behave very much like convergent ones. Indeed, our next theorem (a famous result by
Cauchy) shows that, in  the two kinds of sequences coincide.

(Cauchy's convergence criterion). A sequence  in  (*or  ) converges if and only if it is a Cauchy sequence.

Proof

Conversely, let  be a Cauchy sequence. Then by Theorem  it is bounded. Hence by the Bolzano-Weierstrass theorem
(Theorem 2 of §16, it has a cluster point  Thus by Theorem 3 above, it converges to  and all is proved. 

Unfortunately, this theorem (along with the Bolzano-Weierstrass theorem used in its proof) does not hold in all metric spaces. It
even fails in some subspaces of  For example, we have

By Theorem 1 , this sequence, being convergent, is also a Cauchy sequence. Moreover, it still preserves  even if we remove the
point 0 from  since the distances  remain the same. However, in the resulting subspace  the sequence
no longer converges because its limit (and unique cluster point) 0 has disappeared, leaving a "gap" in its place. Thus we have a
Cauchy sequence in  without a limit or cluster points, so Theorem 4 fails in  (along with the Bolzano-Weierstrass theorem).

Quite similarly, both theorems fail in  (but not in  as a subspace of . By analogy to incomplete ordered fields, it is
natural to say that  is "incomplete" because of the missing cluster point  and call a space (or subspace) "complete" if it has no
such "gaps," i.e., if Theorem 4 holds in it.

Thus we define as follows.

,E1 → ±∞,xn { }xn

( in view of Theorem 2);E1 ,E∗

 Theorem 3.13.3

{ }xm p, → pxm

→ p,xm

(∀ε > 0)(∃k)(∀m > k) ρ ( , p) < ε.xm (3.13.6)

ε > 0 k. { }xm k

(∀m, n > k) ρ ( , ) < .xm xn

ε

2
(3.13.7)

p ( )Gp
ε

2
,xn

n > k (k as above). Then ρ ( , p) <  and, as noted above, xn
ε

2
ρ ( , ) <xm xn

ε

2
m > k.

(∀m > k) ρ ( , ) +ρ ( , p) < ε,xm xn xn (3.13.8)

ρ ( , p) ≤ ρ ( , ) +ρ ( , p) < ε,xm xm xn xn □

p, p

(  and  )En ∗ C n

 Theorem 3.13.4

{ }x̄̄̄m En C n

{ }xm 2,

.p̄̄̄ ,p̄̄̄ □

.E1

= → 0 in  .xm

1

m
E1 (3.13.9)

(1)

E1 ρ ( , )xm xn S = −{0},E1

S, S

(0, 1) [0, 1]) E1

S 0,
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A metric space (or subspace)  is said to be complete iff every Cauchy sequence in  converges to some point  in 

Similarly, a set  is called complete iff each Cauchy sequence  converges to some point  in  i.e., iff 
 is complete as a metric subspace of 

In particular,  are complete by Theorem  The sets  and  are incomplete in  but  is
complete. Indeed, we have the following theorem.

(i) Every closed set in a complete space is complete itself.

(ii) Every complete set  is necessarily closed.

Proof

(i) Let  be a closed set in a complete space  We have to show that Theorem 4 holds in  Thus
we fix any Cauchy sequence  and prove that it converges to some  in 

Now, since  is complete, the Cauchy sequence  has a limit  in  As  is closed, however, that limit must be in 
by Theorem 4 in §16. Thus (i) is proved.

(ii) Now let  be complete in a metric space  To prove that  is closed, we again use Theorem 4 of §16. Thus we fix
any convergent sequence  and show that  must be 

Now, since  converges in  it is a Cauchy sequence, in  as well as in A. Thus by the assumed completeness of  it
has a limit  in  Then, however, the uniqueness of  implies that  so that  is in  indeed. 

This page titled 3.13: Cauchy Sequences. Completeness is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

 Definition

(S, ρ) S p S.

A ⊆ (S, ρ) { } ⊆ Axm p A,

(A, ρ) (S, ρ).

(  and  )En ∗ C n 4. (0, 1) −{0}E1 ,E1 [0, 1]

 Theorem 3.13.5

A ⊆ (S, ρ)

A (S, ρ). A( as it does in S).

{ } ⊆ Axm p A.

S { }xm p S. A A

A (S, ρ). A

{ } ⊆ A, → p ∈ S,xm xm p inA.

{ }xm S, S A,

q A. ( in S)limxm xm p = q ∈ A, p A, □
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3.13.E: Problems on Cauchy Sequences

Without using Theorem  prove that if  and  are Cauchy sequences in  so also are 

Prove that if  and  are Cauchy sequences in  then the sequence of distances 

 
converges in . 
[Hint: Show that this sequence is Cauchy in  then use Theorem 

Prove that a sequence  is Cauchy in  iff 

Two sequences  and  are called concurrent iff 

 
Notation:  Prove the following. 
(i) If one of them is Cauchy or convergent, so is the other, and 

 (if it exists). 
(ii) If any two sequences converge to the same limit, they are concurrent.

Show that if  and  are Cauchy sequences in  then 

 
does not change if  or  is replaced by a concurrent sequence (see Problems 4 and  
Call 

 
the "distance" 

 
between  and  Prove that such "distances" satisfy all metric axioms, except that  may be 0 even
for different sequences. (When?) 
Also, show that if 

 Exercise 3.13.E. 1

4, { }xn { }yn ( or C),E1

 (i)  { + }  and   (ii)  { } .xn yn xnyn (3.13.E.1)

 Exercise 3.13.E. 2

{ }xm { }ym (S, ρ),

ρ ( , ) , m = 1, 2,… ,xm ym (3.13.E.2)

E1

;E1 4. ]

 Exercise 3.13.E. 3

{ }xm (S, ρ)

(∀ε > 0)(∃k)(∀m > k) ρ ( , ) < ε.xm xk (3.13.E.3)

 Exercise 3.13.E. 4

{ }xm { }ym

ρ ( , ) → 0.xm ym (3.13.E.4)

{ } ≈ { } .xm ym

lim = limxm ym

 Exercise 3.13.E. 5

{ }xm { }ym (S, ρ),

ρ ( , )lim
m→∞

xm ym (3.13.E.5)

{ }xm { }ym 2).

ρ ( , )lim
m→∞

xm ym (3.13.E.6)

ρ ({ } , { })xm ym (3.13.E.7)

{ }xm { } .ym ρ ({ } , { })xm ym
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then .

Continuing Problems 4 and  show that the concurrence relation  is reflexive, symmetric, and transitive (Chapter 
 i.e., an equivalence relation. That is, given  in  prove that 

(a)  (reflexivity); 
(b) if  then  (symmetry); 
(c) if  and  then  (transitivity).

From Problem 4 deduce that the set of all sequences in  splits into disjoint equivalence classes (as defined in Chapter 
 under the relation of concurrence . Show that all sequences of one and the same class either converge to the

same limit or have no limit at all, and either none of them is Cauchy or all are Cauchy.

Give examples of incomplete metric spaces possessing complete subspaces.

Prove that if a sequence  is Cauchy then it has a subsequence  such that 

Show that every discrete space  is complete.

Let  be the set of all Cauchy sequences in  we denote them by capitals, e.g.,  Let 

 
denote the equivalence class of  under concurrence,  (see Problems 2,  and  "). We define 

 
By Problem  this is unambiguous, for  does not depend on the particular choice of  and 

 and  exists by Problem  
Show that  is a metric for the set of all equivalence classes   call this set 

Continuing Problem  let  denote the equivalence class of the sequence with all terms equal to  ; let  be the set of all
such "constant" equivalence classes (it is a subset of  
Show that  is dense in  i.e.,  under the metric . (See  Definition  

(∀m) = a and  = b( constant ),xm ym (3.13.E.8)

ρ ({ } , { }) = ρ(a, b)xm ym

 Exercise 3.13.E. 5′

5, (≈)

1, §§4−7), { } , { }xm ym S,

{ } ≈ { }xm xm

{ } ≈ { }xm ym { } ≈ { }ym xm

{ } ≈ { }xm ym { } ≈ { } ,ym zm { } ≈ { }xm zm

 Exercise 3.13.E. ∗5′′

(S, ρ)

1, §§4−7) (≈)

 Exercise 3.13.E. 6

 Exercise 3.13.E. 7

{ } ⊆ (S, ρ)xm { }xmk

(∀k) ρ ( , ) < .xmk xmk+1 2−k (3.13.E.9)

 Exercise 3.13.E. 8

(S, ρ)

 Exercise 3.13.E. ∗9

C (S, ρ); X = { } .xm

= {Y ∈ C|Y ≈ X}X∗ (3.13.E.10)

X ≈ ,5′ 5′′

σ ( , ) = ρ ({ } , { }) = ρ ( , ) .X∗ Y ∗ xm ym lim
m→∞

xm ym (3.13.E.11)

5, ρ ({ } , { })xm ym { } ∈xm X∗

{ } ∈ ;ym Y ∗ limρ ( , )xm ym 2.

σ X∗ (X ∈ C); .C ∗

 Exercise 3.13.E. ∗10

9, x∗ x C ′

).C ∗

C ′ ( , σ) ,C ∗ =C ′¯ ¯¯̄¯̄
C ∗ σ §16, 2. )
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[Hint: Fix any "point"  and any globe  about  in  We must show that it contains some . 
By definition,  is the equivalence class of some Cauchy sequence  in  so 

 
Fix some  and consider the equivalence class  of the sequence  thus,  and 

 
Thus  as required. 

Two metric spaces  and  are said to be  iff there is a map  such that 

 
Show that the spies  and  of Problem 10 are . Note that it is customary not to distinguish between two
isometric spaces, treating each of them as just an "isometric copy" of the other. Indeed, distances in each of them are alike. 
[Hint: Define \(f(x) = x*.]

Continuing Problems 9 to  show that the space  is complete. Thus prove that for every metric space  there is a
complete metric space  containing an isometric copy  of  with  dense in  is called a completion of 

.  
[ Hint: Take a Cauchy sequence . By Problem 10, each globe  contains some  where 

 is the equivalence class of

 
and  Thus by Problem  is Cauchy in  as is  Deduce that  and 

 in 

3.13.E: Problems on Cauchy Sequences is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

∈X∗ C ∗ G( ; ε)X∗ X∗ ( , σ) .C ∗ ∈x∗ C ′

X∗ X = { }xm (S, ρ),

(∃k)(∀m,n > k) ρ ( , ) < .xm xn

ε

2
(3.13.E.12)

x = (n > k)xn x∗ {x, x,… , x,…}; ∈ ,x∗ C ′

σ ( , ) = ρ ( , x) ≤ . (Why?)X∗ x∗ lim
m→∞

xm

ε

2
(3.13.E.13)

∈ G( , ε) ,x∗ X∗ ]

 Exercise 3.13.E. ∗11

(S, ρ) (T , σ) isometric f : S T⟷onto

(∀x, y ∈ S) ρ(x, y) = σ(f(x), f(y)). (3.13.E.14)

(S, ρ) ( , σ)C ′ isometric

 Exercise 3.13.E. ∗12

11, ( , σ)C ∗ (S, ρ),

( , σ)C ∗ C ′ S, C ′ .C ∗ C ∗

(S, ρ)

{ } in ( , σ)X∗
m C ∗ G( ; )X∗

m
1
m ∈ ,x∗

m C ′

x∗
m

{ , ,… , ,…}xm xm xm (3.13.E.15)

σ ( , ) < → 0.X∗
m x∗

m
1
m 4, { }x∗

m ( , σ) ,C ∗ { } .X∗
m X = { } ∈ C,xm

=X∗ limm→∞ X∗
m ( , σ) . ]C ∗

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/22626?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/03%3A_Vector_Spaces_and_Metric_Spaces/3.13%3A_Cauchy_Sequences._Completeness/3.13.E%3A_Problems_on_Cauchy_Sequences
https://creativecommons.org/licenses/by/1.0


1

CHAPTER OVERVIEW

4: Function Limits and Continuity
4.1: Basic Definitions

4.1.E: Problems on Limits and Continuity

4.2: Some General Theorems on Limits and Continuity

4.2.E: More Problems on Limits and Continuity

4.3: Operations on Limits. Rational Functions

4.3.E: Problems on Continuity of Vector-Valued Functions

4.4: Infinite Limits. Operations in E*

4.4.E: Problems on Limits and Operations in \(E^{*}\)

4.5: Monotone Function

4.5.E: Problems on Monotone Functions

4.6: Compact Sets

4.6.E: Problems on Compact Sets

4.7: More on Compactness
4.8: Continuity on Compact Sets. Uniform Continuity

4.8.E: Problems on Uniform Continuity; Continuity on Compact Sets

4.9: The Intermediate Value Property

4.9.E: Problems on the Darboux Property and Related Topics

4.10: Arcs and Curves. Connected Sets

4.10.E: Problems on Arcs, Curves, and Connected Sets

4.11: Product Spaces. Double and Iterated Limits

4.11.E: Problems on Double Limits and Product Spaces

4.12: Sequences and Series of Functions

4.12.E: Problems on Sequences and Series of Functions

4.13: Absolutely Convergent Series. Power Series

4.13.E: More Problems on Series of Functions

This page titled 4: Function Limits and Continuity is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon
(The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.

https://libretexts.org/
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.01%3A_Basic_Definitions
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.01%3A_Basic_Definitions/4.1.E%3A_Problems_on_Limits_and_Continuity
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.02%3A_Some_General_Theorems_on_Limits_and_Continuity
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.02%3A_Some_General_Theorems_on_Limits_and_Continuity/4.2.E%3A_More_Problems_on_Limits_and_Continuity
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.03%3A_Operations_on_Limits._Rational_Functions
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.03%3A_Operations_on_Limits._Rational_Functions/4.3.E%3A_Problems_on_Continuity_of_Vector-Valued_Functions
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.04%3A_Infinite_Limits._Operations_in_E
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.04%3A_Infinite_Limits._Operations_in_E/4.4.E%3A_Problems_on_Limits_and_Operations_in_(E)
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.05%3A_Monotone_Function
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.05%3A_Monotone_Function/4.5.E%3A_Problems_on_Monotone_Functions
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.06%3A_Compact_Sets
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.06%3A_Compact_Sets/4.6.E%3A_Problems_on_Compact_Sets
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.07%3A_More_on_Compactness
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.08%3A_Continuity_on_Compact_Sets._Uniform_Continuity
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.08%3A_Continuity_on_Compact_Sets._Uniform_Continuity/4.8.E%3A_Problems_on_Uniform_Continuity_Continuity_on_Compact_Sets
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.09%3A_The_Intermediate_Value_Property
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.09%3A_The_Intermediate_Value_Property/4.9.E%3A_Problems_on_the_Darboux_Property_and_Related_Topics
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.10%3A_Arcs_and_Curves._Connected_Sets
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.10%3A_Arcs_and_Curves._Connected_Sets/4.10.E%3A_Problems_on_Arcs_Curves_and_Connected_Sets
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.11%3A_Product_Spaces._Double_and_Iterated_Limits
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.11%3A_Product_Spaces._Double_and_Iterated_Limits/4.11.E%3A_Problems_on_Double_Limits_and_Product_Spaces
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.12%3A_Sequences_and_Series_of_Functions
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.12%3A_Sequences_and_Series_of_Functions/4.12.E%3A_Problems_on_Sequences_and_Series_of_Functions
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.13%3A_Absolutely_Convergent_Series._Power_Series
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.13%3A_Absolutely_Convergent_Series._Power_Series/4.13.E%3A_More_Problems_on_Series_of_Functions
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity
https://creativecommons.org/licenses/by/3.0
http://www.trillia.com/index.html
http://www.trillia.com/
http://www.trillia.com/zakon-analysisI.html


4.1.1 https://math.libretexts.org/@go/page/19042

4.1: Basic Definitions
We shall now consider functions whose domains and ranges are sets in some fixed (but otherwise arbitrary) metric spaces 
and  respectively. We write

for a function  with  and  is called the domain space, and  the range space, of 

I. Given such a function, we often have to investigate its "local behavior" near some point  In particular, if 
 may ask: Is it possible to make the function values  as near as we like (

near") to  by keeping  sufficiently close  to  i.e., inside some sufficiently small globe  If this is the case,
we say that  is continuous at  More precisely, we formulate the following definition.

A function  with  is said to be continuous at  iff  and, moreover, for each  (no matter
how small) there is  such that  for all  In symbols,

If  fails, we say that  is discontinuous at  and call  a discontinuity point of  This is also the case if  (since  is not
defined).

If  holds for each p in a set  we say that  is continuous on  If this is the case for  we simply say that  is
continuous.

Sometimes we prefer to keep  near  but different from  We then replace  in  by the set  i.e., the globe
without its center, denoted  and called the deleted  -globe about  This is even necessary if . Replacing  in 
by some  we then are led to the following definition.

Given  and  we say that  tends to  as  tends to  iff
for each  there is  such that  for all  In symbols,

This means that  is  -close to  when  is  -close to  and .

If  holds for some  we call  a limit of  at  There may be no such . We then say that  has no limit at  or that this limit
does not exist. If there is only one such  we write 

Note 1. Formula (2) holds "vacuously" (see Chapter 1,8 §§1-3, end remark) if  for some  Then any  is
a limit at  so a limit exists but is not unique. (We discard the case where  is a singleton.)

Note 2. However, uniqueness is ensured if  for all  as we prove below.

Observe that by Corollary 6 of Chapter 3, §14, the set  clusters at  iff

Thus we have the following corollary.

(S, ρ)
(T , ) ,ρ′

f : A → (T , )ρ′ (4.1.1)

f = A ⊆ (S, ρ)Df ⊆ (T , ) . SD′
f

ρ′ T f .

p ∈ S.
p ∈ A = ( so that f(p) is defined) we Df f(x) " ε−

f(p) x ( ) "close ′′ p, (δ)?Gp

f p.

 Definition

f : A → (T , ) ,ρ′ A ⊆ (S, ρ), p p ∈ A ε > 0
δ > 0 (f(x), f(p)) < ερ′ x ∈ A ∩ (δ).Gp

(∀ε > 0)(∃δ > 0) (∀x ∈ A ∩ (δ)){Gp

(f(x), f(p)) < ε,  or ρ′

f(x) ∈ (ε)Gf(p)
(4.1.2)

(1) f p p f . p ∉ A f(p)

(1) B ⊆ A, f B. B = A, f

x p p. (δ)Gp (1) (δ) −{p},Gp

(δ)G¬p δ p. p ∉ Df f(p) (1)
q ∈ T ,

 Definition

f : A → (T , ) , A ⊆ (S, ρ), p ∈ S,ρ′ q ∈ T , f(x) q x p(f(x) → q as x → p)
ε > 0 δ > 0 (f(x), q) < ερ′ x ∈ A ∩ (δ).G¬p

(∀ε > 0)(∃δ > 0) (∀x ∈ A ∩ (δ)) {G¬p

(f(x), q) < ε,  i.e. ρ′

f(x) ∈ (ε)Gq

(4.1.3)

f(x) ε q x δ p x ≠ p

(2) q, q f p. q f p,
q( for a given p), q = f(x).limx→p

A ∩ (δ) = ∅G¬p δ > 0. q ∈ T

p, T

A ∩ (δ) ≠ ∅G¬p δ > 0,

A p

(∀δ > 0) A ∩ (δ) ≠ ∅. ( Explain! )G¬p (4.1.4)
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If  clusters at  in  then a function  can have at most one limit at  i.e.

In particular, this holds if  and .

Proof

Suppose  has  limits,  and  at  By the Hausdorff property,

Also, by  there are  such that

Let  Then for  is in both  and , and such an  exists since 
 by assumption.

But this is impossible since  

For intervals, see Chapter 3, §14, Example ( .

 is continuous at  iff  as .

Proof

The straightforward proof from definitions is left to the reader.

Note 3. In formula  we excluded the case  by assuming that  This makes the behavior of  at  itself
irrelevant. Thus for the existence of a limit  at  it does not matter whether  or whether  But both conditions are
required for continuity at  (see Corollary 2 and Definition 1 .

Note 4. Observe that if  or  holds for some  it certainly holds for any  Thus we may always choose  as small as we
like. Moreover, as  is limited to  we may disregard, or change at will, the function values  for  ("local
character of the limit notion").

II. Limits in E*. If  or  is  we may let  or  For a precise definition, we rewrite  in
terms of   and 

This makes sense also if  or  We only have to use our conventions as to  or the metric  for  as
explained in Chapter 3, §11.

For example, consider

Here  has the form  and  while , as usual. Noting that  means 
 we can rewrite  as

This means that  becomes arbitrarily close to  for large .

 corollary 4.1.1

A p (S, ρ), f : A → (T , )p′ p;

f(x) is unique (if it exists).lim
x→p

(4.1.5)

A ⊇ (a, b) ⊂ (a < b)E1 p ∈ [a, b]

f two q r, p.

(ε) ∩ (ε) = ∅  for some ε > 0.Gq Gr (4.1.6)

(2), , > 0δ ′ δ ′′

(∀x ∈ A ∩ ( ))G¬p δ ′

(∀x ∈ A ∩ ( ))G¬p δ ′′

f(x) ∈ (ε) and Gq

f(x) ∈ (ε)Gr

(4.1.7)

δ = min( , ) .δ ′ δ ′′ x ∈ A ∩ (δ), f(x)G¬p (ε)Gq (ε)Gr x

A ∩ (δ) ≠ ∅G¬p

(ε) ∩ (ε) = ∅Gq Gr ( a contradiction!). □

h)

 corollary 4.1.2

f p (p ∈ )Df f(x) → f(p) x → p

(2), x = p x ∈ A ∩ (δ).G¬p f p

q p, p ∈ Df f(p) = q.
p )

(1) (2) δ, ≤ δ.δ ′ δ

x (δ),Gp f(x) x ∉ (δ)Gp

S T ( or  ) ,E∗ E1 x → ±∞ f(x) → ±∞. (2)

globes Gp :Gq

(∀ ) (∃ ) (∀x ∈ A ∩ ) f(x) ∈ .Gq Gp G¬p Gq (4.1.8)

p = ±∞ q = ±∞. ,G±∞ ρ′ ,E∗

f(x) → q as x → + (A ⊆ S = , p = +∞, q ∈ (T , )) .′′ ∞′′ E∗ ρ′ (4.1.9)

Gp (a, +∞], a ∈ ,E1 = (a, +∞),G¬p = (ε)Gq Gq x ∈ G¬p

x > a (x ∈ ) ,E1 ( )2′

(∀ε > 0)(∃a ∈ ) (∀x ∈ A|x > a) f(x) ∈ (ε),  or  (f(x), q) < ε.E1 Gq ρ′ (4.1.10)

f(x) q x(x > a)
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Next consider  as  " Here  and  Thus formula  yields (with 
 and  varying over 

similarly in other cases, which we leave to the reader.

Note 5. In  we may take  (the naturals). Then  is a sequence in  Writing  for  set 
and  to obtain

This coincides with our definition of the limit  of a sequence  (see Chapter 3, §14). Thus limits of sequences are a special
case of function limits. Theorems on sequences can be obtained from those on functions  by simply taking 
and  as above.

Note 6. Formulas  and  make sense sense also if  (respectively,  since they do not involve any mention
of  We shall use such formulas also for functions  with  or  as the case may be.

III. Relative Limits and Continuity. Sometimes the desired result  or  does not hold in full, but only with  replaced by a
smaller set . Thus we may have

In this case, we call  a relative limit of  at  over  and write

or

 is called the path over which  tends to  If, in addition,  and  we say that  is relatively continuous at  over 
 then  holds with  replaced by . Again, if this holds for every  we say that  is relatively continuous on  Clearly,

if  this yields ordinary (nonrelative) limits and continuity. Thus relative limits and continuity are more general.

Note that for limits over a path  is chosen from  or  only. Thus the behavior of  outside  becomes irrelevant, and
so we may arbitrarily redefine  on  For example, if  but  exists, we may define  thus
making  relatively continuous at  We also may replace  by  or restrict  to  i.e., replace 
by the function  defined by  for  (briefly,  on .

A particularly important case is

Then inequalities are defined in  so we may take

Then, writing  for  and  we obtain from formula 

If  holds, we call  a left limit of  at  and write

If, in addition,  we say that  is left continuous at  Similarly, taking

we obtain right limits and continuity. We write

iff  is a right limit of  at  i.e., if  holds with all inequalities reversed.

f(x) → +∞4 x → −∞ = (−∞, a)G¬p = (b, +∞].Gq ( )2′

S = T = ,E∗ x )E i

(∀b ∈ ) (∃a ∈ ) (∀x ∈ A|x < a) f(x) > b;E1 E1 (4.1.11)

(3), A = N f : N → (T , )ρ′ T . m x, = f(m)um

a = k ∈ N

(∀ε > 0)(∃k)(∀m > k) ∈ (ε);  i.e.,  ( , q) < ε.um Gq ρ′ um (4.1.12)

q { }um

f : A → (T , )ρ′ A = N

S = E∗

(3) (4) S = E1 S = T = )E1

±∞. f : A → T , A ⊆ S ⊆ E1 T ⊆ ,E1

(1) (2) A

B ⊆ A

(∀ε > 0)(∃δ > 0) (∀x ∈ B ∩ (δ)) f(x) ∈ (ε).G¬p Gq (4.1.13)

q f p B

" f(x) → q as x → p over B " (4.1.14)

f(x) = q ( if q is unique );lim
x→p,x∈B

(4.1.15)

B x p. p ∈ Df q = f(p), f p

B; (1) A B p ∈ B, f B.
B = A = ,Df

B, x B B −{p} f B

f −B. p ∉ B f(x) = qlimx→p,x∈B f(p) = q,
f p( over B). (S, ρ) (B, ρ)( if p ∈ B), f B, f

g : B → (T , )ρ′ g(x) = f(x) x ∈ B g = f B)

A ⊆ S ⊆ ,  e.g., S = .E∗ E1 (4.1.16)

S,

B = {x ∈ A|x < p} (points in A,  preceding p). (4.1.17)

Gq (ε)Gq a = p −δ, (2)

(∀ ) (∃a < p)(∀x ∈ A|a < x < p) f(x) ∈ .Gq Gq (4.1.18)

(5) q f p

" f(x) → q as x → " (" x tends to p ) .p−  from the left ′ (4.1.19)

q = f(p), f p.

B = {x ∈ A|x > p}, (4.1.20)

f(x) → q as x → p+ (4.1.21)

q f p, (5)
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If the set  in question clusters at  the relative limit (if any) is unique. We then denote the left and right limit, respectively, by 
 and  and we write

With the previous notation, if  as  over a path  and also over  then  as  over .

Hence if  and  we have

We now illustrate our definitions by a diagram in  representing a function  by its graph, i.e., points  such that
.

Here

is an interval on the  -axis. The dotted lines show how to construct an interval

on the  -axis, satisfying formula  in Figure  formulas  and  in Figure  or formula  in Figure  The point  in
each diagram belongs to the graph; i.e.,  In Figure  is continuous at   ). However, it is only
left-continuous at  in Figure  and it is discontinuous at  in Figure  though  and  exist. (Why?)

(a) Let  be constant on  i.e.

B p,
f ( )p− f ( ) ,p+

f(x) = f ( )  and  f(x) = f ( ) .lim
x→p−

p− lim
x→p+

p+ (4.1.22)

 corollary 4.1.3

f(x) → q x → p B, D, f(x) → q x → p B ∪ D

⊆Df E∗ p ∈ ,E∗

q = f(x) iff q = f ( ) = f ( ) . ( Exercise! )lim
x→p

p− p+ (4.1.23)

E2 f : →E1 E1 (x, y)
y = f(x)

(ε) = (q −ε, q +ε)Gq (4.1.24)

y

(p −δ, p +δ) = Gp (4.1.25)

x (1) 13, (5) (6) 14, (2) 15. Q

Q = (p, f(p)). 13, f p( and also at  p1

p 14, p 15, f ( )p− f ( )p+

 Example 4.1.1

f : A → T B ⊆ A;

f(x) = q for a fixed q ∈ T  and all x ∈ B. (4.1.26)
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Then  is relatively continuous on  and  as  over  at each  (Given  take an arbitrary . Then

as required; similarly for continuity.)

(b) Let  be the  dentity map on  i.e.,

f B, f(x) → q x → p B, p. ε > 0, δ > 0

(∀x ∈ B ∩ (δ)) f(x) = q ∈ (ε),G¬p Gq (4.1.27)

f i A ⊂ (S, ρ);

(∀x ∈ A) f(x) = x. (4.1.28)
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Then, given  take  to obtain, for ,

Thus by  is continuous at any  hence on .

(c) Define  by

(This is the Dirichlet function, so named after Johann Peter Gustav Lejeune Dirichlet.)

No matter how small  is, the globe

(even the deleted globe) contains both rationals and irrationals. Thus as  varies over  takes on both values, 0 and 
 many times and so gets out of any  with .

Hence for any  formula  fails if we take  say. Thus  has no limit at any  and hence is
discontinuous everywhere! However,  is relatively continuous on the set  of all rationals by Example .

(d) Define  by

ε > 0, δ = ε p ∈ A

(∀x ∈ A ∩ (δ)) ρ(f(x), f(p)) = ρ(x, p) < δ = ε.Gp (4.1.29)

(1), f p ∈ A, A

f : →E1 E1

f(x) = 1 if x is rational, and f(x) = 0 otherwise. (4.1.30)

δ

(δ) = (p −δ, p +δ)Gp (4.1.31)

x (δ), f(x)G¬p

1, (ε),Gq q ∈ , ε <E1 1
2

q, p ∈ ,E1 (2) ε = ,1
4

f p ∈ E1

f R (a)

f : →E1 E1

f(x) = [x](=  the integral part of x;  see Chapter 2, §10). (4.1.32)
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Thus  for  for  etc. Then  is discontinuous at  if  is an integer (why?) but
continuous at any other 

However, left and right limits exist at each  even if   In fact,

and

hence  and   is right continuous on  See Figure 

(e) Define  by

(This is the so-called signum function, often denoted by sgn.)

Then (Figure 17

and

Thus, as in ( d ), we infer that  is discontinuous at  but continuous at each  Also,  and 
Redefining  or  we can make  right (respectively, left) continuous at  but not both.

f(x) = 0 x ∈ [0, 1), f(x) = 1 x ∈ [1, 2), f p p

p ( restrict f  to a small  (δ) so as to make it constant) Gp

p ∈ ,E1 p = n( an integer ).

f(x) = n, x ∈ (n, n +1) (4.1.33)

f(x) = n −1, x ∈ (n −1, n), (4.1.34)

f ( ) = nn+ f ( ) =n− n −1; f .E1 16.

f : →E1 E1

f(x) =  if x ≠ 0,  and f(0) = 0.
x

|x|
(4.1.35)

)

f(x) = −1 if x < 0 (4.1.36)

f(x) = 1 if x > 0. (4.1.37)

f 0, p ≠ 0. f ( ) = 10+ f ( ) = −1.0−

f(0) = 1 f(0) = −1, f 0,
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(f) Define  by (see Figure 18

Any globe  about 0 contains points at which  as well as those at which  or  (take 
 for large integers ; in fact, the graph "oscillates" infinitely many times between  and  Thus by the same

argument as in  has no limit at 0 (not even a left or right limit) and hence is discontinuous at  No attempt at redefining 
at 0 can restore even left or right continuity, let alone ordinary continuity, at 

f : →E1 E1 )

f(x) = sin  if x ≠ 0,  and f(0) = 0.
1

x
(4.1.38)

(δ)G0 f(x) = 1, f(x) = −1 f(x) = 0
x = 2/(nπ) n) −1 1.

(c), f 0. f

0.
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(g) Define 

Let  be any line in  through  given parametrically by

so  and  As is easily seen, for  (constant) if  Hence

i.e.,  for any  and any deleted globe about .

By  then,  as  over the path  Thus  has a relative limit  at  over any line  but this
limit is different for various choices of  i.e., for different lines through  No ordinary limit at  exists (why?);  is not even
relatively continuous at  over the line  unless  (which is the case only if the line is one of the coordinate axes
(why?)).

This page titled 4.1: Basic Definitions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The Trilla
Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

f : → byE2 E1

f( ) = 0 and f( ) =  if  = ( , ) ≠ .0
¯̄̄

x̄̄̄
x1x2

+x2
1 x2

2

x̄̄̄ x1 x2 0
¯̄̄

(4.1.39)

B E2 ,0
¯̄̄

= t , t ∈ ,  fixed (see Chapter 3, §§4-6 ),x̄̄̄ u⃗  E1 u⃗  (4.1.40)

= tx1 u1 = t .x2 u2 ∈ B, f( ) = f( )x̄̄̄ x̄̄̄ ū̄̄ ≠ .x̄̄̄ 0
¯̄̄

(∀ ∈ B ∩ (δ)) f( ) = f( ),x̄̄̄ G
¬0

¯̄̄ x̄̄̄ ū̄̄ (4.1.41)

ρ(f( ), f( )) = 0 < ε,x̄̄̄ ū̄̄ ε > 0 0
¯̄̄

( ) ,2′ f( ) → f( )x̄̄̄ ū̄̄ →x̄̄̄ 0¯̄̄ B. f f( )ū̄̄ ,0¯̄̄ = t ,x̄̄̄ ū̄̄

,ū̄̄ .0¯̄̄ 0¯̄̄ f

0¯̄̄ = tx̄̄̄ u⃗  f( ) = 0ū̄̄
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4.1.E: Problems on Limits and Continuity

Prove Corollary  Why can one interchange  and  here?

Prove Corollary  By induction, extend its first clause to unions of  paths. Disprove it for infinite unions of paths (see
Problem 9 in §3).

Prove that a function  is continuous at  iff 

Show that relative limits and continuity at  (over  are equivalent to the ordinary ones if  is a neighborhood of  (Chapter
3, §12); for example, if it is some .

Discuss Figures  in detail, comparing  and  see Problem  
Observe that in Figure  different values of  result at  and  for the same  Thus  depends on both  and the choice of 

Complete the missing details in Examples  redefine  to be the least integer  Show that  is then left-
continuous on .

Give explicit definitions (such as  for 

 
In each case, draw a diagram (such as Figures  and determine whether the domain and range of  must both be in .

Define  by 

 
Show that  exists, yet  is discontinuous at  Make it continuous by redefining  

 

 Exercise 4.1.E. 1

2. (δ)Gp (δ)G¬p

 Exercise 4.1.E. 2

3. n

 Exercise 4.1.E. 2′

f : → (T , )E1 ρ′ p

f(p) = f ( ) = f ( ) .p− p+ (4.1.E.1)

 Exercise 4.1.E. 3

p B) B p

Gp

 Exercise 4.1.E. 4

13 −15 f(p), f ( ) ,p− f ( ) ;p+ .2′

13, δ p p1 ε. δ ε

p.

 Exercise 4.1.E. 5

(d) −(g). In(d), f(x) ≥ x. f

E1

 Exercise 4.1.E. 6

(3))

 (a)  f(x) = −∞;limx→+∞

 (c)  f(x) = +∞;limx→p

 (e)  f(x) = +∞;limx→p−

 (b)  f(x) = q;limx→−∞

 (d)  f(x) = −∞;limx→p

 (f)  f(x) = −∞.limx→p+

(4.1.E.2)

13 −15) f E∗

 Exercise 4.1.E. 7

f : →E1 E1

f(x) =  if x ≠ 1,  and f(1) = 0.
−1x2

x −1
(4.1.E.3)

f(x) = 2limx→1 f p = 1. f(1).

[ Hint: For x ≠ 1, f(x) = x +1.  Proceed as in Example (b), using the deleted globe  (δ). ]G¬p
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Find  and check continuity at  in the following cases, assuming that  is the set of all  for which
the given expression for  has sense. Specify that set. 

 
 

Here 

 
We show that  is continuous at  and so (by Corollary 2  

 
We show that  is continuous at , and so (by Corollary 2) 

 
Using formula  we fix an arbitrary  and look for a  such that 

 
or, by putting everything over a common denominator and using properties of absolute values, 

 
(Usually in such problems, it is desirable to factor out  
By Note  we may assume  Then  implies  i.e.,  so 

 
Hence (6) will certainly hold if 

 
To achieve it, we choose  Then, reversing all steps, we obtain  and hence 

 Exercise 4.1.E. 8

f(x)limx→p p = ADf x ∈ E1

f(x)

 (a)  (2 −3x −5) ;  (b) limx→2 x2 limx→1
3x+2

2x−1

 (c)  ( −1) ;limx→−1
−4x2

x+2

 (e)  ;limx→a
−x4 a4

x−a

 (g)  limx→−1 ( )1

+1x2

2

 (d)  limx→2
−8x3

x−2

 (f)  limx→0 ( )x

x+1

3 (4.1.E.4)

[ Example solution: Find  .limx→1
5 −1x2

2x+3

f(x) = ; A = −{− } ; p = 1.
5 −1x2

2x +3
E1 3

2
(4.1.E.5)

f p, )

f(x) = ; A = −{− };p = 1.
5 −1x2

2x +3
E1

3

2
(4.1.E.6)

f p

f(x) = f(p) = f(1) = .lim
x→p

4

5
(4.1.E.7)

(1), ε > 0 δ

(∀x ∈ A ∩ (δ)) ρ(f(x), f(1)) = |f(x) −f(1)| < ε,  i.e., , − < ε;Gp

∣

∣
∣

5 −1x2

2x +3

4

5

∣

∣
∣ (4.1.E.8)

|x −1| < ε whenever |x −1| < δ and x ∈ A.
|25x +17|

5|2x +3|
(4.1.E.9)

x −p. )

4, 0 < δ ≤ 1. |x −1| < δ −1 ≤ x −1 ≤ 1 0 ≤ x ≤ 2,

5|2x +3| ≥ 15 and |25x +17| ≤ 67. (4.1.E.10)

|x −1| < ε,  i.e., if |x −1| < .
67

15

15ε

67
(4.1.E.11)

δ = min(1, 15ε/67). (6),

f(x) = f(1) = 4/5. ]limx→1
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Find (using definitions, such as  

Prove that if 

 
then for each scalar ,  

Define  by 

 
Show that  is continuous at  i.e., 

 
Draw an approximate graph (it is contained between the lines .  

Discuss the statement:  is continuous at  iff 

Define  by 

 
and 

 
Show that  is continuous at 0 but nowhere else. How about relative continuity?

 Exercise 4.1.E. 9

(3))

 (a)  ;limx→+∞
1
x

 (c)  ;limx→+∞
x3

1−x2

 (e)  ;limx→3−
x−1
x−3

 (b)  ;limx→−∞
3x+2

2x−1

 (d)  ;limx→3+
x−1
x−3

 (f)  .limx→3
∣∣

x−1
x−3

∣∣

(4.1.E.12)

 Exercise 4.1.E. 10

f(x) = ∈ ( ) ,lim
x→p

q̄̄ En ∗C n (4.1.E.13)

c

cf(x) = c .lim
x→p

q̄̄ (4.1.E.14)

 Exercise 4.1.E. 11

f : →E1 E1

f(x) = x ⋅ sin  if x ≠ 0,  and f(0) = 0.
1

x
(4.1.E.15)

f p = 0,

f(x) = f(0) = 0.lim
x→0

(4.1.E.16)

y = ±x)

[ Hint:  x ⋅ sin −0 ≤ |x|. ]∣∣
1
x

∣∣

 Exercise 4.1.E. ∗12

f p

(∀ ) (∃ ) f [ ] ⊆ .Gf(p) Gp Gp Gf(p) (4.1.E.17)

 Exercise 4.1.E. 13

f : →E1 E1

f(x) = x if x is rational  (4.1.E.18)

f(x) = 0 otherwise . (4.1.E.19)

f
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Let  Define  by 

 
and 

 
for some natural  and  Show that  is continuous at each irrational, but at no rational, point  
[Hints: If  is irrational, fix  and an integer  In  there are only finitely many irreducible fractions 

 
so one of them, call it  is closest to  Put 

 
and show that 

 
distinguishing the cases where  is rational and irrational. 
If  is rational, use the fact that each  contains irrationals  at which 

 
Take 

Given two reals,  and  define  by 

 
here  is the integral part of . 
(i) Is  left or right continuous at 0  
(ii) Same question with .

Prove that if  is discrete, then all functions  are continuous. What if  is discrete but  is not?

4.1.E: Problems on Limits and Continuity is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 4.1.E. 14

A = (0, +∞) ⊂ .E1 f : A → E1

f(x) = 0 if x is irrational  (4.1.E.20)

f(x) =  if x = (in lowest terms )
1

n

m

n
(4.1.E.21)

m n. f p ∈ A.

p ε > 0 k > 1/ε. (1),Gp

> 0 with n ≤ k,
m

n
(4.1.E.22)

r, p.

δ = min(1, |r −p|) (4.1.E.23)

(∀x ∈ A ∩ (δ)) |f(x) −f(p)| = f(x) < ε,Gp (4.1.E.24)

x

p (δ)Gp x

f(x) = 0⟹ |f(x) −f(p)| = f(p). (4.1.E.25)

ε < f(p). ]

 Exercise 4.1.E. 15

p > 0 q > 0, f : →E1 E1

f(0) = 0 and f(x) =( ) ⋅ [ ]  if x ≠ 0.
x

p

q

x
(4.1.E.26)

[q/x] q/x

f ?

f(x) = [x/p](q/x)

 Exercise 4.1.E. 16

(S, ρ) f : S → (T , )ρ′ (T , )ρ′ (S, ρ)
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4.2: Some General Theorems on Limits and Continuity
I. In §1 we gave the so-called " " definition of continuity. Now we present another (equivalent) formulation, known as the
sequential one. Roughly, it states that  is continuous iff it carries convergent sequences  into convergent "image
sequences"  More precisely, we have the following theorem.

(i) A function

is continuous at a point  iff for every sequence  such that  in  we have  in 
 In symbols,

(ii) Similarly, a point  is a limit of  at  iff

Note that in (2') we consider only sequences of terms other than .

Proof

We first prove (ii). Suppose  is a limit of  at  i.e. (see §1),

Thus, given  there is  (henceforth fixed) such that

We want to deduce (2'). Thus we fix any sequence

Then

and  contains all but finitely many  Then these  satisfy the conditions stated in (3). Hence  for
all but finitely many  As  is arbitrary, this implies  (by the definition of  as is required in
(2'). Thus (2)  (2').

Conversely, suppose (2) fails, i.e., its negation holds. (See the rules for forming negations of such formulas in Chapter 1,
§§1-3.) Thus

by the rules for quantifiers. We fix an  satisfying (4), and let

By (4), for each  there is  such that

and

We fix these  As  and  we obtain a sequence

ε, δ

f { } ⊆xm Df

{f ( )} .xm

 Theorem  (sequential criterion of continuity).4.2.1

f : A → (T , ) ,  with A ⊆ (S, ρ),ρ′ (4.2.1)

p ∈ A { } ⊆ Axm → pxm (S, ρ), f ( ) → f(p)xm

(T , ) .ρ′

(∀{ } ⊆ A| → p) f ( ) → f(p).xm xm xm (4.2.2)

q ∈ T f p(p ∈ S)

(∀{ } ⊆ A −{p}| → p) f ( ) → q.xm xm xm (4.2.3)

p

q f p,

(∀ε > 0)(∃δ > 0) (∀x ∈ A ∩ (δ)) f(x) ∈ (ε).G¬p Gq (4.2.4)

ε > 0, δ > 0

f(x) ∈ (ε) whenever x ∈ A, x ≠ p,  and x ∈ (δ).Gq Gp (4.2.5)

{ } ⊆ A −{p}, → p.xm xm (4.2.6)

(∀m) ∈ A and  ≠ p,xm xm (4.2.7)

(δ)Gp .xm xm f ( ) ∈ (ε)xm Gq

m. ε f ( ) → qxm f ( )),limm→∞ xm

⟹

(∃ε > 0)(∀δ > 0) (∃x ∈ A ∩ (δ)) f(x) ∉ (ε)G¬p Gq (4.2.8)

ε

= , m = 1, 2, …δm

1

m
(4.2.9)

δm (depending on  )xm δm

∈ A ∩ ( )xm G¬p

1

m
(4.2.10)

f ( ) ∉ (ε), m = 1, 2, 3, …xm Gq (4.2.11)

.xm ∈ Axm ≠ p,xm
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Also, as  we have  and hence . On the other hand, by (6), the image
sequence  canverge to  (why?), i.e., (2') fails. Thus we see that (2') fails or holds accordingly as (2) does.

This proves assertion (ii). Now, by setting  in (2) and (2'), we also obtain the first clause of the theorem, as to
continuity. 

Note 1. The theorem also applies to relative limits and continuity over a path  (just replace  by  in the proof), as well as to the
cases  and  in  (for  can be treated as a metric space; see the end of Chapter 3, §11).

If the range space  is complete (Chapter 3, §17), then the image sequences  converge iff they are Cauchy. This
leads to the following corollary.

Corollary 1. Let  be complete, such as  Let a map  with  and a point  be given. Then for 
to have a limit at  it suffices that  be Cauchy in  whenever  and  in 

Indeed, as noted above, all such  converge. Thus it only remains to show that they tend to one and the same limit  as is
required in part (ii) of Theorem 1. We leave this as an exercise (Problem 1 below).

With the assumptions of Corollary 1, the function  has a limit at  iff for each  there is  such that

In symbols,

Proof

Assume (7). To show that  has a limit at  we use Corollary 1. Thus we take any sequence

and show that  is Cauchy, i.e.,

To do this, fix an arbitrary  By (7), we have

for some  Now as  there is  such that

As  we even have  Hence by (7'),

i.e.,  is Cauchy, as required in Corollary 1, and so  has a limit at . This shows that (7) implies the existence of
that limit.

The easy converse proof is left to the reader. (See Problem 2.) 

II. Composite Functions. The composite of two functions

denoted

{ } ⊆ A −{p}.xm (4.2.12)

∈ ( ) ,xm Gp
1
m

ρ ( , p) < 1/m → 0,xm → pxm

{f ( )}xm q

q = f(p)

□

B A B

p = ±∞ q = ±∞ E∗ E∗

(T , )ρ′ {f ( )}xm

(T , )ρ′ .En f : A → T A ⊆ (S, ρ) p ∈ S f

p, {f ( )}xm (T , )ρ′ { } ⊆ A −{p}xm → pxm (S, ρ).

{f ( )}xm q,

 Theorem  (Cauchy criterion for functions).4.2.2

f p ε > 0, δ > 0

(f(x), f ( )) < ε for all x, ∈ A ∩ (δ).ρ′ x′ x′ G¬p (4.2.13)

(∀ε > 0)(∃δ > 0) (∀x, ∈ A ∩ (δ)) (f(x), f ( )) < ε.x′ G¬p ρ′ x′ (4.2.14)

f p,

{ } ⊆ A −{p} with  → pxm xm (4.2.15)

{f ( )}xm

(∀ε > 0)(∃k)(∀m, n > k) (f ( ) , f ( )) < ε.ρ′ xm xn (4.2.16)

ε > 0.

(∀x, ∈ A ∩ (δ)) (f(x), f ( )) < ε,x′ G¬p ρ′ x′ (4.2.17)

δ > 0. → p,xm k

(∀m, n > k) , ∈ (δ).xm xn Gp (4.2.18)

{ } ⊆ A −{p},xm , ∈ A ∩ (δ).xm xn G¬p

(∀m, n > k) (f ( ) , f ( )) < ε;ρ′ xm xn (4.2.19)

{f ( )}xm f p

□

f : S → T  and g : T → U, (4.2.20)

g ∘ f (in that order), (4.2.21)
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is by definition a map of  into  given by

Our next theorem states, roughly, that  is continuous if  and  are. We shall use Theorem 1 to prove it.

Let  and  be metric spaces. If a function  is continuous at a point  and if  is
continuous at the point  then the composite function  is continuous at .

Proof

The domain of  is  So take any sequence

As  is continuous at  formula (1') yields  where  is in  Hence, as  is continuous at 
 we have

and this holds for any  with  Thus  satisfies condition (1') and is continuous at  

Caution: The fact that

does not imply

(see Problem 3 for counterexamples).

Indeed, if  and  we obtain, as before,  but not  Thus we cannot re-apply
formula (2') to obtain  since (2') requires that  The argument still works if  is continuous at  (then
(1') applies) or if  never equals  then . It even suffices that  for  in some deleted globe about  (see §1,
Note 4). Hence we obtain the following corollary.

Corollary 2. With the notation of Theorem 3, suppose

Then

provided, however, that

(i)  is continuous at  or

(ii)  for  in some deleted globe about  or

(iii)  is one to one, at least when restricted to some .

Indeed, (i) and (ii) suffice, as was explained above. Thus assume (iii). Then  can take the value  at most once, say, at some point

As  let

Then  so  on  and case (iii) reduces to (ii).

We now show how to apply Corollary 2.

S U

(g ∘ f)(x) = g(f(x)), x ∈ S. (4.2.22)

g ∘ f g f

 Theorem 4.2.3

(S, ρ), (T , ) ,ρ′ (U, )ρ′′ f : S → T p ∈ S, g : T → U

q = f(p), g ∘ f p

g ∘ f S.

{ } ⊆ S with  → p.xm xm (4.2.23)

f p, f ( ) → f(p),xm f ( )xm T = .Dg g

f(p),

g (f ( )) → g(f(p)),  i.e., (g ∘ f) ( ) → (g ∘ f)(p),xm xm (4.2.24)

{ } ⊆ Sxm → p.xm g ∘ f p. □

f(x) = q and  g(y) = rlim
x→p

lim
y→q

(4.2.25)

g(f(x)) = rlim
x→p

(4.2.26)

{ } ⊆ S −{p}xm → p,xm f ( ) → q,xm f ( ) ≠ q.xm

g (f ( )) → rxm f ( ) ≠ q.xm g q

f(x) q f( ) ≠ qxm f(x) ≠ q x p(

f(x) → q\)as\(x → p,  and g(y) → r as y → q. (4.2.27)

g(f(x)) → r as x → p, (4.2.28)

g q,

f(x) ≠ q x p,

f (δ)G¬p

f q

∈ (δ).x0 G¬p (4.2.29)

≠ p,x0

= ρ ( , p) > 0.δ ′ x0 (4.2.30)

∉ ( ) ,x0 G¬p δ ′ f(x) ≠ q ( ) ,G¬p δ ′
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Note 2. Suppose we know that

Using this fact, we often pass to another variable  setting  where  is such that  for some  We shall
say that the substitution (or "change of variable")  is admissible if one of the conditions (i), (ii), or (iii) of Corollary 2
holds. Then by Corollary 2,

(yielding the second limit).

(A) Let

Then

For a proof, let  be the integral part of  Then for ,

As  tends to  over integers, and by rules for sequences,

with  as in Chapter 3, §15. Similarly one shows that also

Thus (8) implies that also  (see Problem 6 below).

Remark. Here we used Corollary 2(ii) with

The substitution  is admissible since  never equals  its limit, thus satisfying Corollary 2(ii).

(B) Quite similarly, one shows that also

See Problem 5.

(C) In Examples  and  we now substitute  This is admissible by Corollary 2(ii) since the dependence between 
and  is one to one. Then

Thus  and  yield

r = g(y) exists.lim
y→q

(4.2.31)

x, y = f(x) f q = f(x)limx→p p.

y = f(x)

g(y) = r = g(f(x))lim
y→q

lim
x→p

(4.2.32)

 Example 4.2.1

h(x) =  for |x| ≥ 1.(1 + )
1

x

x

(4.2.33)

h(x) = e.lim
x→+∞

(4.2.34)

n = f(x) = [x] x. x > 1

≤ h(x) ≤ . ( Verify! )(1 + )
1

n +1

n

(1 + )
1

n

n+1

(4.2.35)

x → +∞, n +∞

= (1 + ) = 1 ⋅ = 1 ⋅ e = e,lim
n→∞

(1 + )
1

n

n+1

lim
n→∞

1

n
(1 + )

1

n

n

lim
n→∞

(1 + )
1

n

n

(4.2.36)

e

= e.lim
n→∞

(1 + )
1

n +1

n

(4.2.37)

h(x) = elimx→+∞

f(x) = [x], q = +∞,  and g(n) = .(1 + )
1

n

n

(4.2.38)

n = f(x) f(x) = n +∞,

= e.lim
x→−∞

(1 + )
1

x

x

(4.2.39)

(A) (B), x = 1/z. x

z

z = →  as x → +∞,  and z →  as x → −∞.
1

x
0+ 0− (4.2.40)

(A) (B)
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Hence by Corollary 3 of §1, we obtain

This page titled 4.2: Some General Theorems on Limits and Continuity is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

(1 +z = (1 +z = e.lim
z→0+

)1/z lim
z→0−

)1/z (4.2.41)

(1 +z = e.lim
z→0

)1/z (4.2.42)
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4.2.E: More Problems on Limits and Continuity

Complete the proof of Corollary 1. 
 

 
By Chapter 3, §14, Corollary  is also the limit of 

 
so, by assumption, 

 
Hence  and  must have the same limit 

Complete the converse proof of Theorem 2 (cf. proof of Theorem 1 in 
Chapter 3, §17).

Define  by setting 
(i)  if  and  or 
(ii)  if  is rational and  otherwise;  as in . 
In both cases, show that

Prove Theorem 3 from "  " definitions. Also prove (both ways) that if  is relatively continuous on  and  on  then 
 is relatively continuous on .

Complete the missing details in Examples (A) and (B). 
[Hint for (B): Verify that 

 Given  with 

 Exercise 4.2.E. 1

[ Hint: Consider  {f ( )}  and  {f ( )} ,  with xm x′
m

→ p and  → p.xm x′
m (4.2.E.1)

4, p

, , , , … ,x1 x′
1 x2 x′

2 (4.2.E.2)

f ( ) , f ( ) , …  converges (to q,  say ).x1 x′
1 (4.2.E.3)

{f ( )}xm {f ( )}x′
m q. (Why?)]

 Exercise 4.2.E. ∗2

 Exercise 4.2.E. 3

f , g : →E1 E1

f(x) = 2; g(y) = 3 y ≠ 2, g(2) = 0;

f(x) = 2 x f(x) = 2x g (i)

f(x) = 2 and  g(y) = 3 but not  g(f(x)) = 3.lim
x→1

lim
y→2

lim
x→1

(4.2.E.4)

 Exercise 4.2.E. 4

ε, δ f B, g f [B],

g∘ f B

 Exercise 4.2.E. 5

= = =(1 + ) → e. ](1 − )
1

n+1

−n−1

( )
n

n+1

−n−1

( )
n+1

n

n+1
1

n
(1 + )

1

n

n

(4.2.E.5)

 Exercise 4.2.E. 6

⇒ 6. f , g,h : A → ,A ⊆ (S, ρ),E∗

f(x) ≤ h(x) ≤ g(x) (4.2.E.6)
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for  for some  Prove that if 

 
also then 

 
Use Theorem 1. 
[Hint: Take any 

 
Then  and 

 
Now apply Corollary 3 of Chapter 

 Given  with  and  as   prove the following: 
(i) If  then 

 
(ii) (Passage to the limit in inequalities.) If 

 
then  (Observe that here  clusters at  necessarily, so the limits are unique.) 
[Hint: Proceed as in Problem  use Corollary 1 of Chapter 

Do Problems 6 and 7 using only Definition 2 of §1. 

Do Examples  of §1 using Theorem 1. 
[Hint: For  use also Example (a) in Chapter 

Addition and multiplication in  may be treated as functions 

 
with 

x ∈ (δ) ∩AG¬p δ > 0.

f(x) = g(x) = q,lim
x→p

lim
x→p

(4.2.E.7)

h(x) = q.lim
x→p

(4.2.E.8)

{ } ⊆ A−{p} with  → p.xm xm (4.2.E.9)

f ( ) → q, g ( ) → q,xm xm

(∀ ∈ A∩ (δ)) f ( ) ≤ h ( ) ≤ g ( ) .xm G¬p xm xm xm (4.2.E.10)

3, §15. ]

 Exercise 4.2.E. 7

⇒ 7. f , g : A → ,A ⊆ (S, ρ),E∗ f(x) → q g(x) → r x → p (p ∈ S),

q > r,

(∃δ > 0) (∀x ∈ A∩ (δ)) f(x) > g(x).G¬p (4.2.E.11)

(∀δ > 0) (∃x ∈ A∩ (δ)) f(x) ≤ g(x),G¬p (4.2.E.12)

q ≤ r. A p

6; 3, §15. ]

 Exercise 4.2.E. 8

[ Hint: Here prove 7( ii ) first. ]

 Exercise 4.2.E. 9

(a) −(d)

(c), 3, §16. ]

 Exercise 4.2.E. 10

E1

f , g : →E2 E1 (4.2.E.13)
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Show that  and  are continuous on  (see footnote 2 in Chapter 3 §15). Similarly, show that the standard metric 

 
is a continuous mapping from  to . 

Using Corollary 2 and formula  find  for a fixed 

 Let  in  Prove that . 
 

 
with inequalities reversed if  Then proceed as in Example  noting that 

 
by Problem 20 of Chapter 

 Given  with 

 
Prove that 
(a) if  then also ; 
(b) if  then also . 
Do it it two ways: 
(i) Use definitions only, such as  in . 
(ii) Use Problem 10 of Chapter 2, §13 and the sequential criterion.

 Prove that 
(i) if  in  then 

 
(ii) if  then 

f(x, y) = x+y and g(x, y) = xy. (4.2.E.14)

f g E2

ρ(x, y) = |x−y| (4.2.E.15)

E2 E1

[ Hint: Use Theorems 1, 2,  and, 4 of Chapter 3, §15 and the sequential criterion. ]

 Exercise 4.2.E. 11

(9), (1 ±mxlimx→0 )1/x m ∈ N .

 Exercise 4.2.E. 12

⇒ 12. a > 0 .E1 = 1limx→0 ax

[ Hint: Let n = f(x) be the integral part of  (x ≠ 0).  Verify that 1
x

≤ ≤  if a ≥ 1,a−1/(n+1) ax a1/n (4.2.E.16)

0 < a < 1. (A),

= 1 =lim
n→∞

a1/n lim
n→∞

a−1/(n+1) (4.2.E.17)

3, §15. ( Explain! )]

 Exercise 4.2.E. 13

⇒ 13. f , g : A → ,A ⊆ (S, ρ),E∗

f ≤ g  for x in  (δ) ∩A.G¬p (4.2.E.18)

f(x) = +∞,limx→p g(x) = +∞limx→p

g(x) = −∞,limx→p f(x) = −∞limx→p

( )2′ §1

 Exercise 4.2.E. 14

⇒ 14.

a > 1 ,E1

= +∞ and  = 0;lim
x→+∞

ax

x
lim

x→+∞

a−x

x
(4.2.E.19)

0 < a < 1,

= 0 and  = +∞;lim
x→+∞

ax

x
lim

x→+∞

a−x

x
(4.2.E.20)
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(iii) if  and  then 

 
 if  and  then 

 
[Hint: (i) From Problems 17 and 10 of Chapter  obtain 

 
Then proceed as in Examples  (iii) reduces to (i) by the method used in 
Problem 18 of Chapter 

 For a map  show that the following statements are equivalent: 
(i)  is continuous on . 
(ii) . 
(iii) . 
(iv)  is closed in  whenever  is closed in .  
(v)  is open in  whenever  is open in . 
[Hints: : Use Theorem 3 of Chapter } 3, §16 and the sequential criterion to show that 

 
(ii)  Let  Then  so by , 

 
Hence 

 
(iii)  If  is closed,  (Chapter 3, §16, Theorem 4(ii)), so by (iii),  

 
 Pass to complements in . 

 Assume  Take any  and use Definition 1 in 

Let  be continuous. Define  by 

a > 1 0 ≤ q ∈ ,E1

= +∞ and  = 0;lim
x→+∞

ax

xq
lim

x→+∞

a−x

xq
(4.2.E.21)

( iv ) 0 < a < 1 0 ≤ q ∈ ,E1

= 0 and  = +∞.lim
x→+∞

ax

xq
lim

x→+∞

a−x

xq
(4.2.E.22)

3, §15,

lim = +∞.
an

n
(4.2.E.23)

(A) −(C);

3, §15. ]

 Exercise 4.2.E. 15

⇒ ∗15. f : (S, ρ) → (T , ) ,ρ′

f S

(∀A ⊆ S)f [ ] ⊆A
¯ ¯¯̄

f [A]
¯ ¯¯̄¯̄ ¯̄¯

(∀B ⊆ T ) [ ] ⊇f−1 B
¯ ¯¯̄

[B]f−1¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄

[B]f−1 (S, ρ) B (T , )ρ′

[B]f−1 (S, ρ) B (T , )ρ′

(i)⟹ (ii)

p ∈ ⟹ f(p) ∈ .A
¯ ¯¯̄

f [A]
¯ ¯¯̄¯̄ ¯̄¯

(4.2.E.24)

⟹ ( iii ) : A = [B].f−1 f [A] ⊆ B, ( ii )

f [ ] ⊆ ⊆ .A
¯ ¯¯̄

f [A]
¯ ¯¯̄¯̄ ¯̄¯

B
¯ ¯¯̄

(4.2.E.25)

= ⊆ [f [ ]] ⊆ [ ].  (Why?) [B]f−1¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄
A
¯ ¯¯̄

f−1 A
¯ ¯¯̄

f−1 B
¯ ¯¯̄

(4.2.E.26)

⟹ (iv) : B B = B
¯ ¯¯̄

[B] = [ ] ⊇ ;  deduce (iv) .f−1 f−1 B
¯ ¯¯̄

[B]f−1¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄
(4.2.E.27)

(iv)⟹ (v) : (iv)

(v)⟹ (i) : (v). p ∈ S §1. ]

 Exercise 4.2.E. 16

f : →E1 E1 g : →E1 E2

g(x) = (x, f(x)). (4.2.E.28)
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Prove that 
(a)  and  are one to one and continuous; 
(b) the range of  i.e., the set 

 
is closed in . 
[Hint: Use Theorem 2 of Chapter 3, §15, Theorem 4 of Chapter 3, §16, and the sequential criterion.]

4.2.E: More Problems on Limits and Continuity is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

g g−1

g,

= {(x, f(x))|x ∈ } ,D′
g E1 (4.2.E.29)

E2
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4.3: Operations on Limits. Rational Functions
I. A function  is said to be real if its range  lies in  complex if  vector valued if  is a subset of 
and scalar valued if  lies in the scalar field of   is replaced
by some other (fixed) normed space under consideration.) The domain  may be arbitrary.

For such functions one can define various operations whenever they are defined for elements of their ranges, to which the function
values  belong. Thus as in Chapter 3, §9, we define the functions  and  "pointwise," setting

whenever the right side expressions are defined. We also define  by

In particular,  is defined if  and  are both vector valued or both scalar valued, and  is defined if  is vector valued while 
 is scalar valued; similarly for  (However, the domain of  consists of those  only for which 

In the theorems below, all limits are at some (arbitrary, but fixed) point  of the domain space  For brevity, we often omit 

For any functions  we have the following:

i. (i) If  are continuous at  so are  and fh. So also is  provided  similarly for relative
continuity over .

ii. (ii) If  and  then
a. 
b.  and

c.  provided 

All this holds also if  and  are vector valued and  is scalar valued.

For a simple proof, one can use Theorem 1 of Chapter 3, §15. (An independent proof is sketched in Problems 1-7 below.)

We can also use the sequential criterion (Theorem 1 in §2). To prove (ii), take any sequence

Then by the assumptions made,

Thus by Theorem 1 of Chapter 3, §15,

As this holds for any sequence  with  our assertion (ii) follows by the sequential criterion; similarly for
(i).

Note 1. By induction, the theorem also holds for sums and products of any finite number of functions (whenever such products are
defined).

Note 2. Part (ii) does not apply to infinite limits  but it does apply to limits at  (take  with a suitable metric for
the space .

Note 3. The assumption  implies that  for  in  for some  see
Problem 5 below. Thus the quotient function  is defined on  at least.

f : A → T D′
f ,E1 ⊆ C,D′

f D′
f ,En

D′
f . ( 'ln the latter two cases, we use the same terminology if En En

A

f(x) f ±g, fg, f/g

(f ±g)(x) = f(x) ±g(x), (fg)(x) = f(x)g(x),  and ( ) (x) =
f

g

f(x)

g(x)
(4.3.1)

|f | : A → E1

(∀x ∈ A) |f |(x) = |f(x)|. (4.3.2)

f ±g f g fg f

g f/g. f/g x ∈ A g(x) ≠ 0. )

p (S, ρ).

" x → p. "

 Theorem 4.3.1

f , g, h : A → (C), A ⊆ (S, ρ),E1

f , g, h p(p ∈ A), f ±g f/h, h(p) ≠ 0;

B ⊆ A

f(x) → q, g(x) → r, h(x) → a( all, as x → p over B ⊆ A),

f(x) ±g(x) → q ±r

f(x)h(x) → qa;

→ ,
f(x)

h(x)

q

a
a ≠ 0

f g h

{ } ⊆ B −{p}, → pxm xm (4.3.3)

f ( ) → q, g ( ) → r,  and h ( ) → axm xm xm (4.3.4)

f ( ) ±g ( ) → q ±r, f ( ) g ( ) → qa,  and  →xm xm xm xm

f ( )xm

g ( )xm

q

a
(4.3.5)

{ } ⊆ B −{p}xm → p,xm

q, r, a; p = ±∞ E∗

S)

h(x) → a ≠ 0( as x → p over B) h(x) ≠ 0 x B ∩ (δ)G¬p δ > 0;

f/h B ∩ (δ)G¬p
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II. If the range space of  is  then each function value  is a vector in that space; thus  real (* respectively,
complex) components, denoted

Here we may treat  as a mapping of  into  it carries each point  into  the  th component of 
 In this manner, each function

uniquely determines  scalar-valued maps

called the components of  Notation: .

Conversely, given  arbitrary functions

one can define  by setting

Then obviously  Thus the  in turn determine  uniquely. To define a function  means to
give its n components  Note that

where the  are the  basic unit vectors; see Chapter 3, §1-3, Theorem 2. Our next theorem shows that the limits and continuity of
 reduce to those of the 

(componentwise continuity and limits). For any function  with  and with 
we have that

(i)  is continuous at  iff all its components  are, and

(ii)  as  iff

i.e., iff each  has, as its limit at  the corresponding component of 

Similar results hold for relative continuity and limits over a path .

We prove (ii). If  as  then, by definition,

in turn, the right-hand side of the inequality given above is no less than each

Thus

i.e., 

Conversely, if each  then Theorem 1 (ii) yields

f (  or  ) ,En ∗ C n f(x) n

(x), k = 1, 2, … , n.fk (4.3.6)

fk A = Df (∗ or C);E1 x ∈ A (x),fk k

f(x).

f : A → ( )En ∗C n (4.3.7)

n

: A → (C)fk E1 (4.3.8)

f . f = ( , … , )f1 fn

n

: A → (C), k = 1, 2, … , n,fk E1 (4.3.9)

f : A → ( )En ∗C n

f(x) = ( (x), (x), … , (x)) .f1 f2 fn (4.3.10)

f = ( , , … , ) .f1 f2 fn fk f f : A → ( )En ∗C n

.fk

f(x) = ( (x), … , (x)) = (x),  i.e., f =f1 fn ∑
k=1

n

ē̄̄kfk ∑
k=1

n

ē̄̄kfk (4.3.11)

ē̄̄k n

f .fk

 Theorem 4.3.2

f : A → (∗ ) ,En C n A ⊆ (S, ρ) f = ( , … , ) ,f1 fn

f p(p ∈ A) fk

f(x) → q̄̄ x → p(p ∈ S)

(x) →  as x → p (k = 1, 2, … , n),fk qk (4.3.12)

fk p, .q̄̄

B ⊆ A

f(x) → q̄̄ x → p

(∀ε > 0)(∃δ > 0) (∀x ∈ A ∩ (δ)) ε > |f(x) − | = ;G¬p q̄̄ ∑
k=1

n

| (x) − |fk qk
2

− −−−−−−−−−−−−

√ (4.3.13)

| (x) − | , k = 1, 2, … , n.fk qk (4.3.14)

(∀ε > 0)(∃δ > 0) (∀x ∈ A ∩ (δ)) | (x) − | < ε;G¬p fk qk (4.3.15)

(x) → , k = 1, … , n.fk qk

(x) → ,fk qk
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By formula  then,  (for  Thus (ii) is proved; similarly for (i) and for relative limits and
continuity.

Note 4. Again, Theorem 2 holds also for  (but not for infinite .

Note 5. A complex function  may be treated as . Thus it has two real components: 
Traditionally,  and  are called the real and imaginary parts of  also denoted by  and  so

By Theorem  is continuous at  iff  and  are.

The complex exponential is the function  defined by

As we shall see later, the sine and the cosine functions are continuous. Hence so is  by Theorem 

III. Next, consider functions whose domain is a set in  We call them functions of  real 
 a variable -tuple. The range space may be arbitrary.

In particular, a monomial in  variables is a map on  given by a formula of the form

where the  are fixed integers  and  If , the 
 is called the degree of the monomial. Thus

defines a monomial of degree  in three real (or complex) variables . (We often write  for 

A polynomial is any sum of a finite number of monomials; its degree is, by definition, that of its leading term, i.e., the one of
highest degree. (There may be several such terms, of equal degree.) For example,

defines a polynomial of degree 8 in  Polynomials of degree 1 are sometimes called linear.

A rational function is the quotient  of two polynomials  and  on  . Its domain consists of those points at which 
does not vanish. For example,

defines a rational function on points  with  Polynomials and monomials are rational functions with denominator 

Any rational function (in particular, every polynomial) in one or several variables is continuous on all of its domain.

Proof

Consider first a monomial of the form

it is called the  th projection map because it "projects" each  onto its  th component .

(x) → .∑
k=1

n

ē̄̄kfk ∑
k=1

n

ē̄̄kqk (4.3.16)

(1), f(x) → q̄̄ = ).∑n

k=1 ē̄̄kqk q̄̄

p = ±∞ q)

f : A → C f : A → E2 f = ( , ) .f1 f2

f1 f2 f , f re  ,f im 

f = + i ⋅ .fre fim (4.3.17)

2, f p f re  f im 

 Example 4.3.1

f : → CE1

f(x) = cos x + i ⋅ sinx,  also written f(x) = .exi (4.3.18)

f 2.

(  or  ) .En ∗ C n n

(∗ or complex) variables, treating  = ( , … , )  as x̄̄̄ x1 xn n

n (  or  )En ∗ C n

f( ) = a ⋯ = a ⋅ ,x̄̄̄ xm1
1 xm2

2 xmn
n ∏

k=1

n

xmk

k
(4.3.19)

mk ≥ 0 a ∈ (  or a ∈ C)E1 ∗ .2 a ≠ 0

sum m =∑n

k=1 mk

f(x, y, z) = 3 y = 3x2 z3 x2y1z3 (4.3.20)

6, x, y, z x, y, z , , . )x1 x2 x3

f(x, y, z) = 3 y −2xx2 z3 y7 (4.3.21)

x, y, z.

f/g f g En ( or )∗ C n g

h(x, y) =
−3xyx2

xy −1
(4.3.22)

(x, y), xy ≠ 1. 1.

 Theorem 4.3.1

f( ) = (k fixed );x̄̄̄ xk (4.3.23)

k ∈ ( )x̄̄̄ En ∗C n k xk
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Given any  and  choose  Then

Hence by definition,  is continuous at each  Thus the theorem holds for projection maps.

However, any other monomial, given by

is the product of finitely many (namely of  projection maps multiplied by a constant . Thus
by Theorem  it is continuous. So also is any finite sum of monomials (i.e., any polynomial), and hence so is the quotient 

 of two polynomials (i.e., any rational function) wherever it is defined, i.e., wherever the denominator does not vanish. 

IV. For functions on  we often consider relative limits over  line of the form

see Chapter 3, §§4-6, Definition  If  is relatively continuous at  over that line, we say that  is continuous at  in the  th
variable  (because the other components of  remain constant, namely, equal to those of  as  runs over that line). As opposed
to this, we say that  is continuous at  in all  variables jointly if it is continuous at  in the ordinary (not relative) sense.
Similarly, we speak of limits in one variable, or in all of them jointly.

since ordinary continuity implies relative continuity over any path, joint continuity in all  variables always implies that in each
variable separately, but the converse fails (see Problems 9 and 10 below  similarly for limits at .

This page titled 4.3: Operations on Limits. Rational Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

ε > 0 ,p̄̄̄ δ = ε.

(∀ ∈ (δ)) |f( ) −f( )| = | − | ≤ = ρ( , ) < ε.x̄̄̄ Gp̄̄̄ x̄̄̄ p̄̄̄ xk pk ∑
i=1

n

| − |xi pi
2

− −−−−−−−−−

√ x̄̄̄ p̄̄̄ (4.3.24)

f .p̄̄̄

f( ) = a ⋯ ,x̄̄̄ xm1

1 xm2

2 xmn
n (4.3.25)

m = + +… + )m1 m2 mn a

1,

f/g

□

(  or  ) ,En ∗ C n a

= + t  (parallel to the   axis, through  );x̄̄̄ p̄̄̄ e ⃗ k kth p̄̄̄ (4.3.26)

1. f p̄̄̄ f p̄̄̄ k

xk x̄̄̄ ,p̄̄̄ x̄̄̄

f p̄̄̄ n p̄̄̄

n

); p̄̄̄
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4.3.E: Problems on Continuity of Vector-Valued Functions

Give an "  " proof of Theorem 1 for . 
[Hint: Proveed as in Theorem 1 of Chapter 3, §15, replacing  by . Thus fix  and  If 

 and  as  over , then  such that 

 
Put  etc. 

In Problems  and  is its scalar field,  and  over 

For a function  prove that 

 

Given  with  as  over  Show that for some  is bounded on  i.e., 

 
Thus if  there is  such that 

 
(Chapter  Theorem 2 .

Given  (or  prove that if one of  and  has limit 0 (respectively,  while the
other is bounded on  then .

Given  with  as  over  and . 
Prove that 

 
i.e.,  is bounded away from 0 on  Hence show that 1  is bounded on  

 

 Exercise 4.3.E. 1

ε, δ f ±g

max ( , )k′ k′′ δ = min( , )δ ′ δ ′′ ε > 0 p ∈ S.

f(x) → q g(x) → r x → p B (∃ , > 0)δ ′ δ ′′

(∀x ∈ B ∩ ( )) |f(x) −q| <  and  (∀x ∈ B ∩ ( )) |g(x) −r| < .G¬p δ ′ ε

2
G¬p δ ′′ ε

2
(4.3.E.1)

δ = min( , ) ,δ ′ δ ′′ ]

2, 3, 4, E = ( * or another normed space ), FEn B ⊆ A ⊆ (S, ρ), x → p B.

 Exercise 4.3.E. 2

f : A → E

f(x) → q⟺ |f(x) −q| → 0, (4.3.E.2)

 equivalently, iff f(x) −q → .0¯̄̄

 [Hint: Proceed as in Chapter 3, §14,  Corollary 2. ]
(4.3.E.3)

 Exercise 4.3.E. 3

f : A → (T , ) ,ρ′ f(x) → q x → p B. δ > 0, f B ∩ (δ),G¬p

f [B ∩ (δ)]  is a bounded set in  (T , ) .G¬p ρ′ (4.3.E.4)

T = E, K ∈ E1

(∀x ∈ B ∩ (δ)) |f(x)| < KG¬p (4.3.E.5)

3, §13, )

 Exercise 4.3.E. 4

f , h : A → (C)E1 f : A → E, h : A → F ), f h ),0¯̄̄

B ∩ (δ),G¬p h(x)f(x) → 0( )0¯̄̄

 Exercise 4.3.E. 5

h : A → (C),E1 h(x) → a x → p B, a ≠ 0

(∃ε, δ > 0) (∀x ∈ B ∩ (δ)) |h(x)| ≥ ε,G¬p (4.3.E.6)

h(x) B ∩ (δ).G¬p /h B ∩ (δ).G¬p

[ Hint: Proceed as in the proof of Corollary 1 in §1,  with q = a and r = 0.  Then use 
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Using Problems 1 to 5, give an independent proof of Theorem 1. 
[Hint: Proceed as in Problems 2 and 4 of Chapter 3, §15 to obtain Theorem 1(ii). Then use Corollary 2 of 

Deduce Theorems 1 and 2 of Chapter  §15 from those of the present section, setting  and . 
[Hint: See §1, Note 5.]

Redo Problem 8 of §1 in two ways: 
(i) Use Theorem 1 only. 
(ii) Use Theorem 3. 

. 
Here  or  where  (constant) and  (identity map). As  and  are continuous 

 so is  by Theorem  Thus .  
Or, using Theorem 1

Define  by 

 
Show that  as  along any straight line through  but not over the parabola  (then the limit is 

 Deduce that  is continuous at  in  and  separately, but not jointly.

Do Problem  setting 

Discuss the continuity of  in  and  jointly and separately, 
at  when 

(a) ; 
(b)  integral part of ;  
(c)  if ; 

(d)  if  and  otherwise; 

(e)  if  and . 
[Hints: In .

(∀x ∈ B ∩ (δ)) ≤ . ]G¬p

∣

∣
∣

1

h(x)

∣

∣
∣

1

ε
(4.3.E.7)

 Exercise 4.3.E. 6

$1. ]

 Exercise 4.3.E. 7

3, A = B = N , S = ,E∗ p = +∞

 Exercise 4.3.E. 8

[ Example for (i) :  Find  ( +1)limx→1 x2

f(x) = +1,x2 f = gg +h, h(x) = 1 g(x) = x h g

(§1,  Examples ( a ) and (b)), f 1. f(x) = f(1) = +1 = 2limx→1 12

( ii) , ( +1) = + 1,  etc. ]limx→1 x2 limx→1 x2 limx→1

 Exercise 4.3.E. 9

f : →E2 E1

f(x, y) = ,  with f(0, 0) = 0.
yx2

( + )x4 y2
(4.3.E.8)

f(x, y) → 0 (x, y) → (0, 0) ,0
¯̄̄

y = x2

).1
2

f = (0, 0)0
¯̄̄

x y

 Exercise 4.3.E. 10

9,

f(x, y) = 0 if x = 0,  and f(x, y) = ⋅  if x ≠ 0.
|y|

x2
2−|y|/x2

(4.3.E.9)

 Exercise 4.3.E. 11

f : →E2 E1 x y

,0
¯̄̄

f(x, y) = , f(0, 0) = 0
x2y2

+x2 y2

f(x, y) = x +y

f(x, y) = x +
xy

|x|
x ≠ 0, f(0, y) = 0

f(x, y) = +x sin
xy

|x|

1
y

xy ≠ 0, f(x, y) = 0

f(x, y) = sin( +|xy|)1
x

x2 x ≠ 0, f(0, y) = 0

(c) and (d), |f(x, y)| ≤ |x| + |y|;  in (e),  use | sinα| ≤ |α|⋅]
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4.4: Infinite Limits. Operations in E*
As we have noted, Theorem 1 of §3 does not apply to infinite limits, even if the function values  remain finite (i.e.,

 Only in certain cases (stated below) can we prove some analogues.

There are quite a few such separate cases. Thus, for brevity, we shall adopt a kind of mathematical shorthand. The letter  will not
necessarily denote a constant; it will stand for

Similarly, "0" and " " will stand for analogous expressions, with  replaced by 0 and  respectively.

For example, the "shorthand formula"  means

The point  is fixed, possibly  With this notation, we have the following theorems.

1. .

2. .

3. .

4. .

5. .

6.  if .

7.  if .

8. .

9.  if .

10. .

11. .

12. .

13.  if .

14.  if .

15. If  then  and .

16. If  then  and .

Proof

We prove Theorems 1 and 2, leaving the rest as problems. (Theorems 11-16 are best postponed until the theory of
logarithms is developed.)

1. Let  and  as  We have to show that

i.e., that

(we may assume  Thus fix  As  and  there are  such that

f(x), g(x), h(x)

in ).E1

q

"a function f : A → , A ⊆ (S, ρ),  such that f(x) → q ∈  as x → p. "E1 E1 (4.4.1)

±∞ q ±∞,

(+∞) +(+∞) = +∞

"The sum of two real functions, with limit +∞ at p (p ∈ S),  is itself a function with limit +∞ at p. " (4.4.2)

p ±∞ (if A ⊆ ) .E∗

 Theorems

(±∞) +(±∞) = ±∞

(±∞) +q = q +(±∞) = ±∞

(±∞) ⋅ (±∞) = +∞

(±∞) ⋅ (∓∞) = −∞

| ±∞| = +∞

(±∞) ⋅ q = q ⋅ (±∞) = ±∞ q > 0

(±∞) ⋅ q = q ⋅ (±∞) = ∓∞ q < 0

−(±∞) = ∓∞

= (±∞) ⋅
(±∞)

q
1
q

q ≠ 0

= 0
q

(±∞)

(+∞ = +∞)+∞

(+∞ = 0)−∞

(+∞ = +∞)q q > 0

(+∞ = 0)q q < 0

q > 1, = +∞q+∞ = 0q−∞

0 < q < 1, = 0q+∞ = +∞q−∞

f(x) g(x) → +∞ x → p.

f(x) +g(x) → +∞, (4.4.3)

(∀b ∈ ) (∃δ > 0) (∀x ∈ A ∩ (δ)) f(x) +g(x) > bE1 G¬p (4.4.4)

b > 0). b > 0. f(x) g(x) → +∞, , > 0δ ′ δ ′′

(∀x ∈ A ∩ ( )) f(x) > b and  (∀x ∈ A ∩ ( )) g(x) > b.G¬p δ ′ G¬p δ ′′ (4.4.5)
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Let  Then

as required; similarly for the case of .

2. Let  and  Then there is  such that for  in  so that 
.

Also, given any  there is  such that

Let  Then

as required; similarly for the case of .

Caution: No theorems of this kind exist for the following cases (which therefore are called indeterminate expressions):

In these cases, it does not suffice to know only the limits of  and  It is necessary to investigate the functions themselves
to give a definite answer, since in each case the answer may be different, depending on the properties of  and  The
expressions (1*) remain indeterminate even if we consider the simplest kind of functions, namely sequences, as we show
next.

(a) Let

(This corresponds to  and  Then, as is readily seen,

If, however, we take  and  then

thus  is constant, with limit 0 (for the limit of a constant function equals its value; see §1, Example (a)).

Next, let

Then again

 "oscillates" from  to 1 as  so it has no limit at all.

These examples show that  is indeed an indeterminate expression since the answer depends on the nature of the
functions involved. No general answer is possible.

(b) We now show that  is indeterminate.

Take first a constant  and let  Then

If, however,  and  then again  and  (by Theorem 10 above and Theorem 1 of
Chapter 3, §15), but

δ = min( , ) .δ ′ δ ′′

(∀x ∈ A ∩ (δ)) f(x) +g(x) > b +b > b,G¬p (4.4.6)

−∞

f(x) → +∞ g(x) → q ∈ .E1 > 0δ ′ x A ∩ ( ) , |q −g(x)| < 1,G¬p δ ′

g(x) > q −1

b ∈ ,E1 δ ′′

(∀x ∈ A ∩ ( )) f(x) > b −q +1.G−p δ ′′ (4.4.7)

δ = min( , ) .δ ′ δ ′′

(∀x ∈ A ∩ (δ)) f(x) +g(x) > (b −q +1) +(q −1) = b,G¬p (4.4.8)

f(x) → −∞

(+∞) +(−∞), (±∞) ⋅ 0, , , (±∞ , , .
±∞

±∞

0

0
)0 00 1±∞ (4.4.9)

f g.

f g.

 Examples

= 2m and  = −m.um vm (4.4.10)

f(x) = 2x g(x) = −x. )

→ +∞, → −∞,  and  + = 2m −m = m → +∞.um vm um vm (4.4.11)

= 2mxm = −2m,ym

+ = 2m −2m = 0;xm ym (4.4.12)

+xm ym

= 2m and  = −2m +(−1 .um zm )m (4.4.13)

→ +∞ and  → −∞,  but  + = (−1 ;um zm um zm )m (4.4.14)

+um zm −1 m → +∞,

(+∞) +(−∞)

1+∞

{ } , = 1,xm xm = m.ym

→ 1, → +∞,  and  = = 1 = → 1.xm ym x
ym
m 1m xm (4.4.15)

= 1 +xm
1
m

= m,ym → +∞ym → 1xm
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does not tend to  it tends to  as shown in Chapter 3, §15. Thus again the result depends on  and 

In a similar manner, one shows that the other cases (1*) are indeterminate.

Note 1. It is often useful to introduce additional "shorthand" conventions. Thus the symbol  (unsigned infinity) might denote a
function  such that

we then also write  The symbol  (respectively,  denotes a function  such that

and, moreover

We then have the following additional formulas:

(i) .

(ii) If  then  and .

(iii) .

(iv) .

The proof is left to the reader.

Note 2. All these formulas and theorems hold for relative limits, too.

So far, we have defined no arithmetic operations in  To fill this gap (at least partially), we shall henceforth treat Theorems 1-16
above not only as certain limit statements (in "shorthand") but also as definitions of certain operations in  For example, the
formula  shall be treated as the definition of the actual sum of  and  in  with  regarded this
time as an element of  (not as a function). This convention defines the arithmetic operations for certain cases only; the
indeterminate expressions (1*) remain undefined, unless we decide to assign them some meaning.

In higher analysis, it indeed proves convenient to assign a meaning to at least some of them. We shall adopt these (admittedly
arbitrary) conventions:

Caution: These formulas must not be treated as limit theorems (in "short-hand"). Sums and products of the form (2*) will be called
"unorthodox."

This page titled 4.4: Infinite Limits. Operations in E* is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

=x
ym
m (1 + )

1

m

m

(4.4.16)

1; e > 2, { }xm { } .ym

∞

f

|f(x)| → +∞ as x → p; (4.4.17)

f(x) → ∞. 0+ )0− f

f(x) → 0 as x → p (4.4.18)

f(x) > 0 (f(x) < 0,  respectively) on some  (δ).G¬p (4.4.19)

= ±∞, = ∓∞
(±∞)

0+

(±∞)

0−

q > 0, = +∞
q

0+ = −∞
q

0−

= ∞∞
0

= 0
q

∞

.E∗

.E∗

(+∞) +(+∞) = +∞ +∞ +∞ ,E∗ +∞

E∗

{
(±∞) +(∓∞) = (±∞) −(±∞) = +∞; = 1;00

0 ⋅ (±∞) = (±∞) ⋅ 0 = 0 (even if 0 stands for the zero-vector ).
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4.4.E: Problems on Limits and Operations in E ∗ E∗

Show by examples that all expressions  are indeterminate.

Give explicit definitions for the following "unsigned infinity" limit statements: 

Prove at least some of Theorems  and formulas  in Note 1.

In the following cases, find  in two ways: (i) use definitions only; (ii) use suitable theorems and justify each step
accordingly. 

 
[Hint: Before using theorems, reduce by a suitable power of .]

Let 

 

Find  if  and (iii) .

Verify commutativity and associativity of addition and multiplication in  treating Theorems  and formulas  as
definitions. Show by examples that associativity and commutativity (for three terms or more) would fail if, instead of  the
formula  were adopted. 
[Hint: For sums, first suppose that one of the terms in a sum is  then the sum is + . For products, single out the case
where one of the factors is  then consider the infinite cases.]

Continuing Problem  verify the distributive law  in  assuming that  and  have the same sign (if
infinite), or that . Show by examples that it may fail in other cases; e.g., if  

 Exercise 4.4.E. 1

( )1∗

 Exercise 4.4.E. 2

 (a)  f(x) = ∞;  (b)  f(x) = ∞; (c) f(x) = ∞.lim
x→p

lim
x→p+

lim
x→∞

(4.4.E.1)

 Exercise 4.4.E. 3

1 −10 (i) −(iv)

 Exercise 4.4.E. 4

lim f(x)

 (a)  (= 0).  (b) limx→∞
1
x

limx→∞
x(x−1)

1−3x2

 (c)   (d) limx→2+
−2x+1x2

−3x+2x2
limx→2−

−2x+1x2

−3x+2x2

 (e)  (= ∞)limx→2
−2x+1x2

−3x+2x2

(4.4.E.2)

x

 Exercise 4.4.E. 5

f(x) =  and g(x) = ( ≠ 0, ≠ 0) .∑
k=0

n

akxk ∑
k=0

m

bkxk an bm (4.4.E.3)

limx→∞
f(x)

g(x)
(i)n > m; ( ii )n < m; n = m(n, m ∈ N)

 Exercise 4.4.E. 6

,E∗ 1 −16 ( )2∗

( ) ,2∗

(±∞) +(∓∞) = 0

+∞; ∞

0;

 Exercise 4.4.E. 7

6, (x +y)z = xz +yz ,E∗ x y

z ≥ 0 x = −y = +∞, z = −1.
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4.5: Monotone Function
A function  with  is said to be nondecreasing on a set  iff

It is said to be nonincreasing on  iff

Notation:  and  respectively.

In both cases,  is said to be monotone or monotonic on  If  is also one to one on  (i.e., when restricted to ), we say that it is
strictly monotone (increasing if  and decreasing if ).

Clearly,  is nondecreasing iff the function  is nonincreasing. Thus in proofs, we need consider only the case . The
case  reduces to it by applying the result to 

If a function  is monotone on  it has a left and a right (possibly infinite) limit at each point .

In particular, if  on an interval  then

and

(In case  interchange "sup" and "inf.")

Proof

To fix ideas, assume .

Let  and  Put  (this sup always exists in  see Chapter 2, §13). We shall show
that  is a left limit of  at  (i.e., a left limit over ).

There are three possible cases:

(1) If  is finite, any globe  is an interval  in . As  cannot be an upper bound of 
 (why?, so  is exceeded by some  Thus

Hence as  we certainly have

Moreover, as  we have

so  i.e., .

We have thus shown that

so  is a left limit at .

(2) If  the same proof works with  Verify!

(3) If  then

f : A → ,E∗ A ⊆ ,E∗ B ⊆ A

x ≤ y implies f(x) ≤ f(y) for x, y ∈ B. (4.5.1)

B

x ≤ y implies f(x) ≥ f(y) for x, y ∈ B. (4.5.2)

f ↑ f ↓ ( on B),

f B. f B B

f ↑ f ↓

f −f = (−1)f f ↑
f ↓ −f .

 Theorem 4.5.1

f : A → (A ⊆ )E∗ E∗ A, p ∈ E∗

f ↑ (a, b) ≠ ∅,

f ( ) = f(x) for p ∈ (a, b]p− sup
a<x<p

(4.5.3)

f ( ) = f(x) for p ∈ [a, b).p+ inf
p<x<b

(4.5.4)

f ↓,

f ↑

p ∈ E∗ B = {x ∈ A|x < p}. q = supf [B] ;E∗

q f p B

q Gq (c, d), c < q < d, E1 c < q = supf [B], c
f [B] c f ( ) , ∈ B.x0 x0

c < f ( ) , < p.x0 x0 (4.5.5)

f ↑,

c < f ( ) ≤ f(x) for all x >  (x ∈ B).x0 x0 (4.5.6)

f(x) ∈ f [B],

f(x) ≤ supf [B] = q < d, (4.5.7)

c < f(x) < d; f(x) ∈ (c, d) = Gq

(∀ ) (∃ < p) (∀x ∈ B| < x) f(x) ∈ ,Gq x0 x0 Gq (4.5.8)

q p

q = +∞, = (c, +∞].Gq

q = −∞,

(∀x ∈ B) f(x) ≤ supf [B] = −∞, (4.5.9)
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i.e.,  so  (constant) on . Hence  is also a left limit at  (§1, Example (a)).

In particular, if  on  with  and  then   for  Here  is a cluster point of
the path  (Chapter 3, §14, Example (h)), so a unique left limit  exists. By what was shown above,

Thus all is proved for left limits.

The proof for right limits is quite similar; one only has to set

Note 1. The second clause of Theorem 1 holds even if  is only a subset of  for the limits in question are not affected by
restricting  to  (Why?) The endpoints  and  may be finite or infinite.

Note 2. If  (the naturals), then by definition,  is a sequence with general term  (see
§1, Note 2). Then setting  in the proof of Theorem 1, we obtain Theorem 3 of Chapter 3, §15. (Verify!)

The exponential function  to the base  is given by

It is monotone (Chapter 2, §§11-12, formula (1)), so  and  exist. By the sequential criterion (Theorem 1 of §2),
we may use a suitable sequence to find  and we choose  Then

(see Chapter 3, §15, Problem 20).

Similarly, taking  we obtain  Thus

(See also Problem 12 of §2.)

Next, fix any  Noting that

we set  (Why is this substitution admissible?) Then  as  so we get

As  is continuous at each  Thus all exponentials are continuous.

If a function  is nondecreasing on a finite or infinite interval  and if  then

and for no  do we have

similarly in case  (with all inequalities reversed).

Proof

f(x) ≤ −∞, f(x) = −∞ B q p

f ↑ A = (a, b) a, b ∈ E∗ a < b, B = (a, p) p ∈ (a, b]. p

B f ( )p−

q = f ( ) = supf [B] = f(x),  as claimed.p− sup
a<x<p

(4.5.10)

B = {x ∈ A|x > p}, q = inff [B]. □ (4.5.11)

(a, b) A,
f (a, b). a b

= A = NDf f : N → E∗ = f(m),m ∈ Nxm
p = +∞

 Example 4.5.1

F : →E1 E1 a > 0

F (x) = .ax (4.5.12)

F ( )0− F ( )0+

F ( ) ,0+ = → .xm
1
m 0+

F ( ) = F ( ) = = 10+ lim
m→∞

1

m
lim
m→∞

a1/m (4.5.13)

= − → ,xm
1
m

0− F ( ) = 1.0−

F ( ) = F ( ) = F (x) = = 1.0+ 0− lim
x→0

lim
x→0

ax (4.5.14)

p ∈ .E1

F (x) = = = ,ax ap+x−p apax−p (4.5.15)

y = x−p. y → 0 x → p,

F (x) = lim ⋅ = = ⋅ 1 = = F (p).lim
x→p

ap lim
x→p

ax−p ap lim
y→0

ay ap ap (4.5.16)

F (x) = F (p),Flimx→p p ∈ .E1

 Theorem 4.5.2

f : A → (A ⊆ )E∗ E∗ B = (a, b) ⊆ A p ∈ (a, b),

f ( ) ≤ f ( ) ≤ f(p) ≤ f ( ) ≤ f ( ) ,a+ p− p+ b− (4.5.17)

x ∈ (a, b)

f ( ) < f(x) < f(p) or f(p) < f(x) < f ( ) ;p− p+ (4.5.18)

f ↓
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By Theorem 1,  on  implies

thus certainly  As  we also have  for all   hence

Thus

similarly for the rest of (1).

Moreover, if  then  since

If, however,  then  since . Thus we never have  similarly, one excludes 
 This completes the proof. 

Note 3. If  and  exist (all finite), then

are called, respectively, the left and right jumps of  at  their sum is the (total) jump at  If  is monotone, the jump equals 

For a graphical example, consider Figure 14 in §1. Here  (both finite  so the left jump is  However, 
 so the right jump is greater than  Since

 is left continuous (but not right continuous) at .

If  is monotone on a finite or infinite interval  contained in  then all its discontinuities in  if any, are
"jumps," that 
is, points  at which  and  exist, but  or 

Proof

By Theorem 1,  and  exist at each .

If, in addition,  then

by Corollary 3 of §1, so f is continuous at . Thus discontinuities occur only if  or 

This page titled 4.5: Monotone Function is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The
Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

f ↑ (a, p)

f ( ) = f(x) and f ( ) = f(x);a+ inf
a<x<p

p− sup
a<x<p

(4.5.19)

f ( ) ≤ f ( ) .a+ p− f ↑, f(p) ≥ f(x) x ∈ (a, p);

f(p) ≥ f(x) = f ( ) .sup
a<x<p

p− (4.5.20)

f ( ) ≤ f ( ) ≤ f(p);a+ p− (4.5.21)

a < x < p, f(x) ≤ f ( )p−

f ( ) = f(x).p− sup
a<x<p

(4.5.22)

p ≤ x < b, f(p) ≤ f(x) f ↑ f ( ) < f(x) < f(p).p−

f(p) < f(x) < f(x) < f ( ) .p+
□

f ( ) , f ( ) ,p− p+ f(p)

f(p) −f ( )  and  f ( )−f(p)∣∣ p− ∣∣ ∣∣ p+ ∣∣ (4.5.23)

f p; p. f

|f ( ) −f ( )| .p+ p−

f(p) = f ( )p− ), 0.
f ( ) > f(p),p+ 0.

f(p) = f ( ) = f(x),p− lim
x→p−

(4.5.24)

f p

 Theorem 4.5.3

f : A → E∗ (a, b) A, (a, b),

p f ( )p− f ( )p+ f ( ) ≠ f(p)p− f ( ) ≠ f(p).p+

f ( )p− f ( )p+ p ∈ (a, b)

f ( ) = f ( ) = f(p),p− p+

f(x) = f(p)lim
x→p

(4.5.25)

p f ( ) ≠ f(p)p− f ( ) ≠ f(p). □p+
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4.5.E: Problems on Monotone Functions

Complete the proofs of Theorems 1 and  Give also an independent (analogous) proof for nonincreasing functions.

Discuss Examples  and  of §1 again using Theorems .

Show that Theorem 3 holds also if  is piecewise monotone on  i.e., monotone on each of a sequence of intervals whose
union is 

Consider the monotone function  defined in Problems 5 and 6 of Chapter 3, §11. Show that under the standard metric in 
 is continuous on  and  is continuous on  Additionally, discuss continuity under the metric 

 5. Prove that if  is monotone on  it has at most countably many discontinuities in . 
[Hint: Let  By Theorem  all discontinuities of  correspond to mutually disjoint intervals  (Why?)
Pick a rational from each such interval, so these rationals correspond one to one to the discontinuities and form a countable set
(Chapter 1, §9)].

Continuing Problem 17 of Chapter 3, §14, let 

 
that is,  is the  th open interval removed from  at the  th step of the process 

. 
Define  as follows: 
(i) ; 
(ii) if  then  and 
(iii) if  is in none of the  then 

 
Show that  is nondecreasing and continuous on . (  is called Cantor's function.)

Restate Theorem 3 for the case where  is monotone on  where  is a (not necessarily open) interval. How about the
endpoints of 

4.5.E: Problems on Monotone Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 4.5.E. 1

2.

 Exercise 4.5.E. 2

(d) (e) 1 −3

 Exercise 4.5.E. 3

f (a, b),
(a, b).

 Exercise 4.5.E. 4

f

, fE1 E1 f −1 (0, 1). .ρ′

 Exercise 4.5.E. 5

⇒ f (a, b) ⊆ ,E∗ (a, b)
f ↑. 3, f (f ( ) , f ( )) ≠ ∅.p− p+

 Exercise 4.5.E. 6

=( , ) , =( , ) , =( , ) ,  and so on; G11
1

3

2

3
G21

1

9

2

9
G22

7

9

8

9
(4.5.E.1)

Gmi i [0, 1] m

(i = 1, 2, … , , m = 1, 2, …  ad infinitum)2m−1

F : [0, 1] → E1

F (0) = 0

x ∈ ,Gmi F (x) = ;2i−1
2m

x ( i.e., x ∈ P ),Gmi

F (x) = sup{F (y)|y ∈ , y < x}.⋃
m,i

Gmi (4.5.E.2)

F [0, 1] F

 Exercise 4.5.E. 7

f A, A

A?
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4.6: Compact Sets
We now pause to consider a very important kind of sets. In Chapter 3, §16, we showed that every sequence  taken from a
closed interval  in  must cluster in it (Note 1 of Chapter 3, §16). There are other sets with the same remarkable property.
This leads us to the following definition.

A set  is said to be sequentially compact (briefly compact) iff every sequence  clusters at some point 
in 

If all of  is compact, we say that the metric space  is compact.

(a) Each closed interval in  is compact (see above).

(a') However, nonclosed intervals, and  itself, are not compact.

For example, the sequence  is in  but clusters only at  outside  As another example, the sequence
 has no cluster points in  Thus  and  fail to be compact (even though  is complete); similarly for 

(b) Any finite set  is compact. Indeed, an infinite sequence in such a set must have at least one infinitely repeating
term  Then by definition, this  is a cluster point (see Chapter 3, §14, Note 1).

(c) The empty set is "vacuously" compact (it contains no sequences).

(d)  is compact. See Example  in Chapter 3, §14.

Other examples can be derived from the theorems that follow.

If a set  is compact, so is any closed subset .

Proof

We must show that each sequence  clusters at some . However, as  is also in  so by the
compactness of  it clusters at some  Thus it remains to show that  as well.

Now by Theorem 1 of Chapter  has a subsequence . As  and  is closed, this implies 
 (Theorem 4 in Chapter  

Every compact set  is closed.

Proof

Given that  is compact, we must show (by Theorem 4 in Chapter 3, §16) that  contains the limit of each convergent
sequence .

Thus let  As  is compact, the sequence  clusters at some  i.e., has a subsequence 
 However, the limit of the subsequence must be the same as that of the entire sequence. Thus ;

i.e.,  is in  as required. 

{ }z̄̄̄m

[ , ]ā̄̄ b
¯̄

En

 Definition: sequentially compact

A ⊆ (S, ρ) { } ⊆ Axm p

A.

S (S, ρ)

 Example 4.6.1

En

En

= 1/nxn (0, 1] ⊂ ,E1 0, (0, 1].
= nxn .E1 (0, 1] E1 E1

(  and  ) .En ∗ Cn

A ⊆ (S, ρ)
p ∈ A. p

E∗ (g)

 Theorem 4.6.1

B ⊆ (S, ρ) A ⊆ B

{ } ⊆ Axm p ∈ A A ⊆ B, { }xm B,
B, p ∈ B. p ∈ A

3, §16, { }xm → pxmk
{ } ⊆ Axmk

A

p ∈ A 3, §16). □

 Theorem 4.6.2

A ⊆ (S, ρ)

A A

{ } ⊆ Axm

→ p, { } ⊆ A.xm xm A { }xm q ∈ A,
→ q ∈ A.xmk

p = q ∈ A

p A, □
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Every compact set  is bounded.

Proof

By Problem 3 in Chapter 3, §13, it suffices to show that  is contained in some finite union of globes. Thus we fix some
arbitrary radius  and, seeking a contradiction, assume that  cannot by any finite number of globes of that radius.

Then if  the globe  does not cover  so there is a point  such that

By our assumption,  is not even covered by  Thus there is a point  with

Again,  is not covered by  so there is a point  not in that union; its distances from  and 
must therefore be .

Since  is never covered by any finite number of  -globes, we can continue this process indefinitely (by induction) and
thus select an infinite sequence  with all its terms at least  -apart from each other.

Now as  is compact, this sequence must have a convergent subsequence  which is then certainly Cauchy (by
Theorem 1 of Chapter 3, §17). This is impossible, however, since its terms are at distances  from each other, contrary to
Definition 1 in Chapter 3, §17. This contradiction completes the proof. 

Note 1. We have actually proved more than was required, namely, that no matter how small  is,  can be covered by finitely
many globes of radius  with centers in  This property is called total boundedness (Chapter 3, §13, Problem 4).

Note 2. Thus all compact sets are closed and bounded. The converse fails in metric spaces in general (see Problem 2 below). In 
 however, the converse is likewise true, as we show next.

In  a set is compact iff it is closed and bounded.

Proof

In fact, if a set  is bounded, then by the Bolzano-Weierstrass theorem, each sequence  has a
convergent subsequence  If  is also closed, the limit point  must belong to  itself.

Thus each sequence  clusters at some  in  so  is compact.

The converse is obvious. 

Note 3. In particular, every closed globe in  is compact since it is bounded and closed (Chapter 3, §12, Example 
so theorem 4 applies.

The converse is obvious. 

(Cantor's principle of nested closed sets). Every contracting sequence of nonvoid compact sets

in a metric space  has a nonvoid intersection; i.e., some  belongs to all 

For complete sets  this holds as well, provided the diameters of the sets  tend to 

Proof

 Theorem 4.6.3

A ⊆ (S, ρ)

A

ε > 0 A

∈ A,x1 (ε)Gx1 A, ∈ Ax2

∉ (ε),  i.e., ρ ( , ) ≥ εx2 Gx1
x1 x2 (4.6.1)

A (ε) ∪ (ε).Gx1 Gx2 ∈ Ax3

∉ (ε) and  ∉ (ε),  i.e., ρ ( , ) ≥ ε and ρ ( , ) ≥ ε.x3 Gx1
x3 Gx2

x3 x1 x3 x2 (4.6.2)

A (ε),⋃3
i=1 Gxi ∈ Ax4 , ,x1 x2 x3

≥ ε

A ε

{ } ⊆ A,xm ε

A { } ,xmk

≥ ε

□

ε > 0 A

ε A.

(  and  ) ,En ∗ Cn

 Theorem 4.6.4

(  and  )En ∗ Cn

A ⊆ ( )En ∗Cn { } ⊆ Axm
→ p.xmk

A p A

{ } ⊆ Axm p A, A

□

(  or  )En ∗ Cn (6)),

□

 Theorem 4.6.5

⊇ ⊇ ⋯ ⊇ ⊇ ⋯F1 F2 Fm (4.6.3)

(S, ρ) p .Fm

,Fm Fm 0 : d → 0.Fm
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We prove the theorem for complete sets first.

As  we can pick a point  from each  to obtain a sequence  since  it is easy to see
that  is a Cauchy sequence. (The details are left to the reader.) Moreover,

Thus  is a Cauchy sequence in  a complete set (by assumption).

Therefore, by the definition of completeness (Chapter 3, §17),  has a limit  This limit remains the same if we
drop a finite number of terms, say, the first  of them. Then we are left with the sequence  which, by
construction, is entirely contained in  (why?), with the same limit P. Then, however, the completeness of  implies
that  as well. As  is arbitrary here, it follows that  i.e.,

The proof for compact sets is analogous and even simpler. Here  need not be a Cauchy sequence. Instead, using the
compactness of  we select from  a subsequence  and then proceed as above. 

Note 4. In particular, in  we may let the sets  be closed intervals (since they are compact). Then Theorem 5 yields the
principle of nested intervals: Every contracting sequence of closed intervals in  has a nonempty intersection. (For an
independent proof, see Problem 8 below.)

This page titled 4.6: Compact Sets is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The Trilla
Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

≠ ∅,Fm xm Fm { } , ∈ .xm xm Fm d → 0,Fm

{ }xm

(∀m) ∈ ⊆ .xm Fm F1 (4.6.4)

{ }xm ,F1

{ }xm p ∈ .F1

m−1 , , … ,xm xm+1

Fm Fm

p ∈ Fm m (∀m)p ∈ ,Fm

p ∈ ,  as claimed.⋂
m=1

∞

Fm (4.6.5)

{ }xm
,F1 { }xm → p ∈xmk F1 □

En Fm

En

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/19047?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.06%3A_Compact_Sets
https://creativecommons.org/licenses/by/3.0
http://www.trillia.com/index.html
http://www.trillia.com/
http://www.trillia.com/zakon-analysisI.html


4.6.E.1 https://math.libretexts.org/@go/page/23723

4.6.E: Problems on Compact Sets

Complete the missing details in the proof of Theorem 5.

Verify that any infinite set in a discrete space is closed and bounded but not compact. 
[Hint: In such a space no sequence of distinct terms clusters.]

Show that  is not compact, in three ways: 
 ; 

(ii) from Theorem  and 
(iii) from Theorem 5, by finding in  a contracting sequence of infinite 
closed sets with a void intersection. For example, in  take the 
closed sets 

Show that  is compact under the metric  defined in Problems 5 and 6 in Chapter 3, §11. Is  a compact set under that
metric? 
[Hint: For the first part, use Theorem 2 of Chapter 2, §13, noting that  is also a 

Show that a set  is compact iff every infinite subset  has a cluster point  
[Hint: Select from  a sequence  of distinct terms. Then the cluster points of  are also those of  (Why?)]

Prove the following. 
(i) If  and  are compact, so is  and similarly for unions of  sets. 
(ii) If the sets  are compact, so is  even if  is infinite. 
Disprove (i) for unions of infinitely many sets by a counterexample. 

Prove that if  in  then the set 

 
is compact. 
[Hint: If  is finite, see Example (b). If not, use Problem  noting that any infinite 

 Exercise 4.6.E. 1

 Exercise 4.6.E. 2

 Exercise 4.6.E. 3

En

 (i) from definitions (as in Example  ( ))a′

4;
En

E1

= [m, +∞),m = 1, 2, …( Are they closed?) Fm

 Exercise 4.6.E. 4

E∗ ρ′ E1

Gq

 globe under  .  For the second, consider the sequence  = n. ]ρ′ xn

 Exercise 4.6.E. 5

A ⊆ (S, ρ) B ⊆ A p ∈ A.
B { }xm { }xm B.

 Exercise 4.6.E. 6

A B A∪B, n

(i ∈ I)Ai ,⋂i∈I Ai I

 [ Hint: For (ii), verify first that   is sequentially closed. Then use Theorem 1. ]⋂i∈I Ai

 Exercise 4.6.E. 7

→ pxm (S, ρ),

B = {p, , , … , , …}x1 x2 xm (4.6.E.1)

B 5,
 subset of B defines a subsequence  → p,  so it clusters at p. ]xmk
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Prove, independently, the principle of nested intervals in  i.e., Theorem 5 with 

 
where 

 
Fixing  let  be the set of all  Show that  is bounded above by each  so let  in 
Then 

 
Unfixing  obtain such inequalities for  Let  Then 

 
Note that the theorem fails for nonclosed intervals, even in  e.g., take   and show that ]

From Problem  obtain a new proof of the Bolzano-Weierstrass theorem. 

 

 
Bisecting the edges of  subdivide  into  intervals of diagonal  one of them must contain infinitely many 
(Why?) Let  be one such inter val; make it closed and subdivide it into  subintervals of diagonal  One of them, 
contains infinitely many  make it closed, etc. 
Thus obtain a contracting sequence of closed intervals  with 

 
From Problem  obtain 

 

 Prove the Heine-Borel theorem: If a closed interval  is covered by a family of open sets  i.e., 

 
then it can always be covered by a finite number of these . 

 Exercise 4.6.E. 8

,En

= [ , ]⊆ ,Fm ā̄̄m b¯̄ m En (4.6.E.2)

= ( , … , )  and  = ( , … , ) .ā̄̄m am1 amn b
¯̄
m bm1 bmn (4.6.E.3)

k, Ak ,m = 1, 2, … .amk Ak ,bmk = suppk Ak .E1

(∀m) ≤ ≤ .  (Why?) amk pk bmk (4.6.E.4)

k, k = 1, 2, … ,n. = ( , … , ) .p̄̄̄ p1 pk

(∀m) ∈ [ , ] ,  i.e.,  ∈ ⋂ ,  as required. p̄̄̄ ā̄̄m b
¯̄
m p̄̄̄ Fm (4.6.E.5)

;E1 =Fm (0, 1/m] = ∅.⋂m Fm

 Exercise 4.6.E. 9

8,

[ Hint: Let  { } ∈ [ , ] ⊆ ;  put  = [ , ] and set x̄̄̄m ā̄̄ b
¯̄

En F0 ā̄̄ b
¯̄

d = ρ( , ) = d ( diagonal of  ) .F0 ā̄̄ b
¯̄

F0 (4.6.E.6)

,F0 F0 2n d/2; .xm
F1 2n d/ .22 ,F2

;xm
Fm

d = , m = 1, 2, …Fm

d

2m
(4.6.E.7)

8,

∈ .p̄̄̄ ⋂
m=1

∞

Fm (4.6.E.8)

 Show that  { }  clusters at  . ]x̄̄̄m p̄̄̄

 Exercise 4.6.E. 10

⇒ 10. ⊂F0 En (i ∈ I),Gi

⊆ ,F0 ⋃
i∈I

Gi (4.6.E.9)

Gi
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[Outline of proof: Let  Seeking a contradiction, suppose  cannot be covered by any finite number of the . 
As in Problem  subdivide  into  intervals of diagonal  least one of them cannot be covered by finitely many 
(Why?) Choose one such interval, make it closed, call it  and subdivide it into  subintervals of diagonal . One of
these,  cannot be covered by finitely many  make it closed and repeat the process indefinitely. 
Thus obtain a contracting sequence of closed intervals  with 

 
 get .  

As  is in one of the  call it  As  is open,  is its interior point, so let  Now take  so large that 
. Show that then 

 
 is covered by a single set  This contradiction completes the proof.]

Prove that if  and  is compact, then  converges iff it has a single cluster point. 
[Hint: Proceed as in Problem 12 of Chapter 3, §16.]

Prove that if  and  is compact, there are two points  such that  
 By the properties of suprema, 

 
By compactness,  has a subsequence  For brevity, put ,  Again,  has a subsequence

 Also, 

 
Passing to the limit  obtain 

 
by Theorem 4 in Chapter 3, §15.]

Given nonvoid sets  define 

 
Prove that if  and  are compact and nonempty, there are  and  such that  Give an example to
show that this . 
[Hint: For the first part, proceed as in Problem 12 .]

d = d.F0 F0 Gi

9, F0 2n d/2.At .Gi

,F1 2n d/22

,F2 ;Gi

Fm

d = , m = 1, 2, …Fm

d

2m
(4.6.E.10)

 From Problem 8 (or Theorem 5), ∈⋂p̄̄̄ Fm

∈ ,p̄̄̄ F0 p̄̄̄ ;Gi G. G p̄̄̄ G⊇ (ε).Gp̄̄̄ m

d/ = d < ε2m Fm

⊆ (ε) ⊆ G.Fm Gp̄̄̄ (4.6.E.11)

 Thus (contrary to our choice of the  )Fm Fm .Gi

 Exercise 4.6.E. 11

{ } ⊆ A ⊆ (S, ρ)xm A { }xm

 Exercise 4.6.E. 12

∅ ≠ A ⊆ (S, ρ) A p, q ∈ A dA = ρ(p, q).
 [Hint: As A is bounded (Theorem 3), dA < +∞.

(∀n) (∃ , ∈ A) dA− < ρ ( , ) ≤ dA.  (Explain!) xn yn
1

n
xn yn (4.6.E.12)

{ }xn → p ∈ A.xnk =x′
k xnk = .y′

k ynk { }y′
k

→ q ∈ A.y′
km

dA− < ρ( , ) ≤ dA.
1

nkm

x′
km

y′
km

(4.6.E.13)

( as m → +∞),

dA ≤ ρ(p, q) ≤ dA (4.6.E.14)

 Exercise 4.6.E. 13

A,B ⊆ (S, ρ),

ρ(A,B) = inf{ρ(x, y)|x ∈ A, y ∈ B}. (4.6.E.15)

A B p ∈ A q ∈ B ρ(p, q) = ρ(A,B).
 may fail if A and B are not compact (even if they are closed in  )E1
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Prove that every compact set is complete. Disprove the converse by examples.

4.6.E: Problems on Compact Sets is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.
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4.7: More on Compactness

This page is a draft and is under active development. 

Another useful approach to compactness is based on the notion of a covering of a set (already encountered in Problem 10 in §6).
We say that a set  is covered by a family of sets  iff

If this is the case,  is called a covering of  If the sets  are open, we call the set family  an open covering. The
covering  is said to be finite (infinite, countable, etc.) iff the number of the sets  is.

If  is an open covering of  then each point  is in some  and is its interior point  so there is a
globe  In general, the radii  of these globes depend on  i.e., are different for different points  If, however,
they can be chosen all equal to some , then this  is called a Lebesgue number for the covering  (so named after Henri
Lebesgue). Thus  is a Lebesgue number iff for every  the globe  is contained in some  We now obtain the
following theorem.

(Lebesgue). Every open covering  of a sequentially compact set  has at least one Lebesgue number  In
symbols,

Proof

Seeking a contradiction, assume that  fails, i.e., its negation holds. As was explained in Chapter 1, §§1-3, this negation is

(where we write  for  since here  may depend on  As this is supposed to hold for all  we take successively

Then, replacing  by  for convenience, we obtain

Thus for each  there is some  such that the globe  is not contained in any  We fix such an  for
each  thus obtaining a sequence  As  is compact (by assumption), this sequence clusters at some 

The point  being in  must be in some  together with some globe  As  is a cluster point,
even the smaller globe  contains infinitely many  Thus we may choose  so large that  and 

. For that  because

As  (by construction), we certainly have

However, this is impossible since by  no  is contained in any  This contradiction completes the proof. 

F (i ∈ I)Gi

F ⊆ .⋃
i∈I

Gi (4.7.1)

{ }Gi F . Gi { }Gi

{ }Gi Gi

{ }Gi F , x ∈ F Gi ( for   is open ) ,Gi

( ) ⊆ .Gx εx Gi εx x, x ∈ F .

ε ε { }Gi

ε x ∈ F , (ε)Gx .Gi

 Theorem 4.7.1

{ }Gj F ⊆ (S, ρ) ε.

(∃ε > 0)(∀x ∈ F )(∃i) (ε) ⊆ .Gx Gi (4.7.2)

(1)

(∀ε > 0) (∃ ∈ F ) (∀i) (ε) ⊈xε Gxε Gi (4.7.3)

xε x x ε). ε > 0,

ε = 1, , … , , …
1

2

1

n
(4.7.4)

" "xε " "xn

(∀n) (∃ ∈ F ) (∀i) ( ) ⊈ .xn Gxn

1

n
Gi (4.7.5)

n, ∈ Fxn ( )Gxn

1
n

.Gi ∈ Fxn

n, { } ⊆ F .xn F p ∈ F .

p, F , ( call it G),Gi (r) ⊆ G.Gp p

( )Gp
r

2
.xn n <1

n
r

2

∈ ( )xn Gp
r

2
n, ( ) ⊆ (r)Gxn

1
n

Gp

(∀x ∈ ( )) ρ(x, p) ≤ ρ (x, ) +ρ ( , p) < + < + = r.Gxn

1

n
xn xn

1

n

r

2

r

2

r

2
(4.7.6)

(r) ⊆ GGp

( ) ⊆ (r) ⊆ G.Gxn

1

n
Gp (4.7.7)

(2) ( )Gxn

1
n

.Gi □
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Our next theorem might serve as an alternative definition of compactness. In fact, in topology (which studies more general than
metric spaces), this  is the basic definition of compactness. It generalizes Problem 10 in §6.

(generalized Heine-Borel theorem). A set  is compact iff every open covering of  has a finite subcovering.

That is, whenever  is covered by a family of open sets  can also be covered by a finite number of these .

Proof

Let  be sequentially compact, and let  all  open. We have to show that  reduces to a finite subcovering.

By Theorem  has a Lebesgue number  satisfying  We fix this  Now by Note 1 in §6, we can cover  by
a finite number of  -globes,

Also by  each  is contained in some  call it  With the  so fixed, we have

Thus the sets  constitute the desired finite subcovering, and the "only if' in the theorem is proved.

Conversely, assume the condition stated in the theorem. We have to show that  is sequentially compact, i.e., that every
sequence  clusters at some 

Seeking a contradiction, suppose  contains  cluster points of  Then by definition, each point  is in some
globe  containing at most finitely many  The set  is covered by these open globes, hence also by finitely many of
them (by our assumption). Then, however,  contains at most finitely many  (namely, those contained in the so-selected
globes), whereas the sequence  was assumed infinite. This contradiction completes the proof. 

This page titled 4.7: More on Compactness is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The
Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

is

 Theorem 4.7.2

F ⊆ (S, ρ) F

F (i ∈ I), FGi Gi

F F ⊆ ∪ ,Gi Gi { }Gi

1, { }Gi ε (1). ε > 0. F

ε

F ⊆ (ε), ∈ F .⋃
k=1

n

Gxk
xk (4.7.8)

(1), (ε)Gxk
;Gi .Gik

Gik

F ⊆ (ε) ⊆ .⋃
k=1

n

Gxk
⋃
k=1

n

Gik
(4.7.9)

Gik

F

{ } ⊆ Fxm p ∈ F .

F no { } .xm x ∈ F

Gx .xm F

F xm

{ } ⊆ Fxm □
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4.8: Continuity on Compact Sets. Uniform Continuity

This page is a draft and is under active development. 

I. Some additional important theorems apply to functions that are continuous on a compact set (see §6).

If a function  is relatively continuous on a compact set  then  is a compact set in 
 Briefly,

Proof

To show that  is compact, we take any sequence  and prove that it clusters at some .

As  for some  in  We pick such an  for each  thus obtaining a sequence 
 with

Now by the assumed compactness of  the sequence  must cluster at some  Thus it has a subsequence 
 As  the function  is relatively continuous at  over  (by assumption). Hence by the sequential criterion

 implies  i.e.,

Thus  is the desired cluster point of 

This theorem can be used to prove the compactness of various sets.

(1) A closed line segment  in  is compact, for, by definition,

Thus  is the image of the compact interval  under the  given by  which is
continuous by Theorem 3 of §3. (Why?)

(2) The closed solid ellipsoid in 

is compact, being the image of a compact globe under a suitable continuous map. The details are left to the reader as an
exercise.

Every nonvoid compact set  has a maximum and a minimum.

Proof

By Theorems 2 and 3 of §6,  is closed and bounded. Thus  has an infimum and a supremum in  (by the
completeness axiom), say,  and  It remains to show that 

 Theorem 4.8.1

f : A → (T , ) , A ⊆ (S, ρ),ρ′ B ⊆ A, f [B]
(T , ) .ρ′

the continuous image of a compact set is compact. (4.8.1)

f [B] { } ⊆ f [B]ym q ∈ f [B]

∈ f [B], = f ( )ym ym xm xm B. ∈ Bxm ,ym

{ } ⊆ Bxm

f ( ) = , m = 1, 2, …xm ym (4.8.2)

B, { }xm p ∈ B.
→ p.xmk

p ∈ B, f p B

(§2), → pxmk
f ( ) → f(p);xmk

→ f(p) ∈ f [B].ymk (4.8.3)

q = f(p) { } . □ym

 Example 4.8.1

L[ , ]ā̄̄ b
¯̄

(  and in other normed spaces )En ∗

L[ , ] = { + t |0 ≤ t ≤ 1},  where  = − .ā̄̄ b¯̄ ā̄̄ u⃗  u⃗  b¯̄ ā̄̄ (4.8.4)

L[ , ]ā̄̄ b
¯̄

[0, 1] ⊆ E1 mapf : → ,E1 En f(t) = + t ,ā̄̄ u⃗ 

,E3

{(x, y, z)| + + ≤ 1} ,
x2

a2

y2

b2

z2

c2
(4.8.5)

 lemma 4.8.1

F ⊆ E1

F F E1

p = inf F q = supF . p, q ∈ F .
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Assume the opposite, say,  Then by properties of suprema, each globe  contains some 
 (specifically,  other than  Thus

i.e.,  clusters at  and hence must contain  (being closed). However, since  this is the desired contradiction, and
the lemma is proved. 

The next theorem has many important applications in analysis.

(Weierstrass).

(i) If a function  is relatively continuous on a compact set  then  is bounded on  i.e.,  is
bounded.

(ii) If, in addition,  and  is real  then  has a maximum and a minimum; i.e., f attains a largest and a
least value at some points of .

Proof

Indeed, by Theorem  is compact, so it is bounded, as claimed in .

If further  and  is real, then  is a nonvoid compact set in  so by Lemma  it has a maximum and a
minimum in  Thus all is proved. 

Note 1. This and the other theorems of this section hold, in particular, if  is a closed interval in  or a closed globe in 
 (because these sets are compact - see the examples in §6). This may fail, however, if  is not compact, e.g., if 

 For a counterexample, see Problem 11 in Chapter 3, §13.

If a function , is relatively continuous on a compact set  and is one to one on  (i.e., when
restricted to ), then its inverse, , is continuout on .

Proof

To show that  is continuous at each point , we apply the sequential criterion (Theorem 1 in §2). Thus we fix a
sequence , and prove that .

Let  and  so that

We have to show that , i.e., that

Seeking a contradiction, suppose this fails, i.e., its negation holds. Then (see Chapter 1, §§1–3) there is an  such that

where we write “ ” for “ ” to stress that the  may be different for different . Thus by (1), we fix some  for each 
 so that (1) holds, choosing step by step,

Then the  form a subsequence of , and the corresponding  form a subsequence of .
Henceforth, for brevity, let  and  themselves denote these two subsequences. Then as before, 

, and . Also,by(1),

q ∉ F . (δ) = (q −δ, q +δ)Gq

x ∈ B q −δ < x < q) q( for q ∉ B,  while x ∈ B).

(∀δ > 0) F ∩ (δ) ≠ ∅;G¬q (4.8.6)

F q q q ∉ F ,
□

 Theorem 4.8.2

f : A → (T , )ρ′ B ⊆ A, f B; f [B]

B ≠ ∅ f (f : A → ) ,E1 f [B]

B

1, f [B] (i)

B ≠ ∅ f f [B] ,E1 1,
.E1

□

B En

(  or  )En ∗ C n B

B = ( , ).ā̄̄ b
¯̄

 Theorem 4.8.3

f : A → (T , ) , A ⊆ (S, ρ)ρ′ B ⊆ A B

B f −1 f [B]

f −1 q ∈ f [B]
{ } ⊆ f [B], → q ∈ f [B]ym ym ( ) → (q)f −1 ym f −1

( ) =f −1 ym xm (q) = pf −1

= f ( ) , q = f(p),  and  , p ∈ B.ym xm xm (4.8.7)

→ pxm

(∀ε > 0)(∃k)(∀m > k) ρ ( , p) < ε.xm (4.8.8)

ϵ > 0

(∀k) (∃ > k) ρ ( , p) ≥ ε,mk xmk (4.8.9)

mk m mk k mk

k

> , k = 1, 2, …mk+1 mk (4.8.10)

xmk
{ }xm = f( )ymk

xmk
{ }ym

{ }xm { }ym

∈ B, = f ( ) ∈ f [B]xm ym xm → q, q = f(p)ym
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Now as  and  is compact,  has a (sub)subsequence

As  is relatively continuous on , this implies

However, the subsequence  must have the same limit as , i.e., . Thus  whence  (for 
is one to one on ), so .

This contradicts (2), however, and thus the proof is complete. 

(3) For a fixed  define  by

Then  is one to one (strictly increasing) and continuous (being a monomial; see §3). Thus by Theorem 3,  (the nth root
function) is relatively continuous on each interval

hence on 

See also Example (a) in §6 and Problem 1 below.

II. Uniform Continuity. If  is relatively continuous on , then by definition,

Here, in general,  depends on both  and  (see Problem 4 in §1); that is, given , some values of  may fit a given p but fail
(3) for other points.

It may occur, however, that one and the same  (depending on  only) satisfies (3) for all  simultaneously, so that we have the
stronger formula

If (4) is true, we say that  is uniformly continuous on .

Clearly, this implies (3), but the converse fails.

If a function , is relatively continuous on a compact set , then  is also uniformly
continuous on .

Proof

(by contradiction). Suppose  is relatively continuous on , but (4) fails. Then there is an  such that

here  and  on . We fix such an  and let

(∀m) ρ ( , p) ≥ ε (  stands for  ) .xm xm xmk (4.8.11)

{ } ⊆ Bxm B { }xm

→  for some  ∈ B.xmi p′ p′ (4.8.12)

f B

f ( ) = → f ( )xmi ymi p′ (4.8.13)

{ }ymi { }ym f(p) f ( ) = f(p)p′ p = p′ f

B → = pxmi p′

□

 Example 4.8.2

n ∈ N , f : [0, +∞) → E1

f(x) = .xn (4.8.14)

f f −1

f = [ , ].an bn (4.8.15)

[0, +∞).

f B

(∀ε > 0)(∀p ∈ B)(∃δ > 0) (∀x ∈ B ∩ (δ)) (f(x), f(p)) < ε.Gp ρ′ (4.8.16)

δ ϵ p ϵ > 0 δ

δ ϵ p ∈ B

(∀ε > 0)(∃δ > 0)(∀p, x ∈ B|ρ(x, p) < δ) (f(x), f(p)) < ε.ρ′ (4.8.17)

 Definition

f B

 Theorem 4.8.4

f : A → (T , ) , A ⊆ (S, ρ)ρ′ B ⊂ A f

B

f B ϵ > 0

(∀δ > 0)(∃p, x ∈ B) ρ(x, p) < δ,  and  yet  (f(x), f(p)) ≥ ε;ρ′ (4.8.18)

p x δ ϵ

δ = 1, , … , , …
1

2

1

m
(4.8.19)
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Then for each  (i.e., each ), we get two points  with

and

Thus we obtain two sequences,  and , in . As  is compact,  has a subsequence . For
simplicity, let it be  itself; thus

Hence by (5), it easily follows that also  (because . By the assumed relative continuity of  on , it
follows that

This, in turn, implies that , which is impossible, in view of (6). This contradiction completes the proof. 

(a) A function , ic called a contraction map (on ) iff

Any such map is uniformly continuous on A. In fact, given , we simply take . Then 

as required in (3).

(b) As a special case, consider the absolute value map (norm map) given by

It is uniformly continuous on  because

which shows that  is a contraction map, so Example (a) applies.

(c) Other examples of contraction maps are

(1) constant maps (see §1, Example (a)) and

(2) projection maps (see the proof of Theorem 3 in §3).

Verify!

(d) Define  by

By elementary trigonometry, . Thus 

and  is a contraction map again. Hence the sine function is uniformly continuous on ; similarly for the cosine function.

(e) Given  define  by

δ m , ∈ Bxm pm

ρ ( , ) <xm pm

1

m
(4.8.20)

(f ( ) , f ( )) ≥ ε, m = 1, 2, …ρ′ xm pm (4.8.21)

{ }xm { }pm B B { }xm → q(q ∈ B)xmk

{ }xm

→ q, q ∈ B.xm (4.8.22)

→ qpm ρ ( , ) → 0xm pm f B

f ( ) → f(q) and f ( ) → f(q) in  (T , ) .xm pm ρ′ (4.8.23)

(f ( ) , f ( )) → 0ρ′ xm pm □

 Example 4.8.1

f : A → (T , ) , A ⊆ (S, ρ)ρ′ A

ρ(x, y) ≥ (f(x), f(y)) for all x, y ∈ A.ρ′ (4.8.24)

ε > 0 δ = ε ∀x, p ∈ A

ρ(x, p) < δ implies  (f(x), f(p)) ≤ ρ(x, p) < δ = ε,ρ′ (4.8.25)

f( ) = | | on  (  or another normed space ) .x̄̄̄ x̄̄̄ En ∗ (4.8.26)

En

|| | − | || ≤ | − |,  i.e.,  (f( ), f( )) ≤ ρ( , ),x̄̄̄ p̄̄̄ x̄̄̄ p̄̄̄ ρ′ x̄̄̄ p̄̄̄ x̄̄̄ p̄̄̄ (4.8.27)

f

f : →E1 E1

f(x) = sinx (4.8.28)

| sinx| ≤ |x| (∀x, p ∈ )E1

,

|f(x) −f(p)| = | sinx −sinp|

= 2 sin (x −p) ⋅ cos (x +p)
∣
∣
∣

1

2

1

2
∣
∣
∣

≤ 2 sin (x −p)
∣
∣
∣

1

2
∣
∣
∣

≤ 2 ⋅ |x −p| = |x −p|
1

2

f E1

∅ ≠ A ⊆ (S, ρ), f : S → E1
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It is easy to show that

i.e.,

Similarly,  Thus

i.e.,  is uniformly continuous (being a contraction map).

(f) The identity map  given by

is uniformly continuous on  since

However, even relative continuity could fail if the metric in the domain space  were not the same as in  when regarded as
the range space (e.g., make  discrete!)

(g) Define  by

Then

i.e.,

Thus, given  take  Then

proving uniform continuity.

(h) Let

Then  is continuous on  but not uniformly so. Indeed, we can prove the negation of  i.e.

Take  and any  We look for  such that

i.e.,

This is achieved by taking

f(x) = ρ(x, A) where ρ(x, A) = ρ(x, y)inf
y∈A

(4.8.29)

(∀x, p ∈ S) ρ(x, A) ≤ ρ(x, p) +ρ(p, A) (4.8.30)

f(x) ≤ ρ(p, x) +f(p),  or f(x) −f(p) ≤ ρ(p, x) (4.8.31)

f(p) −f(x) ≤ ρ(p, x).

|f(x) −f(p)| ≤ ρ(p, x) (4.8.32)

f

f : (S, ρ) → (S, ρ),

f(x) = x (4.8.33)

S

ρ(f(x), f(p)) = ρ(x, p) (a contraction map!)  (4.8.34)

S S

ρ′

f : →E1 E1

f(x) = a +bx (b ≠ 0). (4.8.35)

(∀x, p ∈ ) |f(x) −f(p)| = |b||x −p|;E1 (4.8.36)

ρ(f(x), f(p)) = |b|ρ(x, p). (4.8.37)

ε > 0, δ = ε/|b|.

ρ(x, p) < δ⟹ ρ(f(x), f(p)) = |b|ρ(x, p) < |b|δ = ε, (4.8.38)

f(x) =  on B = (0, +∞).
1

x
(4.8.39)

f B, (4),

(∃ε > 0)(∀δ > 0)(∃x, p ∈ B) ρ(x, p) < δ and  (f(x), f(p)) ≥ ε.ρ′ (4.8.40)

ε = 1 δ > 0. x, p

|x −p| < δ and |f(x) −f(p)| ≥ ε, (4.8.41)

− ≥ 1,
∣
∣
∣
1

x

1

p

∣
∣
∣ (4.8.42)

p = min(δ, ) , x = . ( Verify! )
1

2

p

2
(4.8.43)
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Thus  fails on  yet it holds on  for any . 
(Verify!)

This page titled 4.8: Continuity on Compact Sets. Uniform Continuity is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

(4) B = (0, +∞), [a, +∞) a > 0
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4.8.E: Problems on Uniform Continuity; Continuity on Compact Sets

Prove that if  is relatively continuous on each compact subset of  then it is relatively continuous on  
[Hint: Use Theorem 1 of §2 and Problem 7 in §6.]

Do Problem 4 in Chapter 3, §17, and thus complete the last details in the proof of Theorem 4.

Give an example of a continuous one-to-one map  such that  is not continuous. 
[Hint: Show that any map is continuous on a discrete space .]

Give an example of a continuous function  and a compact set   such that  is not compact. 
[Hint: Let  be constant on .]

Complete the missing details in Examples  and  and .

Show that every polynomial of degree one on  is uniformly continuous.

Show that the arcsine function is uniformly continuous on  

 Prove that if  is uniformly continuous on  and if  is a Cauchy sequence, so is  (Briefly, 
preserves Cauchy sequences.) Show that this may fail if  is only continuous in the ordinary sense. (See Example (h).)

Prove that if  is uniformly continuous on  and  is uniformly continuous on  then the
composite function  is uniformly continuous on .

Show that the functions  and  in Problem 5 of Chapter 3, §11 are contraction maps, 5 hence uniformly continuous. By
Theorem 1, find again that  is compact.

 Exercise 4.8.E. 1

f D, D.

 Exercise 4.8.E. 2

 Exercise 4.8.E. 3

f f −1

(S, ρ)

 Exercise 4.8.E. 4

f D ⊆ (T , )ρ′ [D]f −1

f E1

 Exercise 4.8.E. 5

(1) (2) (c) −(h)

 Exercise 4.8.E. 6

(*or  )En C n

 Exercise 4.8.E. 7

[−1, 1].
 [Hint: Use Example (d) and Theorems 3 and 4. ]

 Exercise 4.8.E. 8

⇒ 8. f B, { } ⊆ Bxm {f ( )} .xm f

f

 Exercise 4.8.E. 9

f : S → T B ⊆ S, g : T → U f [B],
g ∘ f B

 Exercise 4.8.E. 10

f f −1

( , )E∗ ρ′
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Let  be the set of all cluster points of  Let  be uniformly continuous on  and let  be
complete. 
(i) Prove that  exists at each . 
(ii) Thus define  for each  and show 
that  so extended is uniformly continuous on the set  
(iii) Consider, in particular, the case  so that 

 
[Hint: Take any sequence  As it is Cauchy (why?), so is  by Problem  Use Corollary 1 in
§2 to prove existence of . For uniform continuity, use definitions; in case (iii), use Theorem 4 .]

Prove that if two functions  with values in a normed vector space are uniformly continuous on a set  so also are 
and  for a fixed scalar  
For real functions, prove this also for  and  defined by 

 
and 

 
[Hint: After proving the first statements, verify that 

 
and use Problem 9 and Example .]

Let  be vector valued and  scalar valued, with both uniformly continuous on  
Prove that 
(i) if  and  are bounded on , then  is uniformly continuous on ; 
(ii) the function  is uniformly continuous on  if  is bounded on  and  is "bounded away" from 0 on , i.e., 

 
Give examples to show that without these additional conditions,  and  may not be uniformly continuous (see Problem
14 below).

In the following cases, show that  is uniformly continuous on , but only continuous (in the ordinary sense) on  as
indicated, with . 
(a) . 
(b) . 

 Exercise 4.8.E. 11

A′ A ⊆ (S, ρ). f : A → (T , )ρ′ A, (T , )ρ′

f(x)limx→p p ∈ A′

f(p) = f(x)limx→p p ∈ −A,A′

f = A ∪ .A
¯ ¯¯̄

A′

A = (a, b) ⊆ ,E1

= = [a, b].A
¯ ¯¯̄

A′ (4.8.E.1)

{ } ⊆ A, → p ∈ .xm xm A′ {f ( )}xm 8.
f(x)limx→p

 Exercise 4.8.E. 12

f , g B, f ±g

af a.
f ∨ g f ∧ g

(f ∨ g)(x) = max(f(x), g(x)) (4.8.E.2)

(f ∧ g)(x) = min(f(x), g(x)). (4.8.E.3)

max(a, b) = (a +b +|b −a|) and  min(a, b) = (a +b −|b −a|)
1

2

1

2
(4.8.E.4)

(b)

 Exercise 4.8.E. 13

f h B ⊆ (S, ρ).

f h B hf B

f/h B f B h B

(∃δ > 0)(∀x ∈ B) |h(x)| ≥ δ. (4.8.E.5)

hf f/h

 Exercise 4.8.E. 14

f B ⊆ E1 D,
0 < a < b < +∞

f(x) = ; B = [a, +∞); D = (0, 1)1
x2

f(x) = ; B = [a, b]; D = [a, +∞)x2
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(c)  and  as in . 
(d)  and  as in .

Prove that if  is uniformly continuous on  it is so on each subset .

For nonvoid sets  define 

 
Prove that if  and if  is uniformly continuous on each of  and  it is so on . 
Show by an example that this fails if  even if  

 .  
Note, however, that if  and  are compact,  implies  Thus 

 suffices in this case.

Prove that if  is relatively continuous on each of the disjoint closed sets 

 
it is relatively continuous on their union 

 
hence (see Problem 6 of §6) it is uniformly continuous on  if the  are compact. 
[Hint: Fix any  Then  is in some  say,  As the  are disjoint,  hence  also is no cluster
point of any of  (for they are closed). 
Deduce that there is a globe  disjoint from each of  so that  From this it is easy to
show that relative continuity of  

\Rightarrow 18 .\) Let  be fixed points in  or in another normed space). 
Let 

 
whenever . 
Show that this defines a uniformly continuous mapping  of the interval  onto the "polygon" 

 
In what case is  one to one? Is  uniformly continuous on each  On the entire polygon? 
[Hint: First prove ordinary continuity on  using Theorem 1 of §3. (For the 

f(x) = sin ; B1
x

D (a)

f(x) = x cos x; B D (b)

 Exercise 4.8.E. 15

f B, A ⊆ B

 Exercise 4.8.E. 16

A, B ⊆ (S, ρ),

ρ(A, B) = inf{ρ(x, y)|x ∈ A, y ∈ B}. (4.8.E.6)

ρ(A, B) > 0 f A B, A ∪ B

ρ(A, B) = 0, A ∩ B = ∅
(e. g. ,  take A = [0, 1], B = (1, 2] in  ,  making f  constant on each of AE1  and B)

A B A ∩ B = ∅ ρ(A, B) > 0.  (Prove it using Problem 13 in §6. )
A ∩ B = ∅

 Exercise 4.8.E. 17

f

, , … , ,F1 F2 Fn (4.8.E.7)

F = ;⋃
k=1

n

Fk (4.8.E.8)

F Fk

p ∈ F . p ,Fk p ∈ .F1 Fk p ∉ , … , ;F2 Fp p

, … ,F2 Fn

(δ)Gp , … , ,F2 Fn F ∩ (δ) = ∩ (δ).Gp F1 Gp

f  on F  follows from relative continuity on  . ]F1

 Exercise 4.8.E. 18

, , … ,p̄̄̄0 p̄̄̄1 p̄̄̄m En(∗

f(t) = +(t −k) ( − )p̄̄̄k p̄̄̄k+1 p̄̄̄k (4.8.E.9)

k ≤ t ≤ k +1, t ∈ , k = 0, 1, … , m −1E1

f [0, m] ⊆ E1

L[ , ].⋃
k=0

m−1

pk pk+1 (4.8.E.10)

f f −1 L [ , ]?pk pk+1

[0, m]
 points 1, 2, … , m −1,  consider left and right limits.) Then use Theorems 1 −4. ]
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Prove the sequential criterion for uniform continuity: A function  is uniformly continuous on a set  iff for
any two (not necessarily convergent) sequences  and  in  with  we have 

 (i.e.,  preserves con-current pairs of sequences; see Problem 4 in Chapter 3, §17).

4.8.E: Problems on Uniform Continuity; Continuity on Compact Sets is shared under a CC BY 1.0 license and was authored, remixed, and/or
curated by LibreTexts.

 Exercise 4.8.E. 19

f : A → T B ⊆ A

{ }xm { }ym B, ρ ( , ) → 0,xm ym

(f ( ) , f ( )) → 0ρ′ xm ym f
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4.9: The Intermediate Value Property

This page is a draft and is under active development. 

A function  is said to have the intermediate value property, or Darboux property,  on a set  iff, together
with any two function values  and  it also takes all intermediate values between  and  at
some points of .

In other words, the image set  contains the entire interval between  and  in 

Note 1. It follows that  itself is a finite or infinite interval in  with endpoints inf  and  (Verify!)

Geometrically, if  this means that the curve  meets all horizontal lines  for  between  and  For
example, in Figure 13 in  we have a "smooth" curve that cuts each horizontal line  between  and  so  has the
Darboux property on  In Figures 14 and  there is a "gap" at  ; the property fails. In Example (f) of  the property holds
on all of  despite a discontinuity at  Thus it does not imply continuity.

Intuitively, it seems plausible that a "continuous curve" must cut all intermediate horizontals. A precise proof for functions
continuous on an interval, was given independently by Bolzano and Weierstrass (the same as in Theorem 2 of Chapter 3, §16).
Below we give a more general version of Bolzano's proof based on the notion of a convex set and related concepts.

A set  in  (* or in another normed space) is said to be convex iff for each  the line segment  is a subset of 
.

A polygon joining  and  is any finite union of line segments (a "broken line") of the form

The set  is said to be polygon connected (or piecewise convex) iff any two points  can be joined by a polygon contained
in .

 Definition: intermediate value property

f : A → E∗ 1 B ⊆ A

f(p) f ( ) (p, ∈ B) ,p1 p1 f(p) f ( )p1

B

f [B] f(p) f ( )p1 .E∗

f [B] ,E∗ f [B] supf [B].

A ⊆ ,E1 y = f(x) y = q, q f(p) f ( ) .p1

§1, y = q f(0) f ( ) ;p1 f

[0, ] .p1 15, p §1,
E1 0.

 Definition: Convex

B En , ∈ Bā̄̄ b
¯̄

L[ , ]ā̄̄ b
¯̄

B

ā̄̄ b
¯̄

L [ , ]  with  =  and  = .⋃
i=0

m−1

p̄̄̄i p̄̄̄i+1 p̄̄̄0 ā̄̄ p̄̄̄m b
¯̄

(4.9.1)

B , ∈ Bā̄̄ b¯̄

B
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Any globe in  (* or in another normed space) is convex, so also is any interval in  or in . Figures 19 and 20 represent
a convex set  and a polygon-connected set  in  is not convex; it has a "cavity").

We shall need a simple lemma that is noteworthy in its own right as well.

Every contracting sequence of closed line segments  in  (* or in any other normed space) has a nonvoid
intersection; i.e., there is a point

Proof

Use Cantor's theorem (Theorem 5 of §6) and Example (1) in §8. 

We are now ready for Bolzano's theorem. The proof to be used is typical of so-called "bisection proofs." (See also §6, Problems 9
and 10 for such proofs.)

If  is relatively continuous on a polygon-connected set  in  (* or in another normed space), then  has the
Darboux property on 

In particular, if  is convex and if  for some  then there is a point  such that .

Proof

First, let  be convex. Seeking a contradiction, suppose  with

yet  for all .

Let  be the set of all those  for which  i.e.,

and let

Then  and . (Why?)

Now let

be the midpoint on  Clearly,  is either in  or in  Thus it bisects  into two subsegments, one of which
must have its left endpoint in  and its right endpoint in 

We denote this particular closed segment by  We then have

Now we bisect  and repeat the process. Thus let

 Example

En En E∗

A B E2

 Lemma  (principle of nested line segments)4.9.1

L [ , ]p̄̄̄m q̄̄m En

∈ L[ , ].p̄̄̄ ⋂
m=1

∞

p̄̄̄m q̄̄m (4.9.2)

□

 Theorem : Bolzano's theorem4.9.1

f : B → E1 B En f

B.

B f( ) < c < f( )p̄̄̄ q̄̄ , ∈ B,p̄̄̄ q̄̄ ∈ L( , )r̄̄ p̄̄̄ q̄̄ f( ) = cr̄̄

B , ∈ Bp̄̄̄ q̄̄

f( ) < c < f( ),p̄̄̄ q̄̄ (4.9.3)

f( ) ≠ cx̄̄̄ ∈ L( , )x̄̄̄ p̄̄̄ q̄̄

P ∈ L[ , ]x̄̄̄ p̄̄̄ q̄̄ f( ) < c,x̄̄̄

P = { ∈ L[ , ]|f( ) < c},x̄̄̄ p̄̄̄ q̄̄ x̄̄̄ (4.9.4)

Q = { ∈ L[ , ]|f( ) > c}.x̄̄̄ p̄̄̄ q̄̄ x̄̄̄ (4.9.5)

∈ P , ∈ Q, P ∩ Q = ∅,p̄̄̄ q̄̄ P ∪ Q = L[ , ] ⊆ Bp̄̄̄ q̄̄

= ( + )r̄̄0
1

2
p̄̄̄ q̄̄ (4.9.6)

L[ , ].p̄̄̄ q̄̄ r̄̄0 P Q. L[ , ]p̄̄̄ q̄̄

P Q.

L [ , ] , ∈ P , ∈ Q.p̄̄̄1 q̄̄1 p̄̄̄1 q̄̄1

L[ , ] ⊆ L[ , ] and | − | = | − |.  (Verify!) p̄̄̄1 q̄̄1 p̄̄̄ q̄̄ p1 q1
1

2
p̄̄̄ q̄̄ (4.9.7)

L[ , ]p̄̄̄1 q̄̄1

= ( + ).r̄̄1
1

2
p̄̄̄1 q̄̄1 (4.9.8)
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By the same argument, we obtain a closed subsegment  with  and

Next, we bisect  and so on. Continuing this process indefinitely, we obtain an infinite contracting sequence of
closed line segments  such that

and

By Lemma 1, there is a point

This implies that

whence  Similarly, we obtain .

Now since  the function  is relatively continuous at  over  (by assumption). By the sequential
criterion, then,

Moreover,  Letting  we pass to limits (Chapter 3, §15,
Corollary 1 ) and get

so that  is neither in  nor in  which is a contradiction. This completes the proof for a convex .

The extension to polygon-connected sets is left as an exercise (see Problem 2 below). Thus all is proved. 

Note 2. In particular, the theorem applies if  is a globe or an interval.

Thus continuity on an interval implies the Darboux property. The converse fails, as we have noted. However, for monotone
functions, we obtain the following theorem.

If a function  is monotone and has the Darboux property on a finite or infinite interval  then it is
continuous on 

Proof

Seeking a contradiction, suppose  is discontinuous at some .

For definiteness, let  on  Then by Theorems 2 and 3 in §5, we have either  or  or
both, with no function values in between.

On the other hand, since  has the Darboux property, the function values  for  in  fill an entire interval (see
Note 1). Thus it is impossible for  to be the only function value between  and  unless  is constant near 
but then it is also continuous at  which we excluded. This contradiction completes the proof. 

Note 3. The theorem holds (with a similar proof) for nonopen intervals as well, but the continuity at the endpoints is relative (right
at  left at 

L [ , ] ⊆ L [ , ]p̄̄̄2 q̄̄2 p̄̄̄1 q̄̄1 ∈ P , ∈ Q,p̄̄̄2 q̄̄2

| − | = | − | = | − |.p̄̄̄2 q̄̄2
1

2
p̄̄̄1 q̄̄1

1

4
p̄̄̄ q̄̄ (4.9.9)

L [ , ] ,p̄̄̄2 q̄̄2

L [ , ]p̄̄̄m q̄̄m

(∀m) ∈ P , ∈ Q,p̄̄̄m q̄̄m (4.9.10)

| − | = | − | → 0 as m → +∞.p̄̄̄m q̄̄m

1

2m p̄̄̄ q̄̄ (4.9.11)

∈ L [ , ] .r̄̄ ⋂
m=1

∞

p̄̄̄m q̄̄m (4.9.12)

(∀m) | − | ≤ | − | → 0,r̄̄ p̄̄̄m p̄̄̄m q̄̄m (4.9.13)

→ .p̄̄̄m r̄̄ →q̄̄m r̄̄

∈ L[ , ] ⊆ B,r̄̄ p̄̄̄ q̄̄ f r̄̄ B

f ( ) → f( ) and f ( ) → f( ).p̄̄̄m r̄̄ q̄̄m r̄̄ (4.9.14)

f ( ) < c < f ( ) ( for  ∈ P  and  ∈ Q) .p̄̄̄m q̄̄m p̄̄̄m q̄̄m m → +∞,

f( ) ≤ c ≤ f( ),r̄̄ r̄̄ (4.9.15)

r̄̄ P Q, B

□

B

 Theorem 4.9.2

f : A → E1 (a, b) ⊆ A ⊆ ,E1

(a, b).

f p ∈ (a, b)

f ↑ (a, b). f ( ) < f(p)p− f(p) < f ( )p+

f f(x) x (a, b)
f(p) f ( )p− f ( )p+ f p,

p, □

a, b).
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If  is strictly monotone and continuous when restricted to a finite or infinite interval  then its inverse
 has the same properties on the set  (itself an interval, by Note 1 and Theorem 1).

Proof

It is easy to see that  is increasing (decreasing) if  is; the proof is left as an exercise. Thus  is monotone on  if 
 is so on . To prove the relative continuity of  we use Theorem 2, i.e., show that  has the Darboux property on 

Thus let  for some  We look for an  such that  i.e.,  Now
since  the numbers  and  are in  an interval. Hence also the intermediate value  is in  ; thus
it belongs to the domain of  and so the function value  exists. It thus suffices to put  to get the result. 

(a) Define  by

As  is continuous (being a monomial), it has the Darboux property on  By Note  setting  we have 
. (Why?) Also,  is strictly increasing on . Thus by Theorem 3, the inverse function  (i.e., the nth root

function) exists and is continuous on .

If  is odd, then  has these properties on all of  by a similar proof; thus  exists for .

(b) Logarithmic functions. From the example in §5, we recall that the exponential function given by

is continuous and strictly monotone on  Its inverse,  is called the logarithmic function to the base a, denoted log. By
Theorem 3, it is continuous and strictly monotone on 

To fix ideas, let  so  and  By Note 1,  is an interval with endpoints  and  where

and

Now by Problem 14 (iii) of §2 (with ),

As  we use Theorem 1 in §5 to obtain

Thus  i.e., the domain of  is the interval . It follows that  is uniquely defined for  in 
 it is called the logarithm of  to the base .

The range of log  is the same as the domain of  i.e., . Thus if  increases from  to 
as  increases from 0 to  Hence

provided .

If  the values of these limits are interchanged (since  in this case), but otherwise the results are the same.

 Theorem 4.9.3

f : A → E1 B ⊆ A ⊆ ,E1

f −1 f [B]

f −1 f f −1 f [B]
f B ,f −1 f −1

f [B].

(p) < c < (q)f −1 f −1 p, q ∈ f [B]. r ∈ f [B] (r) = c,f −1 r = f(c).
p, q ∈ f [B], (p)f −1 (q)f −1 B, c B

f , f(c) r = f(c) □

 ExampleS

f : →E1 E1

f(x) =  for a fixed n ∈ N .xn (4.9.16)

f .E1 1, B = [0, +∞),
f [B] = [0, +∞) f B f −1

f [B] = [0, +∞)

n f −1 ,E1 x−−√n x ∈ E1

F (x) = (a > 0)ax (4.9.17)

.E1 ,F −1

F [ ] .E1

a > 1, F ↑ ( ) ↑.F −1 F [ ]E1 p r,

p = inf F [ ] = inf { | −∞ < x < +∞}E1 ax (4.9.18)

r = supF [ ] = sup{ | −∞ < x < +∞} .E1 ax (4.9.19)

q = 0

= +∞ and  = 0.lim
x→+∞

ax lim
x→−∞

ax (4.9.20)

F ↑,

r = sup = = +∞ and p = = 0.ax lim
x→+∞

ax lim
x→−∞

ax (4.9.21)

F [ ] ,E1 ,loga (p, r) = (0, +∞) xloga x

(0, +∞); x a

( i.e. of  )a F −1 F , E1 a > 1, xloga −∞ +∞

x +∞.

x = +∞ and  x = −∞,lim
x→+∞

loga lim
x→0+

loga (4.9.22)

a > 1

0 < a < 1, F ↓
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If  we write  or  for  and we call  the natural logarithm of  Its inverse is, of course, the exponential 
 also written  Thus by definition,  and

(c) The power function  is defined by

If  we also define  For  we have

Thus by the rules for composite functions (Theorem 3 and Corollary 2 in §2), the continuity of  on  follows from that
of exponential and log functions. If  is also continuous at  (Exercise!)

This page titled 4.9: The Intermediate Value Property is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

a = e, lnx log x x,loga lnx x.
f(x) = ,ex exp(x). ln = xex

x = exp(lnx) = (0 < x < +∞).eln x (4.9.23)

g : (0, +∞) → E1

g(x) =  for a fixed real a.xa (4.9.24)

a > 0, g(0) = 0. x > 0,

= exp(ln ) = exp(a ⋅ lnx).xa xa (4.9.25)

g (0, +∞)
a > 0, g 0.
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4.9.E: Problems on the Darboux Property and Related Topics

Prove Note 1.

Prove Note 3.

Prove continuity at 0 in Example .

Prove Theorem 1 for polygon-connected sets. 
[Hint: If 

 
with 

 
show that for at least one  either  or  Then replace 

Show that, if  is strictly increasing on  then  has the same property on  and both are one to one; similarly for
decreasing functions.

For functions on  Theorem 1 can be proved thusly: If 

 
let 

 
and put .  
Show that  is neither greater nor less than  and so necessarily  
[Hint: If , continuity at  implies that  on some  (§2, Problem 7), contrary to . (Why?)]

 Exercise 4.9.E. 1

 Exercise 4.9.E. 1′

 Exercise 4.9.E. 1′′

(c)

 Exercise 4.9.E. 2

B ⊇ L [ , ]⋃
i=0

m−1

p̄̄̄i p̄̄̄i+1 (4.9.E.1)

f ( ) < c < f ( ) ,p̄̄̄0 p̄̄̄m (4.9.E.2)

i, c = f ( )p̄̄̄i f ( ) < c < f ( ) .p̄̄̄i p̄̄̄i+1

B in the theorem by the convex segment L [ , ] . ]p̄̄̄i p̄̄̄i+1

 Exercise 4.9.E. 3

f B ⊆ E, f −1 f [B],

 Exercise 4.9.E. 4

B = [a, b] ⊂ ,E1

f(a) < c < f(b), (4.9.E.3)

P = {x ∈ B|f(x) < c} (4.9.E.4)

r = supP

f(r) c, f(r) = c.
f(r) < c r f(x) < c (δ)Gr r = supP
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Continuing Problem  prove Theorem 1 in all generality, as follows. 
Define 

 
, and so is the composite function  on  By Problem  with 

 there is a  with  Put  and show that .

Show that every equation of odd degree, of the form 

 
has at least one solution for  in . 
[Hint: Show that  takes both negative and positive values as  or ; thus by the Darboux property,  must
also take the intermediate value 0 for some 

Prove that if the functions  and  are both continuous, so also is the function  given
by 

 
.

Using Corollary 2 in §2, and limit properties of the exponential and log functions, prove the "shorthand" Theorems  of
§4.

Find .

Similarly, find a new solution of Problem 27 in Chapter 3, §15, reducing it to Problem 

Show that if  has the Darboux property on  
and if  is one to one on , then  is necessarily strictly monotone on .

 Exercise 4.9.E. 5

4,

g(t) = + t( − ), 0 ≤ t ≤ 1.p̄̄̄ q̄̄ p̄̄̄ (4.9.E.5)

 Then g is continuous (by Theorem 3 in §3) h = f ∘ g, [0, 1]. 4,
B = [0, 1], t ∈ (0, 1) h(t) = c. = g(t),r̄̄ f( ) = cr̄̄

 Exercise 4.9.E. 6

f(x) = = 0 (n = 2m −1, ≠ 0) ,∑
k=0

n

akxk an (4.9.E.6)

x E1

f x → −∞ x → +∞ f

x ∈ . ]E1

 Exercise 4.9.E. 7

f : A → (0, +∞) g : A → E1 h : A → E1

h(x) = f(x .)g(x) (4.9.E.7)

 [Hint: See Example (c)]

 Exercise 4.9.E. 8

11 −16

 Exercise 4.9.E. 8′

limx→+∞ (1 + )1
x

x√

 Exercise 4.9.E. 8′′

26.

 Exercise 4.9.E. 9

f : →E1 E∗ B(e. g. ,  if B is   convex and f  is relatively continuous on B)
f B f B
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Prove that if two real functions  are relatively continuous on   and 

 
then the equation 

 
has a solution between  and  similarly for the equation 

 

Similarly, discuss the solutions of 

4.9.E: Problems on the Darboux Property and Related Topics is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 4.9.E. 10

f , g [a, b] (a < b)

f(x)g(x) > 0 for x ∈ [a, b], (4.9.E.8)

(x −a)f(x) +(x −b)g(x) = 0 (4.9.E.9)

a b;

+ = 0 (a, b ∈ ) .
f(x)

x −a

g(x)

x −b
E1 (4.9.E.10)

 Exercise 4.9.E. 10′

+ + = 0.
2

x −4

9

x −1

1

x −2
(4.9.E.11)
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4.10: Arcs and Curves. Connected Sets

This page is a draft and is under active development. 

A deeper insight into continuity and the Darboux property can be gained by generalizing the notions of a convex set and polygon-
connected set to obtain so-called connected sets.

I. As a first step, we consider arcs and curves.

A set  is called an arc iff  is a continuous image of a compact interval  i.e., iff there is a continuous
mapping 

 
If, in addition,  is one to one,  is called a simple arc with endpoints  and . 
If instead  we speak of a closed curve. 
A curve is a continuous image of any finite or infinite interval in .

Each arc is a compact (hence closed and bounded) set (by Theorem 1 of §8).

A set  is said to be arcwise connected iff every two points  are in some simple arc contained in  (We
then also say the  and  can be joined by an arc in 

(a) Every closed line segment  in  is a simple arc (consider the map  in
Example (1) of §8). 
(b) Every polygon 

 
is an arc (see Problem 18 in §8). It is a simple arc if the half-closed segments  do not intersect and the points  are
distinct, for then the map  in Problem 18 of §8 is one to one. 
(c) It easily follows that every polygon-connected set is also arcwise connected; one only has to show that every polygon
joining two points  can be reduced to a simple polygon (not a self-intersecting one). See Problem  
However, the converse is false. For example, two discs in  connected by a parabolic arc form together an arcwise- (but not
polygonwise-) connected set. 
(d) Let  be real continuous functions on an interval . Treat them as components of a function 

, 

 
Then  is continuous by Theorem 2 in §3. Thus the image set  is a 

 Definition

A ⊆ (S, ρ) A [a, b] ⊂ ,E1

f : [a, b] A.⟶
 onto 

(4.10.1)

f A f(a) f(b)
f(a) = f(b),

E1

 corollary 4.10.1

 Definition

A ⊆ (S, ρ) p, q ∈ A A.
p q A. )

 Example 4.10.1

L[ , ]ā̄̄ b
¯̄

(  or in any other normed space )En ∗ f

A = L [ , ]⋃
i=0

m−1

p̄̄̄i p̄̄̄i+1 (4.10.2)

L [ , )p̄̄̄i p̄̄̄i+1 p̄̄̄i

f

,p̄̄̄0 p̄̄̄m 2.
E2

, , … ,f1 f2 fn I ⊆ E1

f : I → En

f = ( , … , ) .f1 fn (4.10.3)

f f [I]
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curve in  it is an arc if  is a closed interval. 
Introducing a parameter  varying over  we obtain the parametric equations of the curve, namely, 

 
Then as  varies over , the point  describes the curve 

 This is the usual way of treating curves in .

It is not hard to show that Theorem 1 in §9 holds also if  is only arcwise connected (see Problem 3 below). However, much more
can be proved by introducing the general notion of a connected set. We do this next.

II. For this topic, we shall need Theorems 2-4 of Chapter 3, §12, and Problem 15 of Chapter 4, §2. The reader is advised to review
them. In particular, we have the following theorem.

 function  is continuous on  iff  is closed in  for each closed set  similarly
for open sets.

Indeed, this is part of Problem 15 in §2 with  replaced by .

A metric space  is said to be connected iff  is not the union  of any two nonvoid disjoint closed sets; it is
disconnected otherwise. 
A set  is called connected iff  is connected as a subspace of  i.e., iff  is not a union of two disjoint
sets  that are closed (hence also open) in  as a subspace of 

Note 1. By Theorem 4 of Chapter 3, §12, this means that

for some sets  that are closed in  Observe that, unlike compact sets, a set that is closed or open in  need not be
closed or open in 

(a')  is connected.

(b') So is any one-point set  (Why?)

(c') Any finite set of two or more points is disconnected. (Why?)

Other examples are provided by the theorems that follow.

The only connected sets in  are exactly all convex sets, i.e., finite and infinite intervals, including  itself.

Proof

The proof that such intervals are exactly all convex sets in  is left as an exercise.

Seeking a contradiction, suppose  for some  Let

Then  and  Moreover,  and  are open sets in  (Why?) Hence 
 and  are open in  each being the intersection of  with a set open in  (see Note 1 above). As  with 

 it follows that  is disconnected. This shows that if  is connected in  it must be convex.

;En I

t I,

= (t), k = 1, 2, … , n.xk fk (4.10.4)

t I = ( , … , )x̄̄̄ x1 xn

f [I]. (  and  )En ∗ C n

B

 Theorem 4.10.1

A f : (A, ρ) → (T , )ρ′ A [B]f −1 (A, ρ) B ⊆ (T , ) ;ρ′

(S, ρ) (A, ρ)

 Definition

(S, ρ) S P ∪ Q

A ⊆ (S, ρ) (A, ρ) (S, ρ); A

P , Q ≠ ∅ (A, ρ), (S, ρ).

P = A ∩  and Q = A ∩P1 Q1 (4.10.5)

,P1 Q1 (S, ρ). (A, ρ)
(S, ρ).

 Example 4.10.1

∅

{p}.

 Theorem 4.10.2

E1 E1

E1

p ∉ A p ∈ (a, b), a, b ∈ A.

P = A ∩ (−∞, p) and Q = A ∩ (p, +∞). (4.10.6)

A = P ∪ Q, a ∈ P , b ∈ Q, P ∩ Q = ∅. (−∞, p) (p, +∞) .E1

P Q A, A E1 A = P ∪ Q,
P ∩ Q = ∅, A A ,E1
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Conversely, let  be convex in  The proof that  is connected is an almost exact copy of the proof given for Theorem 1
of §9, so we only briefly 
sketch it here.

If  were disconnected, then  for some disjoint sets , both closed in  Fix any  and 
Exactly as in Theorem 1 of §9, select a contracting sequence of line segments (intervals)  such that 

 and  and obtain a point

so that  and  As the sets  and  are closed in  Theorem 4 of Chapter  shows that
both  and  must contain the common limit  of the sequences  and  This is impossible, however,
since  by assumption. This contradiction shows that  cannot be disconnected. Thus all is proved. 

Note 2. By the same proof, any convex set in a normed space is connected. In particular,  and all other normed spaces are
connected themselves.

If a function  with  is relatively continuous on a connected set  then  is a connected set
in .

Proof

By definition (§1), relative continuity on  becomes ordinary continuity when  is restricted to  Thus we may treat  as
a mapping of  into  replacing  and  by their subspaces  and 

Seeking a contradiction, suppose  is disconnected, i.e.,

for some disjoint sets  closed in  Then by Theorem  with  replaced by  the sets  and 
 are closed in  They also are nonvoid and disjoint (as are  and  and satisfy

\[ 
(see Chapter 1, §4-7, Problem 6). Thus  is disconnected, contrary to assumption. 

All arcs and curves are connected sets (by Definition 2 and Theorems 2 and 3).

 set  is connected iff any two points  are in some connected subset  Hence any arcwise connected
set is connected.

Proof

Seeking a contradiction, suppose the condition stated in Lemma 1 holds but  is disconnected, so  for some
disjoint sets  both closed in .

Pick any  and  By assumption,  and  are in some connected  Treat  as a subspace of 
 and let

A .E1 A

A A = P ∪ Q P , Q ≠ ∅ A. p ∈ P q ∈ Q.
[ , ] ⊆ Apm qm

∈ P , ∈ Q,pm qm | − | → 0,pm qm

r ∈ [ , ] ⊆ A⋂
m=1

∞

pm qm (4.10.7)

→ r, → r,pm qm r ∈ A. P Q (A, ρ), 3, $16
P Q r { } ⊆ Ppm { } ⊆ Q.qm

P ∩ Q = ∅, A □

En

 Theorem 4.10.3

f : A → (T , )ρ′ A ⊆ (S, ρ) B ⊆ A, f [B]
(T , )ρ′

B f B. f

B f [B], S T B f [B].

f [B]

f [B] = P ∪ Q (4.10.8)

P , Q ≠ ∅ (f [B], ) .ρ′ 1, T f [B], [P ]f −1

[Q]f −1 (B, ρ). P Q)

B = [P ∪ Q] = [P ] ∪ [Q]f −1 f −1 f −1 (4.10.9)

B □

 corollary 4.10.2

 lemma 4.10.1

A A ⊆ (S, ρ) p, q ∈ A B ⊆ A.

A A = P ∪ Q

P ≠ ∅, Q ≠ ∅ (A, ρ)

p ∈ P q ∈ Q. p q set B ⊆ A. (B, ρ)
(A, ρ),

= B ∩ P  and  = B ∩ Q.P ′ Q′ (4.10.10)
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Then by Theorem 4 of Chapter  and  are closed in . Also, they are disjoint (for  and  are  and nonvoid
(for  and

Thus  is disconnected, contrary to assumption. This contradiction proves the lemma (the converse proof is trivial).

In particular, if  is arcwise connected, then any points  in  are in some arc  a connected set by Corollary 
Thus all is proved. 

Any convex or polygon-connected set  in  (or in any other normed space) is arcwise connected, hence
connected.

Proof

Use Lemma 1 and Example  in part I of this section. 

Caution: The converse fails. A connected set need not be arcwise connected, let alone polygon connected (see Problem 17).
However, we have the following 
theorem.

Every open connected set  in  (* or in another normed space) is also arcwise connected and even polygon connected.

Proof

If  this is "vacuously" true, so let  and fix .

Let  be the set of all  that can be joined with  by a polygon  Let  Clearly,  so .
We shall show that  is open, i.e., that each  is in a globe 

Thus we fix any  As  is open and  there certainly is a globe  contained in . Moreover, as  is convex,
each point  is joined with  by the line segment  Also, as  some polygon  joins  with 

. Then

is a polygon joining  and  and hence by definition  Thus each  is in  so that  as required, and 
 is open (also apen in  as a subspace).

Next, we show that the set  is open as well. As before, if , fix any  and a globe  and
show that  Indeed, if some  were  in  it would be in  and thus it would be joined with  (fixed
above) by a polygon  Then, however,  itself could be so joined by the polygon

implying that  not  This shows that  indeed, as claimed.

Thus  with  disjoint and open (hence clopen) in  The connectedness of  then implies that 
 noted.) Hence  By the definition of  then, each point  can be

joined to  by a polygon. As  was arbitrary,  is polygon connected. 

Finally, we obtain a stronger version of the intermediate value theorem.

3, §12, P ′ Q′ B P Q )
p ∈ , q ∈ ),P ′ Q′

B = B ∩ A = B ∩ (P ∪ Q) = (B ∩ P ) ∪ (B ∩ Q) = ∪ .P ′ Q′ (4.10.11)

B

A p, q A B ⊆ A, 2.
□

 corollary 4.10.3

(e. g. , a globe) En

(c) □

 Theorem 4.10.4

A En

A = ∅, A ≠ ∅ ∈ Aā̄̄

P ∈ Ap̄̄̄ ā̄̄ K ⊆ A Q = A −P . ∈ P ,ā̄̄ P ≠ ∅
P ∈ Pp̄̄̄ ⊆ P .Gp̄̄̄

∈ P .p̄̄̄ A ∈ A,p̄̄̄ Gp̄̄̄ A Gp̄̄̄

∈x̄̄̄ Gp̄̄̄ p̄̄̄ L[ , ] ⊆ .x̄̄̄ p̄̄̄ Gp̄̄̄ ∈ P ,p̄̄̄ K ⊆ A p̄̄̄

ā̄̄

K ∪ L[ , ]x̄̄̄ p̄̄̄ (4.10.12)

x̄̄̄ ,ā̄̄ ∈ P .x̄̄̄ ∈x̄̄̄ Gp̄̄̄ P , ⊆ P ,Gp̄̄̄

P A

Q = A −P Q ≠ ∅ ∈ Qq̄̄ ⊆ A,Gq̄̄

⊆ Q.Gq̄̄ ∈x̄̄̄ Gq̄̄ not Q, P , ā̄̄

K ⊆ A. q̄̄

L[ , ] ∪ K,q̄̄ x̄̄̄ (4.10.13)

∈ P ,q̄̄ ∈ Q.q̄̄ ⊂ QGq̄̄

A = P ∪ Q P , Q A. A

Q = ∅. (P  is not empty, as has been  A = P . P , ∈ Ab
¯̄

ā̄̄ ∈ Aā̄̄ A □
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If a function  is relatively continuous on a connected  then  has the Darboux property on .

In fact, by Theorems 3 and  is a connected set in  i.e., an interval. This, however, implies the Darboux property.

This page titled 4.10: Arcs and Curves. Connected Sets is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

 Theorem 4.10.5

f : A → E1 set B ⊆ A ⊆ (S, ρ), f B

2, f [B] ,E1
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4.10.E: Problems on Arcs, Curves, and Connected Sets

Discuss Examples  and  in detail. In particular, verify that  is a simple arc. (Show that the map  in Example 
of §8 is one to one.)

Show that each polygon 

 
can be reduced to a simple polygon  joining  and . 
[Hint: First, show that if two line segments have two or more common points, they lie in one line. Then use induction on the
number  of segments in  Draw a diagram in  as a guide.

Prove Theorem 1 of §9 for an arcwise connected . 
[Hint: Proceed as in Problems 4 and 5 in §9, replacing  by some continuous map 

Define  as in Example  of §1. Let 

 
 Prove the following: 

(i) If  then  is a simple arc in . 
(ii) If  is not even arcwise connected. 
[Hints: (i) Prove that  is continuous on  using the continuity of the  
sine function. Then use Problem 16 in §2, restricting  to  

Show that each arc is a continuous image of . 
[ Hint: First, show that any  is such an image. Then use a suitable composite mapping.

Prove that a function  on a compact set  must be continuous if its graph, 

 
is a compact set (e.g., an arc) in . 
[Hint: Proceed as in the proof of Theorem 3 of §8.]

 Exercise 4.10.E. 1

(a) (b) L[ , ]ā̄̄ b
¯̄

f (1)

 Exercise 4.10.E. 2

K = L [ , ]⋃
i=0

m−1

p̄̄̄i p̄̄̄i+1 (4.10.E.1)

P (P ⊆ K) p0 pm

m K. E2

 Exercise 4.10.E. 3

B ⊆ (S, ρ)
g f : [a, b]⟶ B. ]

 Exercise 4.10.E. 4

f (f)

= {(x, y) ∈ |a ≤ x ≤ b, y = f(x)} .Gab E2 (4.10.E.2)

(  is the graph of f  over [a, b]. )Gab

a > 0, Gab E2

a ≤ 0 ≤ b, Gab

f [a, b], a > 0,
f [a, b].

 (ii) For a contradiction, assume   is joined by a simple arc to some  ∈ . ]0¯̄̄ p̄̄̄ Gab

 Exercise 4.10.E. 5

[0, 1]
[a, b] ⊆ E1

 Exercise 4.10.E. ∗6

f : B → E1 B ⊆ E1

{(x, y) ∈ |x ∈ B, y = f(x)} ,E2 (4.10.E.3)

E2
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Prove that  is connected iff there is no continuous map 

 
[Hint: If there is such a map, Theorem 1 shows that  is disconnected. (Why?) 
Conversely, if  put  on  and  on . Use again Theorem 1 to show that 
so defined is continuous on .]

Let  Prove that  is connected in  iff it is connected in 

Suppose that no two of the sets  are disjoint. Prove that if all  are connected, so is .  
[Hint: If not, let  Let  and  so  
At least one of the  must be  

 for  implies  whence 

 

Prove that if  is a finite or infinite sequence of connected sets and if 

 
then 

 
is connected. 
[Hint: Let  Use Problem 9 and induction to show that the  are connected and no two are disjoint. Verify that

 and apply Problem 9 to 

Given  let  denote the union of all connected subsets  is
called the -component of  Prove that 

; 
(ii)  is not contained in any other connected set  with ; 
(iii)  iff  and 
(iv) . 
[Hint for (iii): If  and  then  is a connected set 

 Exercise 4.10.E. ∗7

A

f : A {0, 1}.⟶
 onto 

(4.10.E.4)

A

A = P ∪ Q(P , Q as in Definition 3), f = 0 P f = 1 Q f

A

 Exercise 4.10.E. ∗8

B ⊆ A ⊆ (S, ρ). B S (A, ρ).

 Exercise 4.10.E. ∗9

(i ∈ I)Ai Ai A = ⋃i∈I Ai

A = P ∪ Q(P , Q as in Definition 3). = ∩ PPi Ai = ∩ Q,Qi Ai = ∪ , i ∈ I.Ai Pi Qi

,Pi Qi ∅ (why?); say,  = ∅ for some j ∈ I.  Then Qj

(∀i) = ∅,Qi ≠ ∅Qi = ∅,Pi

= ⊆ Q⟹ ∩ = ∅ ( since  ⊆ P ) ,Ai Qi Ai Aj Aj (4.10.E.5)

 contrary to our assumption. Deduce that Q = = ∅.  (Contradiction!) ]⋃i Qi

 Exercise 4.10.E. ∗10

{ }An

(∀n) ∩ ≠ ∅,An An+1 (4.10.E.6)

A =⋃
n

An (4.10.E.7)

= .Bn ⋃n
k=1 Ak Bn

A = ⋃n Bn  the sets  . ]Bn

 Exercise 4.10.E. ∗11

p ∈ A, A ⊆ (S, ρ), Ap  of A that contain p (one of them is {p}); Ap

p A.
 (i)   is connected (use Problem 9)Ap

Ap B ⊆ A p ∈ B

(∀p, q ∈ A) ∩ = ∅Ap Aq ≠ ;Ap Aq

A = ∪ { |p ∈ A}Ap

∩ ≠ ∅Ap Aq ≠ ,Ap Aq B = ∪Ap Aq  larger than  ,  contrary to (ii). ]Ap
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Prove that if  is connected, so is its closure (Chapter 3, §16 Definition 1 ), and so is any set  such that . 
[Hints: First show that  is the "least" closed set in  that contains  

 Next, seeking a contradiction, let 
 clopen in  Then 

 
proves  disconnected, for if  say, then  (why?), contrary to 

A set is said to be totally disconnected iff its only connected subsets are one-point sets and . 
Show that  (the rationals) has this property in .

Show that any discrete space is totally disconnected (see Problem 13).

From Problems 11 and 12 deduce that each component  is closed 

Prove that a set  is disconnected iff  with  and each of  disjoint from the closure of the
other:  
[Hint: By Problem 12, the closure of  in  (i.e., the least closed set in  that contains  ) is 

 
so  is closed in  similarly for  Prove the converse in the same manner.

Give an example of a connected set that is not arcwise connected. 
[Hint: The set  in Problem 4 is the closure of  (verify!), and 

4.10.E: Problems on Arcs, Curves, and Connected Sets is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 4.10.E. ∗12

A D A ⊆ D ⊆ A
¯ ¯¯̄

D (D, ρ) A

 (Problem 11 in Chapter 3, §16 and Theorem 4 of Chapter 3, §12).
D = P ∪ Q, P ∩ Q = ∅, P , Q ≠ ∅, D.

A = (A ∩ P ) ∪ (A ∩ Q) (4.10.E.8)

A A ∩ P = ∅, A ⊆ Q ⊂ D

 the minimality of D;  similarly for A ∩ Q = ∅. ]

 Exercise 4.10.E. ∗13

∅
R E1

 Exercise 4.10.E. ∗14

 Exercise 4.10.E. ∗15

Ap ( = ) .Ap Ap
¯ ¯¯̄¯̄

 Exercise 4.10.E. ∗16

A ⊆ (S, ρ) A = P ∪ Q, P , Q ≠ ∅, P , Q

P ∩ = ∅ = ∩ Q.Q
¯ ¯¯̄

P
¯ ¯¯̄

P (A, ρ) (A, ρ) P

A ∩ = (P ∪ Q) ∩ = (P ∩ ) ∪ (Q ∩ ) = P ∪ ∅ = P ,P¯ ¯¯̄ P¯ ¯¯̄ P¯ ¯¯̄ P¯ ¯¯̄ (4.10.E.9)

P A; Q.

 Exercise 4.10.E. ∗17

(a = 0)G0b −{ }G0b 0
¯̄̄

 the latter is connected (why?); hence so is   by Problem 12. ]G0b
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4.11: Product Spaces. Double and Iterated Limits

This page is a draft and is under active development. 

Given two metric spaces  and  we may consider the Cartesian product  suitably metrized. Two metrics for 
 are suggested in Problem 10 in Chapter 3, §11. We shall adopt the first of them as follows.

By the product of two metric spaces  and  is meant the space  where the metric  is defined by

for  and .

Thus the distance between  and  is the larger of the two distances

The verification that  in  is, indeed, a metric is left to the reader. We now obtain the following theorem.

(i) A globe  in  is the Cartesian product of the corresponding  -globes in  and ,

(ii) Convergence of sequences  in  is componentwise. That is, we have

Proof

Again, the easy proof is left as an exercise.

In this connection, recall that by Theorem 2 of Chapter 3, §15, convergence in  is componentwise as well, even though the
standard metric in  is not the product metric  it is rather the metric (ii) of Problem 10 in Chapter 3, §11. We might have
adopted this second metric for  as well. Then part (i) of Theorem 1 would fail, but part (ii) would still follow by making

It follows that, as far as convergence is concerned, the two choices of  are equivalent.

Note 1. More generally, two metrics for a space  are said to be equivalent iff exactly the same sequences converge (to the same
limits) under both metrics. Then also all function limits are the same since they reduential limits, by Theorem 1 of §2; similarly for
such notions as continuity, compactness, completeness, closedness, openness, etc.

In view of this, we shall often call  a product space (in the wider sense) even if its metric is not the  of formula  but
equivalent to it. In this sense,  is the product space  and  is its generalization.

Various ideas valid in  extend quite naturally to  Thus functions defined on a set  may be treated as
functions of two variables   such that  Given  we may consider ordinary or relative limits at 
e.g. limits over a path

(briefly called the "line  In this case,  remains fixed  while  we then speak of limits and continuity in one
variable  as opposed to those in both variables jointly, i.e., the ordinary limits (cf. §3, part .

(X, )ρ1 (Y , ) ,ρ2 X ×Y ,
X ×Y

 Definition

(X, )ρ1 (Y , )ρ2 (X ×Y , ρ), ρ

ρ ((x, y), ( , )) = max { (x, ) , (y, )}x′ y′ ρ1 x′ ρ2 y′ (4.11.1)

x, ∈ Xx′ y, ∈ Yy′

(x, y) ( , )x′ y′

(x, )  in X and  (y, )  in Y .ρ1 x′ ρ2 y′ (4.11.2)

ρ (1)

 Theorem 4.11.1

(ε)G(p,q) (X ×Y , ρ) ε X Y

(ε) = (ε) × (ε).G(p,q) Gp Gq (4.11.3)

{( , )}xm ym X ×Y

( , ) → (p, q) in X ×Y  iff  → p in X and  → q in Y .xm ym xm ym (4.11.4)

E2

E2 (1);
X ×Y

( , p) <  and  ( , q) < .ρ1 xm

ε

2
–

√
ρ2 ym

ε

2
–

√
(4.11.5)

ρ

S

X ×Y ρ (1)
E2 × ,E1 E1 X ×Y

E2 X ×Y . A ⊆ X ×Y

x, y (x, y) ∈ A. (p, q) ∈ X ×Y , (p, q),

B = {(x, y) ∈ X ×Y |y = q} (4.11.6)

y = ).q ′′ y (y = q) x → p;
x, IV)
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Some other kinds of limits are to be defined below. For simplicity, we consider only functions  defined on
all of  If confusion is unlikely, we write  for all metrics involved (such as  in  Below,  and  always denote cluster
points of  and  respectively (this justifies the "lim" notation. Of course, our definitions apply in particular to  as the simplest
special case of .

A function  is said to have the double limit  at  denoted

iff for each  there is a  such that  whenever  and  In symbols,

Observe that this is the relative limit over the path

excluding the two "lines"  and . If  were restricted to  this would coincide with the ordinary nonrelative limit (see
§1), denoted

where only the point  is excluded. Then we would have

Now consider limits in one variable, say,

If this limit exists for each choice of  from some set  it defines a function

with value

This means that

Here, in general,  depends on both  and  However, in some cases (resembling uniform continuity), one and the same 
(depending on  only  fits all choices of  from  This suggests the following definition.

With the previous notation, suppose 

 
We say that this limit is uniform in  and we write 

 
iff for each  there is a  such that  for all  and all  In symbols, 

f : (X ×Y ) → (T , )ρ′

X ×Y . ρ ρ′ T ). p q

X Y , E2

X ×Y

 Definition

f : (X ×Y ) → (T , )ρ′ s ∈ T (p, q),

s = f(x, y),lim
x→p

y→q

(4.11.7)

ε > 0, δ > 0 f(x, y) ∈ (ε)Gs x ∈ (δ)G¬p y ∈ (δ).G¬q

(∀ε > 0)(∃δ > 0) (∀x ∈ (δ)) (∀y ∈ (δ)) f(x, y) ∈ (ε).G¬p G−q Gs (4.11.8)

D = (X −{p}) ×(Y −{q}) (4.11.9)

x = p y = q f D,

s = f(x, y),lim
(x,y)→(p,q)

(4.11.10)

(p, q)

(∀ε > 0)(∃δ > 0)(∀(x, y) ∈ (δ)) f(x, y) ∈ (ε).G¬(p,q) Gs (4.11.11)

f(x, y) with x fixed.lim
y→q

(4.11.12)

x B ⊆ X,

g : B → T (4.11.13)

g(x) = f(x, y), x ∈ B.lim
y→q

(4.11.14)

(∀x ∈ B)(∀ε > 0)(∃δ > 0) (∀y ∈ (δ)) ρ(g(x), f(x, y)) < ε.G¬q (4.11.15)

δ ε x. δ

ε ) x B.

 Definition

f(x, y) = g(x) exists for each x ∈ B(B ⊆ X).lim
y→q

(4.11.16)

x(on B),

" g(x) = f(x, y)(uniformly for x ∈ B), "lim
y→q

(4.11.17)

ε > 0, δ > 0 ρ(g(x), f(x, y)) < ε x ∈ B y ∈ (δ).G¬q
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Usually, the set  in formulas  and  is a deleted neighborhood of  in  e.g., 

 
Assume  for such a  so 

 
If, in addition, 

 
exists, we call s the iterated limit of  at  (first in  then in  denoted 

 
This limit is obtained by first letting  (with  fixed  and then letting  Quite similarly, we define 

 
In general, the two iterated limits (if they exist) are different, and their existence does not imply that of the double limit  let
alone  nor does it imply the equality of all these limits. (See Problems 4ff below.) However, we have the following theorem.

(Osgood). Let  be complete. Assume the existence of the following limits of the function  
(i)  (uniformly for  and 
(ii)  for . 
Then the double limit and the two iterated limits of  at  exist and all 
three coincide.

Proof

Let  By our assumption (i), there is a  such that 

 
Now take any  By assumption (ii), there is an  so close to  that 

 
Hence, using  and the triangle law (repeatedly), we obtain for such  

 
It follows that the function  satisfies the Cauchy criterion of Theorem 2 in §2. (It does apply since  is complete.) Thus 

(∀ε > 0)(∃δ > 0)(∀x ∈ B) (∀y ∈ (δ)) ρ(g(x), f(x, y)) < ε.G¬q (4.11.18)

B (4) (5) p X,

B = (r),  or B = X −{p}.G¬p (4.11.19)

(4) B,

f(x, y) = g(x) exists for each x ∈ B.lim
y→q

(4.11.20)

g(x) = slim
x→p

(4.11.21)

f (p, q) y, x),

f(x, y).lim
x→p

lim
y→q

(4.11.22)

y → q x ) x → p.

f(x, y).lim
y→q

lim
x→p

(4.11.23)

(2),
(3),

 Theorem 4.11.2

(T , )ρ′ f : X ×Y → T :
f(x, y) = g(x)limy→q x ∈ X −{p})
f(x, y) = h(y)limx→p y ∈ Y −{q}

f (p, q)

ε > 0. δ > 0

(∀x ∈ X −{p}) (∀y ∈ (δ)) ρ(g(x), f(x, y)) < (cf. (5)).G¬q

ε

4
(4.11.24)

, ∈ (δ).y′ y′′ G¬q ∈ X −{p}x′ p

ρ (h ( ) , f ( , )) <  and ρ (h ( ) , f ( , )) < ⋅ (Why?)y′ x′ y′ ε

4
y′′ x′ y′′ ε

4
(4.11.25)

( )5′ ,y′ y′′

ρ (h ( ) , h ( )) ≤y′ y′′

<

ρ (h ( ) , f ( , )) +ρ (f ( , ) , g ( ))y′ x′ y′ x′ y′ x′

+ρ (g ( ) , f ( , )) +ρ (f ( , ) , h ( ))x′ x′ y′′ x′ y′′ y′′

+ + + = ε
ε

4

ε

4

ε

4

ε

4

h T
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 exists, and, by assumption ( ii), it equals  (which therefore exists). 
Let then  With  as above, fix some  so close to  that 

 
Also, using assumption (ii), choose a  such that 

 
Combining with  obtain  

 
Thus 

 
Hence  i.e., the second iterated limit,  likewise exists and equals  
Finally, with the same  we combine  and  to obtain 

 
Hence the double limit  also exists and equals 

Note 2. The same proof works also with  restricted to  so that the "lines"  and  are excluded
from  In this case, 
formulas  and  mean the same; i.e., 

Note 3. In Theorem  we may take  (suitably metrized) for  or  or  Then the theorem also applies to limits at  and
infinite limits. We may also take  (the naturals together with  with the same -metric, and consider
limits at  Moreover, by Note  we may restrict  to  so that  becomes a double sequence
(Chapter 1, §9). Writing  and  for  and  and  for  we then obtain Osgood's theorem for double sequences (also
called the Moore-Smith theorem) as follows.

Let  be a double sequence in a complete space  If 

 
and if 

 
then the double limit and the two iterated limits of  exist and 

h(y)limy→q f(x, y)limy→q limx→p

H = h(y).limy→q δ ∈ (δ)y0 G¬q q

ρ (h ( ) , H) < .y0
ε

4
(4.11.26)

> 0 ( ≤ δ)δ ′ δ ′

ρ (h ( ) , f (x, )) <  for x ∈ ( ) .y0 y0
ε

4
G¬p δ ′ (4.11.27)

( ) ,5′ (∀x ∈ ( ))G−p δ ′

ρ(H, g(x)) ≤ ρ (H, h ( )) +ρ (h ( ) , f (x, )) +ρ (f (x, ) , g(x)) < .y0 y0 y0 y0
3ε

4
(4.11.28)

(∀x ∈ ( )) ρ(H, g(x)) < ε.G¬p δ ′ (4.11.29)

g(x) = H,limx→p f(x, y),limx→p limy→q H.
≤ δ,δ ′ (6) ( )5′

(∀x ∈ ( )) (∀y ∈ ( )) ρ(H, f(x, y)) ≤ ρ(H, g(x)) +ρ(g(x), f(x, y)) < + = εG¬p δ ′ G¬q δ ′ 3ε

4
ε

4
(4.11.30)

(2) H. □

f (X −{p}) ×(Y −{q}) x = p y = q

.Df

(2) (3)

f(x, y) = f(x, y).lim
x→p

y→q

lim
(x,y)→(p,q)

(4.11.31)

2, E∗ X Y T . ±∞,
X = Y = N ∪ {+∞} +∞), E∗

p = +∞. 2, f N ×N , f : N ×N → T

m n x y, umn f(x, y),

 Theorem 4.11.2′

{ }umn (T , ) .ρ′

=  exists for each mlim
n→∞

umn qm (4.11.32)

= (uniformly in n) likewise exists, lim
m→∞

umn pn (4.11.33)

{ }umn

= = .lim
m→∞
n→∞

umn lim
n→∞

lim
m→∞

umn lim
m→∞

lim
n→∞

umn (4.11.34)
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Here the assumption that  (uniformly in  means, by  that 

 
Similarly, the statement "  is tantamount to 

Note 4. Given any sequence  we may consider the double  in  By using  one easily
sees that 

 
iff 

 
i.e.,  is a Cauchy sequence. Thus Cauchy sequences are those for which .

In every metric space  the metric  is a continuous function on the product space .

Proof

Fix any  By Theorem 1 of §2, \rho\) is continuous at  iff 

 
i.e., whenever  and  However, this follows by Theorem 4 in Chapter 3, §15. Thus continuity is proved. 

This page titled 4.11: Product Spaces. Double and Iterated Limits is shared under a CC BY 3.0 license and was authored, remixed, and/or curated
by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

=limm→∞ umn pn n) (5),

(∀ε > 0)(∃k)(∀n)(∀m > k) ρ ( , ) < ε.umn pn (4.11.35)

= (see(2))limm→∞
n→∞

umn s′′

(∀ε > 0)(∃k)(∀m, n > k) ρ ( , s) < ε.umn (4.11.36)

{ } ⊆ (S, ρ),xm limit ρ ( , )limm→∞
n→∞

xm xn .E1 (8),

ρ ( , ) = 0lim
m→∞
n→∞

xm xn (4.11.37)

(∀ε > 0)(∃k)(∀m, n > k) ρ ( , ) < ε,xm xn (4.11.38)

iff { }xm ρ ( , ) = 0limn→∞
n→∞

xm xn

 Theorem 4.11.3

(S, ρ), ρ : (S ×S) → E1 S ×S

(p, q) ∈ S ×S. (p, q)

ρ ( , ) → ρ(p, q) whenever  ( , ) → (p, q),xm ym xm ym (4.11.39)

→ pxm → q.ym □

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/21177?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.11%3A_Product_Spaces._Double_and_Iterated_Limits
https://creativecommons.org/licenses/by/3.0
http://www.trillia.com/index.html
http://www.trillia.com/
http://www.trillia.com/zakon-analysisI.html


4.11.E.1 https://math.libretexts.org/@go/page/23728

4.11.E: Problems on Double Limits and Product Spaces

Prove Theorem  Prove Theorem 1  for both choices of  as suggested.

Formulate Definitions 2 and 3 for the cases 
(i) ; 
(ii) ; 
(iii)  and 
(iv) .

Prove Theorem  from Theorem 2 using Theorem 1 of §2. Give a direct proof as well.

Define  by 

 
see §1, Example  Show that 

 
but 

 
Explain the apparent failure of Theorem 2.

Define  by 

 
Show that  satisfies Theorem 2 at  but 

 
does not exist.

 Exercise 4.11.E. 1

1(i). ( ii ) ρ,

 Exercise 4.11.E. 2

p = q = s = +∞

p = +∞, q ∈ , s = −∞E1

p ∈ , q = s = −∞;E1

p = q = s = −∞

 Exercise 4.11.E. 3

2′

 Exercise 4.11.E. 4

f : →E2 E1

f(x, y) =  if (x, y) ≠ (0, 0),  and f(0, 0) = 0;
xy

+x2 y2
(4.11.E.1)

(g).

f(x, y) = 0 = f(x, y),lim
y→0

lim
x→0

lim
x→0

lim
y→0

(4.11.E.2)

f(x, y) does not exist. lim
x→0
y→0

(4.11.E.3)

 Exercise 4.11.E. 4′

f : →E2 E1

f(x, y) = 0 if xy = 0 and f(x, y) = 1 otherwise.  (4.11.E.4)

f (p, q) = (0, 0),

f(x, y)lim
(x,y)→(p,q)

(4.11.E.5)
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Do Problem  with  defined as in Problems 9 and 10 of §3.

Define  as in Problem 11 of §3. Show that for , we have 

 
but  does not exist; for , 

 
but the iterated limits do not exist; and for  fails to exist, but 

 
Give your comments.

Find (if possible) the ordinary, the double, and the iterated limits of  at  assuming that  is given by one of the
expressions below, and  is defined at those points of  where the expression has sense. 

Solve Problem 7 with  and  tending to .

Consider the sequence  in  defined by 

 
Show that 

 
but the double limit fails to exist. What is wrong here? (See Theo

 Exercise 4.11.E. 5

4, f

 Exercise 4.11.E. 6

f (c)

f(x, y) = f(x, y) = f(x, y) = 0,lim
(x,y)→(0,0)

lim
x→0
y→0

lim
x→0

lim
y→0

(4.11.E.6)

f(x, y)limy→0 limx→0 (d)

f(x, y) = 0,lim
y→0

lim
x→0

(4.11.E.7)

(e), f(x, y)lim(x,y)→(0,0)

f(x, y) = f(x, y) = f(x, y) = 0.lim
x→0
y→0

lim
y→0

lim
x→0

lim
x→0

lim
y→0

(4.11.E.8)

 Exercise 4.11.E. 7

f (0, 0) f(x, y)

f E2

 (i)  ;x2

+x2 y2

 (iii)  ;
x+2y

x−y

 (v)  ;
−x2 y2

+x2 y2

 (vii)  ;
y+x⋅2−y2

4+x2

 (ii) 
y sin xy

+x2 y2

 (iv) 
yx3

+x6 y2

 (vi) 
+x5 y4

( + )x2 y2 2

 (viii) 
sin xy

sin x⋅sin y

(4.11.E.9)

 Exercise 4.11.E. 8

x y +∞

 Exercise 4.11.E. 9

umn E1

= .umn

m +2n

m +n
(4.11.E.10)

= 2 and  = 1,lim
m→∞

lim
n→∞

umn lim
n→∞

lim
m→∞

umn (4.11.E.11)

 rem  . )2′
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Prove Theorem  with (i) replaced by the weaker assumption ("subuni-form limit") 

 
and with iterated limits defined by 

 
iff  

Does the continuity of  on  imply the existence of (i) iterated limits? (ii) the double limit? 
[Hint: See Problem 6.]

Show that the standard metric in  is equivalent to  of Problem 7 in Chapter 3, §11.

Define products of  spaces and prove Theorem 1 for such product spaces.

Show that the standard metric in  is equivalent to the product metric for  treated as a product of  spaces  Solve a
similar problem for  
[Hint: Use Problem 13.]

Prove that  is a Cauchy sequence in  iff  and  are Cauchy. Deduce that  is complete iff 
and  are.

Prove that  is compact iff  and  are. 
[Hint: See the proof of Theorem 2 in Chapter 3, §16, for .]

(i) Prove the uniform continuity of projection maps  and  on  given by  and  
(ii) Show that for each open set  in  is open in  and  is open in  
[Hint: Use Corollary 1 of Chapter  
(iii) Disprove (ii) for closed sets by a counterexample. 
[Hint: Let  Let  be the hyperbola  Use Theorem 4 of Chapter 3, §16 to prove that  is closed.]

 Exercise 4.11.E. 10

2,

(∀ε > 0)(∃δ > 0) (∀x ∈ (δ)) (∀y ∈ (δ)) ρ(g(x), f(x, y)) < εG¬p G¬q (4.11.E.12)

s = f(x, y)lim
x→p

lim
y→q

(4.11.E.13)

(∀ε > 0)

(∃ > 0) (∀x ∈ ( )) (∃ > 0) (∀y ∈ ( )) ρ(f(x, y), s) < ε.δ ′ G¬p δ ′ δ ′′
x G¬q δ ′′

x (4.11.E.14)

 Exercise 4.11.E. 11

f X ×Y

 Exercise 4.11.E. 12

E1 ρ′

 Exercise 4.11.E. 13

n

 Exercise 4.11.E. 14

En En n .E1

.C n

 Exercise 4.11.E. 15

{( , )}xm ym X ×Y { }xm { }ym X ×Y X

Y

 Exercise 4.11.E. 16

X ×Y X Y

E2

 Exercise 4.11.E. 17

P1 P2 X ×Y , (x, y) = xP1 (x, y) = y.P2

G X ×Y , [G]P1 X [G]P2 Y .

3, {12. ]

X ×Y = .E2 G xy = 1. G
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Prove that if  is connected, so are  and . 
[Hint: Use Theorem 3 of §10 and the projection maps  and  of Problem 17.]

Prove that if  and  are connected, so is  under the product metric. 
[Hint: Using suitable continuous maps and Theorem 3 in §10, show that any two "lines"  and  are connected sets in

 Then use Lemma 1 and Problem 10 in §10.]

Prove Theorem 2 under the weaker assumptions stated in footnote 

Prove the following: 
(i) If 

 
exist for  and  then 

 
(ii) If the double limit and one iterated limit exist, they are necessarily equal.

In Theorem  add the assumptions 

 
and 

 
Then show that 

 
exists and equals the double limits. 
[Hint: Show that here (5) holds also for  and  and for  and 

From Problem 22 prove that a function  is continuous at  if 

 Exercise 4.11.E. 18

X ×Y X Y

P1 P2

 Exercise 4.11.E. 19

X Y X ×Y

x = p y = q

X ×Y .

 Exercise 4.11.E. 20

1.

 Exercise 4.11.E. 21

g(x) = f(x, y) and H = f(x, y)lim
y→q

lim
x→p
y→q

(4.11.E.15)

x ∈ (r)G¬p y ∈ (r),G¬q

f(x, y) = H.lim
x→p

lim
y→q

(4.11.E.16)

 Exercise 4.11.E. 22

2,

h(y) = f(p, y)  for y ∈ Y −{q} (4.11.E.17)

g(x) = f(x, q)  for x ∈ X −{p}. (4.11.E.18)

f(x, y)lim
(x,y)→(p,q)

(4.11.E.19)

x = p y ∈ (δ)G¬q y = q x ∈ (δ). ]G¬p

 Exercise 4.11.E. 23

f : (X ×Y ) → T (p, q)

f(p, y) = f(x, y) and f(x, q) = f(x, y)lim
x→p

lim
y→q

(4.11.E.20)
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for  in some  and at least one of these limits is uniform.

4.11.E: Problems on Double Limits and Product Spaces is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.
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4.12: Sequences and Series of Functions

This page is a draft and is under active development. 

I. Let

be a sequence of mappings from a common domain  into a metric space  For each (fixed)  the function values

form a sequence of points in the range space  Suppose this sequence converges for each  in a set  Then we can
define a function  by setting

This means that

Here  depends not only on  but also on  since each  yields a different sequence  However, in some cases
(resembling uniform continuity),  depends on  only; i.e., given  one and the same  fits all  in  In symbols, this is
indicated by changing the order of quantifiers, namely,

Of course, (2) implies (1), but the converse fails (see examples below). This suggests the following definitions.

With the above notation, we call  the pointwise limit of a sequence of functions  on a set  iff

i.e., formula (1) holds. We then write

In case (2), we call the limit uniform (on  and write

II. If the  are real, complex, or vector valued (§3), we can also define  (= sum of the first  functions) for each 
, so

The  form a new sequence of functions on  The pair of sequences

is called the (infinite) series with general term  is called its  th partial sum. The series is often denoted by symbols like 
 etc.

The series  on  is said to converge (pointwise or uniformly) to a function  on a set  iff the sequence  of its
partial sums does as well.

, , … , , …f1 f2 fm (4.12.1)

A (T , ) .ρ′ x ∈ A,

(x), (x), … , (x), …f1 f2 fm (4.12.2)

(T , ) .ρ′ x B ⊆ A.

f : B → T

f(x) = (x) for all x ∈ B.lim
m→∞

fm (4.12.3)

(∀ε > 0)(∀x ∈ B)(∃k)(∀m > k) ( (x), f(x)) < ε.ρ′ fm (4.12.4)

k ε x, x { (x)} .fm

k ε ε > 0, k x B.

(∀ε > 0)(∃k)(∀x ∈ B)(∀m > k) ( (x), f(x)) < ε.ρ′ fm (4.12.5)

 Definition 1

f fm B(B ⊆ A)

f(x) = (x) for all x in B;lim
m→∞

fm (4.12.6)

→ f(pointwise) on B.fm (4.12.7)

B)

→ f(uniformly) on B.fm (4.12.8)

fm =sm ∑m
k=1 fk m

m

(∀x ∈ A)(∀m) (x) = (x).sm ∑
k=1

m

fk (4.12.9)

sm A.

({ } , { })fm sm (4.12.10)

;fm sm m

∑ ,∑ (x),fm fm

 Definition 2

∑fm A f B ⊆ A { }sm
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We then call  the sum of the series and write

(pointwise or uniformly) on .

Note that series of constants,  may be treated as series of constant functions  with  for 

If the range space is  or  we also consider infinite limits,

However, a series for which

is infinite for some  is regarded as divergent (i.e., not convergent) at that .

III. Since convergence of series reduces to that of sequences  we shall first of all consider sequences. The following is a
simple and useful test for uniform convergence of sequences 

Given a sequence of functions  let  and

Then  iff .

Proof

If  then by definition

However,  is an upper bound of all distances  Hence (2) follows.

Conversely, if

then

i.e.,  Thus (2) implies

and  

(a) We have

Thus, setting  consider  and .

We have  (pointwise) on  and  on  with  for  and  However, the
limit is not uniform on  let alone on  Indeed,

f

f(x) = (x) or f = = lim∑
k=1

∞

fk ∑
m=1

∞

fm sm (4.12.11)

B

∑ ,cm ,fm (x) =fm cm x ∈ A.

E1 ,E∗

(x) = ±∞.lim
m→∞

fm (4.12.12)

= lim∑
m=1

∞

fm sm (4.12.13)

x x

{ } ,sm

: A → (T , ) .fm ρ′

 Theorem 4.12.1

: A → (T , ) ,fm ρ′ B ⊆ A

= ( (x), f(x)) .Qm sup
x∈B

ρ′ fm (4.12.14)

→ f(uniformly on B)fm → 0Qm

→ 0,Qm

(∀ε > 0)(∃k)(∀m > k) < ε.Qm (4.12.15)

Qm ( (x), f(x)) , x ∈ B.ρ′ fm

(∀x ∈ B) ( (x), f(x)) < ε,ρ′ fm (4.12.16)

ε ≥ ( (x), f(x)) ,sup
x∈B

ρ′ fm (4.12.17)

≤ ε.Qm

(∀ε > 0)(∃k)(∀m > k) ≤ εQm (4.12.18)

→ 0.Qm □

 Examples

= 0 if |x| < 1 and  = 1 if x = 1.lim
n→∞

xn lim
n→∞

xn (4.12.19)

(x) = ,fn xn B = [0, 1] C = [0, 1)

→ 0fn C → f( pointwise )fn B, f(x) = 0 x ∈ C f(1) = 1.

C, B.
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Thus  does not tend to  and uniform convergence fails by Theorem 1.

(b) In Example (a), let  Then  (uniformly) on  because, in this case,

(c) Let

For a fixed ,

Thus, setting  we have  (pointwise) on  Also,

Thus  By Theorem 1, the limit is uniform on all of 

Let  be a sequence of functions on  If 
 continuous on , then the limit

function  has the same property.

Proof

Fix  As  (uniformly) on  there is a  such that

Take any  with  and take any  By continuity, there is  with

Also, setting  in (3) gives  Combining this with (4) and (3), we obtain 

We thus see that for ,

i.e.,  is relatively continuous at  as claimed.

Quite similarly, the reader will show that  is uniformly continuous if the  are. 

Note 2. A similar proof also shows that if  (uniformly) on  and if the  are relatively continuous at a point  so
also is 

= | (x) −f(x)| = 1 for each n.Qn sup
x∈C

fn (4.12.20)

Qn 0,

D = [0, a], 0 < a < 1. → ffn D

= | (x) −f(x)| = | −0| = → 0.Qn sup
x∈D

fn sup
x∈D

xn an (4.12.21)

(x) = + , x ∈ .fn x2 sinnx

n
E1 (4.12.22)

x

(x) =  since  ≤ → 0.lim
n→∞

fn x2 ∣
∣
∣
sinnx

n

∣
∣
∣

1

n
(4.12.23)

f(x) = ,x2 → ffn .E1

| (x) −f(x)| = ≤ .fn
∣
∣
∣
sinnx

n

∣
∣
∣

1

n
(4.12.24)

(∀n) ≤ → 0.Qn
1
n

.E1

 Theorem 4.12.2

: A → (T , )fm ρ′ A ⊆ (S, ρ).

→ f (uniformly  on a set B ⊆ A,  and if the   are relatively (or uniformly) fm fm B

f

ε > 0. → ffm B, k

(∀x ∈ B)(∀m ≥ k) ( (x), f(x)) < .ρ′ fm

ε

4
(4.12.25)

fm m > k, p ∈ B. δ > 0,

(∀x ∈ B ∩ (δ)) ( (x), (p)) < .Gp ρ′ fm fm

ε

4
(4.12.26)

x = p ( (p), f(p)) < .ρ′ fm
ε

4
(∀x ∈ B ∩ (δ))Gp

(f(x), f(p))ρ′ ≤ (f(x), (x)) + ( (x), (p)) + ( (p), f(p))ρ′ fm ρ′ fm fm ρ′ fm

< + + < ε.
ε

4

ε

4

ε

4

p ∈ B

(∀ε > 0)(∃δ > 0) (∀x ∈ B ∩ (δ)) (f(x), f(p)) < ε,Gp ρ′ (4.12.27)

f p( over B),

f fn □

→ ffm B, fm p ∈ B,

f .
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Let  be complete. Then a sequence  converges uniformly on a set  iff

Proof

If (5) holds then, for any (fixed)  is a Cauchy sequence of points in  so by the assumed completeness of 
 it has a limit  Thus we can define a function  with

To show that  (uniformly) on  we use (5) again. Keeping   and  temporarily fixed, we let  so
that . Then by Theorem 4 of Chapter 3, §15,  Passing to the limit
in (5), we thus obtain (2).

The easy proof of the converse is left to the reader (cf. Chapter 3, §17, Theorem 1). 

IV. If the range space  is  or  (*or another normed space), the standard metric applies. In particular, for series we
have

Replacing here  by  and applying Theorem 3 to the sequence  we obtain the following result.

Let the range space of  be  or  (*or another complete normed space). Then the series 
converges uniformly on  iff

Similarly, via  Theorem 2 extends to series of functions. (Observe that the  are continuous if the  are.) Formulate
it!

V. If  exists on  one may arbitrarily "group" the terms, i.e., replace every several consecutive terms by their sum. This
property is stated more precisely in the following theorem.

Let

Let  in  and define

(Thus  Then

 Theorem  (Cauchy criterion for uniform convergence)4.12.3

(T , )ρ′ : A → T , A ⊆ (S, ρ),fm B ⊆ A

(∀ε > 0)(∃k)(∀x ∈ B)(∀m, n > k) ( (x), (x)) < ε.ρ′ fm fn (4.12.28)

x ∈ B, { (x)}fm T ,

T , f(x). f : B → T

f(x) = (x) on B.lim
m→∞

fm (4.12.29)

→ ffm B, ε, k, x, m n → ∞

(x) → f(x)fn ( (x), (x)) → (f(x), (x)) .ρ′ fm fn p′ fm

□

(T , )ρ′ , C,E1 En

( (x), (x))ρ′ sm sn = | (x) − (x)|sn sm

= (x) − (x)
∣

∣
∣∑

k=1

n

fk ∑
k=1

m

fk

∣

∣
∣

= (x)  for m < n.
∣

∣

∣
∣ ∑
k=m+1

n

fk

∣

∣

∣
∣

m m −1 { } ,sm

 Theorem 4.12.3′

, m = 1, 2, … ,fm , C,E1 En ∑fm

B

(∀ε > 0)(∃q)(∀n > m > q)(∀x ∈ B) (x) < ε.
∣

∣
∣∑
k=m

n

fk

∣

∣
∣ (4.12.30)

{ } ,sm sm fm

∑
∞
m=1 fm B,

 Theorem 4.12.4

f = (pointwise) on B.∑
m=1

∞

fm (4.12.31)

< < ⋯ < < ⋯m1 m2 mn N ,

= , = − , n > 1.g1 sm1
gn smn

smn−1
(4.12.32)

= +⋯ + . )gn+1 f +1mn fmn+1
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similarly for uniform convergence.

Proof

Let

Then  (verify!), so  is a subsequence,  of  Hence  implies 
(pointwise); i.e.,

For uniform convergence, see Problem 13 (cf. also Problem 19). 

This page titled 4.12: Sequences and Series of Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

f = (pointwise) on B as well; ∑
n=1

∞

gn (4.12.33)

= , n = 1, 2, …s′
n ∑

k=1

n

gk (4.12.34)

=s′
n smn { }s′

n { } ,smn { } .sm → f( pointwise )sm → fs′
n

f =  (pointwise). ∑
n=1

∞

gn (4.12.35)

□
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4.12.E: Problems on Sequences and Series of Functions

Complete the proof of Theorems 2 and 3.

Complete the proof of Theorem 4.

In Example  show that  (pointwise) on  but not uniformly so. Prove, however, that the limit is uniform
on any interval  (Define "lim  (uniformly)" in a suitable manner.)

Using Theorem 1, discuss  on  and  for each of the following. 
(i) . 
(ii) . 
(iii) . 
(iv) . 

 

(v) . 
(vi) . 
(vii) .

Using Theorems 1 and  discuss  on the sets given below, with  
 as indicated and  (Calculus rules for maxima and minima are assumed known in (v),  and (vii).) 

(i) . 
(ii) . 
(iii) . 
(iv) . 
(v) . 
(vi) . 
(vii) . 
[Hint:  cannot be uniform if the  are continuous on a set, but  is not. 
[For  has a maximum at ; hence find .]

Define  by 

 
Show that all  and  are continuous on each interval  

 Exercise 4.12.E. 1

 Exercise 4.12.E. 2

 Exercise 4.12.E. 2′

(a), → +∞fn (1, +∞),
[a, +∞), a > 1. = +∞fn

 Exercise 4.12.E. 3

limn→∞ fn B C( as in Example (a))
(x) = ; B = ; C = [a, b] ⊂fn

x

n
E1 E1

(x) = ; B =fn
cos x+nx

n E1

(x) = ; B = (−1, 1); C = [−a, a], |a| < 1fn ∑n
k=1 xk

(x) = ; C = [0, +∞)fn
x

1+nx

 [Hint: Prove that  = sup (1 − )= . ]Qn
1
n

1
nx+1

1
n

(x) = x; B = (0, ) , C = [ , )fn cosn π

2
1
4

π

2

(x) = ; B =fn
nxsin2

1+nx
E1

(x) = ; B = [0, 1); C = [0, a], 0 < a < 1fn
1

1+xn

 Exercise 4.12.E. 4

2, lim fn

(x)fn 0 < a < +∞. (vi),
; [a, +∞), (0, a)nx

1+nx

; (a, +∞), (0, a)nx

1+n3x3

; (0, ) , [0, a], a <cos x− −−−
√n π

2
π

2

; (0, a), (0, +∞)x
n

x ; [0, +∞);e−nx E1

nx ; [a, +∞), (0, +∞)e−nx

nx ; [a, +∞), (0, +∞)e−nx2

lim fn fn lim fn

(v), fn x = 1
n Qn

 Exercise 4.12.E. 5

: →fn E1 E1

(x) =fn

⎧

⎩
⎨
⎪⎪

⎪⎪

nx

2 −nx

0

 if 0 ≤ x ≤ 1
n

 if  < x ≤ ,  and 1
n

2
n

 otherwise 

(4.12.E.1)

fn lim fn (−a, a),
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The function  found in the proof of Theorem 3 is uniquely determined. Why?

 Prove that if each of the functions  is constant on  or if  is finite, then a pointwise limit of the  on  is also a
uniform limit; similarly for series.

 Prove that if  on  and if  then  (uniformly) on  as well.

 Show that if  on each of  then  (uniformly) on . 
Disprove it for infinite unions by an example. Do the same for series.

 Let  on . Prove the equivalence of the following statements: 
(i) Each  from a certain  onward, is bounded on . 
(ii)  is bounded on . 
(iii) The  are ultimately uniformly bounded on  that is, all function values  from a certain  onward,
are in one and the same globe  in the range space. 
For real, complex, and vector-valued functions, this means that 

 Prove for real, complex, or vector-valued functions  that if 

 
then also 

 Prove that if the functions  and  are real or complex (or if the  are vector valued and the  are scalar valued),
and if 

 
then 

 
provided that either  and  or the  and  are bounded on  (at least from some  onward); cf. Problem  

 though  lim  exists only pointwise. (Compare this with Theorem 3. )fn

 Exercise 4.12.E. 6

f

 Exercise 4.12.E. 7

⇒ 7. fn B, B fn B

 Exercise 4.12.E. 8

⇒ 8. → f( uniformly )fn B C ⊆ B, → ffn C

 Exercise 4.12.E. 9

⇒ 9. → f( uniformly )fn , , … , ,B1 B2 Bm → ffn ⋃m
k=1 Bk

 Exercise 4.12.E. 10

⇒ 10. → f( uniformly )fn B

,fn n B

f B

fn B; (x), x ∈ B,fn n = n0

(K)Gq

(∃K ∈ ) (∀n ≥ ) (∀x ∈ B) | (x)| < K.E1 n0 fn (4.12.E.2)

 Exercise 4.12.E. 11

⇒ 11. , f , , gfn gn

→ f  and  → g (uniformly) on B,fn gn (4.12.E.3)

± → f ±g( uniformly ) on B.fn gn (4.12.E.4)

 Exercise 4.12.E. 12

⇒ 12. fn gn gn fn

→ f  and  → g (uniformly) on B,fn gn (4.12.E.5)

→ fg (uniformly) on Bfngn (4.12.E.6)

f g fn gn B n 11.
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Disprove it for the case where only one of  and  is bounded. 
[Hint: Let  and  (constant) on  Give some other examples.]

 Prove that if  tends to  (pointwise or uniformly), so does each subsequence .

 Let the functions  and  and the constants  and  be real or complex 
 Prove that if 

 
then 

 
(Infinite limits are excluded.) 
In particular, 

 
and 

 

 Let the range space of the functions  and  be  and let 
see §3, part II. Prove that 

 
iff each component  of  converges (in the same sense) to the corresponding component  of  i.e., 

 
Similarly, 

 
iff 

f g

(x) = xfn (x) = 1/ngn B = .E1

 Exercise 4.12.E. 13

⇒ 13. { }fn f { }fnk

 Exercise 4.12.E. 14

⇒ 14. fn gn a b

 (or let a and b be scalars and   and   be vector valued ) .fn gn

f =  and g =  (pointwise or uniformly) ,∑
n=1

∞

fn ∑
n=1

∞

gn (4.12.E.7)

af +bg = (a +b )  in the same sense. ∑
n=1

∞

fn gn (4.12.E.8)

f ±g = ( ± )  (rule of termwise addition) ∑
n=1

∞

fn gn (4.12.E.9)

af = a .∑
n=1

∞

fn (4.12.E.10)

 [Hint: Use Problems 11 and 12. ]

 Exercise 4.12.E. 15

⇒ 15. fm g (*or  ) ,En C n = ( , , … , ) , g = ( , … , ) ;fm fm1 fm2 fmn g1 gn

→ g  (pointwise or uniformly) fm (4.12.E.11)

fmk fm gk g;

→  (pointwise or uniformly), k = 1, 2, … , n.fmk gk (4.12.E.12)

g = ∑
m=1

∞

fm (4.12.E.13)
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.

 From Problem 15 deduce for complex functions that  (pointwise or uniformly) iff the real and imaginary parts
of the  converge to those of  (pointwise or uniformly). That is,  and ; similarly for series.

 Prove that the convergence or divergence (pointwise or uniformly) of a 
sequence  or a series  of functions is not affected by deleting or adding a finite number of terms. 
Prove also that  (if any) remains the same, but  is altered by the difference between the added and
deleted terms.

 Show that the geometric series with ratio , 

 
converges iff  in which case 

 
(similarly if  is a vector and  is a scalar). Deduce that  diverges. (See Chapter 3, §15, Problem 19.)

Theorem 4 shows that a convergent series does not change its sum if every several consecutive terms are replaced by their sum.
Show by an example that the reverse process (splitting each term into several terms) may affect convergence. 
[Hint: Consider  with  Split  to obtain a divergent series: 

Find .  

The functions  are said to be equicontinuous at  iff 

 
Prove that if so, and if  (pointwise) on  then  is continuous at  

(∀k ≤ n) = .gk ∑
m=1

∞

fmk (4.12.E.14)

 (See Chapter 3, §15,  Theorem 2)

 Exercise 4.12.E. 16

⇒ 16. → gfm

fm g →( )fm re gre →( )fm im gim

 Exercise 4.12.E. 17

⇒ 17.
{ } ,fm ∑ ,fm

limm→∞ fm ∑∞
m=1 fm

 Exercise 4.12.E. 18

⇒ 18. r

a (a, r ∈  or a, r ∈ C) ,∑
n=0

∞

rn E1 (4.12.E.15)

|r| < 1,

a =∑
n=0

∞

rn a

1 −r
(4.12.E.16)

a r ∑(−1)n

 Exercise 4.12.E. 19

∑ an = 0.an = 1 −1an

∑(−1 ,  with partial sums 1, 0, 1, 0, 1, …])n−1

 Exercise 4.12.E. 20

∑∞
n=1

1
n(n+1)

 [Hint: Verify:  = − .  Hence find  ,  and let n → ∞. ]1
n(n+1)

1
n

1
n+1

sn

 Exercise 4.12.E. 21

: A → (T , ) , A ⊆ (S, ρ)fn ρ′ p ∈ A

(∀ε > 0)(∃δ > 0)(∀n) (∀x ∈ A ∩ (δ)) ( (x), (p)) < ε.Gp ρ′ fn fn (4.12.E.17)

→ ffn A, f p.
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[Hint: "Imitate" the proof of Theorem 2 .]

4.12.E: Problems on Sequences and Series of Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.
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4.13: Absolutely Convergent Series. Power Series

This page is a draft and is under active development. 

I. A series  is said to be absolutely convergent on a set  iff the series  (briefly,  of the absolute values of 
 converges on  (pointwise or uniformly). Notation:

In general,  may converge while  does not (see Problem 12  In this case, the convergence of  is said to be
conditional. (It may be absolute for some  and conditional for others.) As we shall see, absolute convergence ensures the
commutative law for series, and it implies ordinary convergence (i.e., that of  if the range space of the  is complete.

Note 1. Let

Then

i.e., the  form a monotone sequence for each  Hence by Theorem 3 of Chapter 3, §15,

 converges iff .

For the rest of this section we consider only complete range spaces.

Let the range space of the functions  (all defined on  be ,  or 
 following:

(i) If  converges on  (pointwise or uniformly), so does  itself. Moreover,

(ii) (Commutative law for absolute convergence.) If  converges (pointwise or uniformly on  so does any series 
 obtained by rearranging the  in any different order. Moreover,

Note 2. More precisely, a sequence  is called a rearrangement of  iff there is a map  such that

Proof

(i) If  converges uniformly on  then by Theorem  of §12,

However, this shows that  satisfies Cauchy's criterion (6) of §12, so it converges uniformly on .

Moreover, letting  in the inequality

∑fm B ∑ | (x)|fm ∑ | |)fm
fm B

f =∑ | |  (pointwise or uniformly ) on B.fm (4.13.1)

∑fm ∑ | |fm ). ∑fm
x

∑ ),fm fm

= | | .σm ∑
k=1

m

fk (4.13.2)

= +| | ≥  on B;σm+1 σm fm+1 σm (4.13.3)

(x)σm x ∈ B.

= | |  always exists in  ;lim
m→∞

σm ∑
m=1

∞

fm E∗ (4.13.4)

∑ | |fm | | < +∞∑∞
m=1 fm

 Theorem 4.13.1

fm A) E1 C,
(  or another complete normed space). Then for B ⊆ A,  we have the En ∗

∑ | |fm B ∑fm

≤ | |  on B.
∣

∣
∣∑
m=1

∞

fm
∣

∣
∣ ∑

m=1

∞

fm (4.13.5)

∑ | |fm B,
∑ | |gm fm

= ( both exist on B)/∑
m=1

∞

fm ∑
m=1

∞

gm (4.13.6)

{ }gm { }fm u : N N⟷onto

(∀m ∈ N) = .gm fu(m) (4.13.7)

∑ | |fm B, 3′

.
(∀ε > 0)(∃k)(∀n > m > k)(∀x ∈ B)

ε > | (x)| ≥ | (x)|  (triangle law) ∑n
i=m fi ∑n

i=m fi
(4.13.8)

∑fn B

n → ∞

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/21179?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/04%3A_Function_Limits_and_Continuity/4.13%3A_Absolutely_Convergent_Series._Power_Series


4.13.2 https://math.libretexts.org/@go/page/21179

we get

By Note  this also proves the theorem for pointwise convergence.

(ii) Again, if  converges uniformly on  the inequalities  hold for all  except (possibly) for .
Now when  is rearranged, these  functions will be renumbered as certain  Let  be the largest of their new
subscripts i. Then all of them (and possibly some more functions) are among  (so that  Hence if we
exclude  the inequalities  will certainly hold for the remaining   Thus

By Cauchy's criterion, then, both  and  converge uniformly.

Moreover, by construction, the two partial sums

can differ only in those terms whose original subscripts (before the rearrangement) were  however, any finite
sum of such terms is less than  in absolute value. Thus .

This argument holds also if  in  is replaced by a larger integer. 
(Then also  increases, since  as noted above.) Thus we may let  in the inequality 

 with  fixed. Then

so

Now let  to get

similarly for pointwise convergence. 

II. Next, we develop some simple tests for absolute convergence.

(comparison test). Suppose

Then

(i)  on ;

(ii)  implies  on  and

≤ | | ,
∣

∣
∣∑
m=1

n

fm
∣

∣
∣ ∑

m=1

n

fm (4.13.9)

≤ | | < +∞  on B,  as claimed. 
∣

∣
∣∑
m=1

∞

fm
∣

∣
∣ ∑

m=1

∞

fm (4.13.10)

1,

∑ |fm B, (1) fi , , … ,f1 f2 fk
∑fm k .gi q

, , … ,g1 g2 gq q ≥ k).
, … , ,g1 gq (1) gi (i > q).

(∀ε > 0)(∃q)(∀n > m > q)(∀x ∈ B) ε > | | ≥ .∑
i=m

n

gi
∣

∣
∣∑
i=m

n

gi
∣

∣
∣ (4.13.11)

∑ gi ∑ | |gi

=  and  =sk ∑
i=1

k

fi s′
q ∑

i=1

q

gi (4.13.12)

> k. By(1),
ε | − | < εs′

q sk

k (1)
q q ≥ k k → +∞( hence also q → +∞)

| − | < ε,s′
q sk ε

→  and  → ,sk ∑
m=1

∞

fm s′
q ∑

i=1

∞

gi (4.13.13)

− ≤ ε.
∣

∣
∣∑
i=1

∞

gi ∑
m=1

∞

fm
∣

∣
∣ (4.13.14)

ε → 0

= ;∑
i=1

∞

gi ∑
m=1

∞

fm (4.13.15)

□

 Theorem 4.13.2

(∀m) | | ≤ | |  on B.fm gm (4.13.16)

| | ≤ | |∑∞
m=1 fm ∑∞

m=1 gm B

| | = +∞∑∞
m=1 fm | | = +∞∑∞

m=1 gm B;
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(iii) If  converges (pointwise or uniformly  on  so does .

Proof

Conclusion (i) follows by letting  in

In turn, (ii) is a direct consequence of .

Also, by (i),

This proves (iii) for the pointwise case (see Note 1  The uniform case follows exactly as in Theorem 1  on noting that

and that the functions  and  are real (so Theorem  in §12 does apply). 

If  is a convergent series of real constants  and if

on a set  then  converges uniformly on  Moreover,

Proof

Use Theorem 2 with  noting that  converges uniformly since the  are constant (§12, Problem 7). 

(a) Let

Then

and  converges (geometric series with ratio ; see §12, Problem 18). Thus, setting  in Theorem 3, we infer
that the series  converges uniformly on  as does  moreover,

∑ | |gm ) B, ∑ | |fm

n → ∞

| | ≤ | | .∑
m=1

n

fm ∑
m=1

n

gm (4.13.17)

(i)

| | < +∞ implies  | | < +∞.∑
m=1

∞

gm ∑
m=1

∞

fm (4.13.18)

). (i)

| | ≤ | |∑
k=m

n

fk ∑
k=m

n

gk (4.13.19)

| |fk | |gk 3′
□

 Theorem  (Weierstrass "M-test")4.13.3

∑Mn ≥ 0Mn

(∀n) | | ≤fn Mn (4.13.20)

B, ∑ | |fn B.

| | ≤  on B.∑
n=1

∞

fn ∑
n=1

∞

Mn (4.13.21)

| | = ,gn Mn ∑ | |gn | |gn □

 ExampleS

(x) =  on  .fn ( sinx)
1

2

n

E1 (4.13.22)

(∀n)(∀x ∈ ) | (x)| ≤ ,E1 fn 2−n (4.13.23)

∑2−n 1
2

=Mn 2−n

∑ sinx∣∣
1
2

∣∣
n

,E1 ∑ ;( sinx)1
2

n

| | ≤ = 1.∑
n=1

∞

fn ∑
n=1

∞

2−n (4.13.24)
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If  or  converges on  (pointwise or uniformly), then  on  (in the same sense).

Thus a series cannot converge unless its general term tends to 0 (respectively, .

Proof

If  say, then  and also  Hence

However,  Thus  and  as claimed.

This holds for pointwise and uniform convergence alike (see Problem 14 in §12) . 

Caution: The condition  is necessary but not sufficient. Indeed, there are divergent series with general term tending to 
as we show next.

(b)  (the so-called harmonic series).

Indeed, by Note 1,

so Theorem 4 of §12 applies. We group the series as follows:

Each bracketed expression now equals  Thus

As  does not tend to  diverges, i.e.,  is infinite, by Theorem 4. A fortiori, so is .

A series of constants  converges absolutely if

It diverges if

It may converge or diverge if

or if

 Theorem  (necessary condition of convergence)4.13.4

∑fm ∑ | |fm B | | → 0fm B

)0
¯̄̄

∑ = f ,fm → fsm → f .sm−1

− → f −f = .sm sm−1 0¯̄̄ (4.13.25)

− = .sm sm−1 fm → ,fm 0¯̄̄ | | → 0,fm

□

| | → 0fm 0,

 Examples (Continued)

= +∞∑∞
n=1

1
n

 exists  (in  ) ,∑
n=1

∞
1

n
E∗ (4.13.26)

∑
1

n
= 1 + +( + )+( + + + )+( +⋯ + )+⋯

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

16

≥ + +( + )+( + + + )+( +⋯ + )+⋯ .
1

2

1

2

1

4

1

4

1

8

1

8

1

8

1

8

1

16

1

16

.1
2

∑ ≥∑ , = .
1

n
gm gm

1

2
(4.13.27)

gm 0,∑ gm ∑∞
m=1 gm ∑∞

n=1
1
n

 Theorem  (root and ratio tests)4.13.5

∑ (| | ≠ 0)an an

< 1 or  ( ) < 1.lim
¯ ¯¯̄¯̄¯

| |an
− −−

√n lim
¯ ¯¯̄¯̄¯ | |an+1

| |an
(4.13.28)

> 1 or  ( ) > 1.lim¯ ¯¯̄¯̄¯ | |an
− −−

√n lim
– ––

| |an+1

| |an
(4.13.29)

= 1lim
¯ ¯¯̄¯̄¯

| |an
− −−

√n (4.13.30)
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(The  may be scalars or vectors.)

Proof

If  choose  such that

Then by Corollary 2 of Chapter 2, §13,  for all but finitely many  Thus, dropping a finite number of terms
(§12, Problem 17), we may assume that

As  the geometric series  converges. Hence so does  by Theorem 2.

In the case

we similarly obtain  hence by induction,

Thus  converges, as before.

If  then by Corollary 2 of Chapter 2, §13,\left|a_{n}\right|>1\) for infinitely many  Hence  cannot
tend to  and so  diverges by Theorem 4.

Similarly, if

then  for all but finitely many  so  cannot tend to 0 again. 

Note 3. We have

Thus

Hence whenever the ratio test indicates convergence or divergence, so certainly does the root test. On the other hand, there are
cases where the root test yields a result while the ratio test does not. Thus the root test is stronger (but the ratio test is often easier to
apply).

(c) Let  if  (odd) and  if  (even). Thus

Here

( ) ≤ 1 ≤ ( ) .lim
– ––

| |an+1

| |an
lim¯ ¯¯̄¯̄¯ | |an+1

| |an
(4.13.31)

an

< 1,lim
¯ ¯¯̄¯̄¯

| |an
− −−

√n r > 0

< r < 1.lim
¯ ¯¯̄¯̄¯

| |an
− −−

√n (4.13.32)

< r| |an
− −−√n n.

| | <  for all n.an rn (4.13.33)

0 < r < 1, ∑ rn ∑ | |an

( ) < 1,lim
¯ ¯¯̄¯̄¯ | |an+1

| |an
(4.13.34)

(∃m)(∀n ≥ m) | | < | | r;an+1 an

(∀n ≥ m) | | ≤ | | .  (Verify!) an am rn−m (4.13.35)

∑ | |an

> 1,lim
¯ ¯¯̄¯̄¯

| |an
− −−

√n n. | |an

0, ∑an

( ) > 1,lim– ––
| |an+1

| |an
(4.13.36)

| | > | |an+1 an n, | |an □

( ) ≤ ≤ ≤ ( ) .lim– ––
| |an+1

| |an
lim– –– | |an

− −−
√n lim

¯ ¯¯̄¯̄¯
| |an
− −−

√n lim
¯ ¯¯̄¯̄¯ | |an+1

| |an
(4.13.37)

( )< 1 implies  < 1;  and lim
¯ ¯¯̄¯̄¯ | |an+1

| |an
lim
¯ ¯¯̄¯̄¯

| |an
− −−

√n

( )> 1 implies  > 1.lim– ––
| |an+1

| |an
lim
¯ ¯¯̄¯̄¯

| |an
− −−

√n
(4.13.38)

 Examples (continued)

=an 2−k n = 2k−1 =an 3−k n = 2k

∑ = + + + + + + + +⋯ .an
1

21

1

31

1

22

1

32

1

23

1

33

1

24

1

34
(4.13.39)
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while

Thus the ratio test fails, but the root test proves convergence.

Note 4. The assumption  is needed for the ratio test only.

III. Power Series. As an application, we now consider so-called power series,

where  the  may also be vectors.

For any power series  there is a unique   called its convergence radius, such that the
series converges absolutely for each  with  and does not converge (even conditionally) if 

Specifically,

Proof

Fix any  By Theorem 5, the series  converges absolutely if  i.e., if

and diverges if  (Here we assumed  but if  the condition  is trivial for any
so  in this case.) Thus  is the required radius, and clearly there can be only one such  (Why?) 

Note 5. If  exists, it equals  by Note 3 (for  and  coincide here). In this case, one can use the

ratio test to find

and hence (if 

If a power series  converges absolutely for some  then  converges uniformly on the
closed globe   So does  if the range space is complete (Theorem 1).

Proof

Suppose  converges. Let

thus  converges.

( ) = = 0 and  ( ) = = +∞,lim– ––
an+1

an
lim
k→∞

3−k

2−k
lim
¯ ¯¯̄¯̄¯ an+1

an
lim
k→∞

2−k−1

3−k
(4.13.40)

= lim = < 1. (Verify!)lim
¯ ¯¯̄¯̄¯

an
−−

√n 2−n−−−
√2n−1 1

2
–

√
(4.13.41)

| | ≠ 0an

∑ (x−p ,an )n (4.13.42)

x, p, ∈ (C);an E1 an

 Theorem 4.13.6

∑ (x−p ,an )n r ∈ E∗ (0 ≤ r ≤ +∞),
x |x−p| < r |x−p| > r.

r = ,  where d =  (with r = +∞ if d = 0).
1

d
lim
¯ ¯¯̄¯̄¯

| |an
− −−

√n (4.13.43)

x = .x0 ∑an( −p)x0
n

| −p| < 1,lim
¯ ¯¯̄¯̄¯

| |an
− −−

√n x0

| −p| < r (r = = ) ,x0
1

lim | |an
− −−

√n
1

d
(4.13.44)

| −p| > r.x0 d ≠ 0; d = 0, d | −p| < 1x0 ,x0

r = +∞ r r. □

limn→∞
| |an+1

| |an
,limn→∞ | |an

− −−
√n lim

¯ ¯¯̄¯̄¯̄
lim– –––

d = lim
n→∞

| |an+1

| |an
(4.13.45)

d ≠ 0)

r = = .
1

d
lim
n→∞

| |an

| |an+1
(4.13.46)

 Theorem 4.13.7

∑ (x−pan )n x = ≠ p,x0 ∑ | (x−p |an )n

(δ)G
¯ ¯¯̄

p δ = | −p| .x0 ∑ (x−pan )n

∑ | |an( −p)x0
n

δ = | −p|  and  = | | ;x0 Mn an δn (4.13.47)

∑Mn
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Now if  then  so

Hence by Theorem 3,  converges uniformly on 

(d) Consider  Here

By Note 5, then,  i.e., the series converges absolutely on all of  Hence by Theorem 7, it converges uniformly on
any  hence on any finite interval in . (The pointwise convergence is on all of .)

This page titled 4.13: Absolutely Convergent Series. Power Series is shared under a CC BY 3.0 license and was authored, remixed, and/or curated
by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

x ∈ (δ),G
¯ ¯¯̄

p |x−p| ≤ δ,

| (x−p | ≤ | | = .an )n an δn Mn (4.13.48)

∑ | (x−p |an )n (δ). □G
¯ ¯¯̄

p

 Examples (Continued)

∑ xn

n!

p = 0 and  = ,  so  = n+1 → +∞.an
1

n!

| |an

| |an+1
(4.13.49)

r = +∞; .E1

(δ),G
¯ ¯¯̄

0 E1 E1
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4.13.E: More Problems on Series of Functions

Verify Note 3 and Example  in detail.

Show that the so-called hyperharmonic series of order , 

 
converges iff . 
[Hint: If , 

 
If , 

 
a convergent geometric series. Explain each step.]

 Prove the refined comparison test: 
(i) If two series of constants,  and  are such that the sequence  is bounded in  then 

 
(ii) If 

 
then  converges if and only if  does. 
What is 

 
[Hint: If (\forall n)|a_{n}| / |b_{n}| \leq K\), then ]

 Exercise 4.13.E. 1

(c)

 Exercise 4.13.E. 2

p

∑ (p ∈ ) ,
1

np
E1 (4.13.E.1)

p > 1
p ≤ 1

≥ = +∞ ( Example (b)).∑
n=1

∞
1

np
∑
n=1

∞
1

n
(4.13.E.2)

p > 1

∑
n=1

∞
1

np
= 1 +( + )+( +⋯ + )+( +⋯ + )+⋯

1

2p

1

3p

1

4p

1

7p

1

8p

1

15p

≤ 1 +( + )+( +⋯ + )+( +⋯ + )+⋯
1

2p

1

2p

1

4p

1

4p

1

8p

1

8p

= .∑
n=0

∞ 1

( )2p−1 n

 Exercise 4.13.E. 3

⇒ 3.
∑ | |an ∑ | | ,bn {| | / | |}an bn ,E1

| | < +∞ implies  | | < +∞.∑
n=1

∞

bn ∑
n=1

∞

an (4.13.E.3)

0 < < +∞,lim
n→∞

| |an

| |bn

(4.13.E.4)

∑ | |an ∑ | |bn

= +∞?lim
n→∞

| |an

| |bn

(4.13.E.5)

| | ≤ K| |.an bn
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Test  for absolute convergence in each of the following. Use Problem 3 or Theorem 2 or the indicated references. 
(i) ; 

(ii) ; 

(iii) ; 
(iv)  (use Problem 18 of Chapter 3, §15); 
(v) ; 

(vi) ; 

(vii) . 

[Hint for (vi) and (vii): From Problem 14 in §2, show that 

 
and hence 

 
Then select 

Prove that . 
[Hint: Show that  does not tend to 0.]

Prove that . 
[Hint: Use Example (d) and Theorem 4.]

Use Theorems  and 7 to show that  converges uniformly on  provided  and  are as indicated below,
with  and  For parts  find  and use Theorem  (Calculus rules for
maxima are assumed known.) 
(i) . 

(ii) . 

(iii) . 
(iv) . 

.

(vi) . 
(vii) . 

(viii)  with . 
(ix) . 
(x) . 
(xi) .

 Exercise 4.13.E. 4

∑an

= ( take  = )an
n+1

+1n4√
bn

1
n

= ( take  = ;  use Problem 2)an
cos n

−1n3√
bn

1

n3√

= ( − ), p ∈an
(−1)

n

np n +1
− −−−−

√ n
−−

√ E1

=an n5e−n

=an
+n2n

+13n

= ; n ≥ 2an
(−1)

n

(log n)
q

= , q ∈an
(log n)q

n( +1)n2 E1

= +∞lim
y→+∞

y

(log y)q
(4.13.E.6)

= 0.lim
n→∞

(log n)q

n
(4.13.E.7)

.bn

 Exercise 4.13.E. 5

= +∞∑∞
n=1

nn

n!

/n!nn

 Exercise 4.13.E. 6

= 0limn→∞
xn

n!

 Exercise 4.13.E. 7

3, 5, 6, ∑ | |fn B, (x)fn B

0 < a < +∞ b ∈ .E1 ( ix ) −( xii ), = | (x)|Mn maxx∈B fn 3.

; [−a, b]x2n

(2n)!

(−1 ; [−a, b])n+1 x2n−1

(2n−1)!

; [−a, a]xn

nn

; [−a, a](a < 1)n3xn

 (v)  ; B =  (use Problem 2)sin nx

n2 E1

sinnx; [a, +∞)e−nx

; B =cos nx

+1n3√
E1

cos nx,an | | < +∞; B =∑∞
n=1 an E1

; [0, +∞)xne−nx

; (−∞, ]xnenx 1
2

(x ⋅ log x , (0) = 0; [− , ])n fn
3
2

3
2
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(xii) . 

(xiii) .

 (Summation by parts.) Let  and  be real or complex functions (or let  and  be scalar valued and  be
vector valued). Let   Verify that  

 
[Hint: Rearrange the sum.]

 (Abel's test.) Let the  and  be as in Problem  with  Suppose that
(i) the range space of the  is complete; 
(ii)  (uniformly) on a set  and 
(iii) the partial sums  are uniformly bounded on  i.e., 

 
Then prove that  converges uniformly on  if  does. 

 
[Hint: Let  Show that 

 
Then use Problem 8 to show that 

 
Apply Theorem  of §12.]

 Prove that if  is a convergent series of constants  and if  is a bounded monotone sequence in 
then  converges. 
[Hint: Let . Write 

 

; [1, +∞)( )
log x

x

n

, q ∈ ; [− , ]
q(q−1)⋯(q−n+1)xn

n!
E1 1

2
1
2

 Exercise 4.13.E. 8

⇒ 8. , ,fn hn gn fn hn gn

=fn − (n ≥ 2).hn hn−1 (∀m > n > 1)

∑
k=n+1

m

fkgk = ( − )∑
k=n+1

m

hk hk−1 gk

= − − ( − ) .hmgm hngn+1 ∑
k=n+1

m−1

hk gk+1 gk

 Exercise 4.13.E. 9

⇒ 9. , ,fn gn hn 8, = .hn ∑n
i=1 fi

gn

| | → 0gn B;
=hn ∑n

i=1 fi B;

(∃K ∈ ) (∀n) | | < K on B.E1 hn (4.13.E.8)

∑fkgk B ∑ | − |gn+1 gn

 (This always holds if the   are real and  ≥  on B. )gn gn gn+1

ε > 0.

(∃k)(∀m > n > k) | − | < ε and  | | < ε on B.∑
i=n+1

m

gi+1 gi gn (4.13.E.9)

< 3Kε.
∣

∣
∣
∣ ∑
i=n+1

m

figi

∣

∣
∣
∣ (4.13.E.10)

3′

 Exercise 4.13.E. 9′

⇒ .9
′ ∑an ∈an E1 { }bn ,E1

∑anbn

→ bbn

= ( −b) + banbn an bn an (4.13.E.11)

 and use Problem 9 with  =  and  = −b. ]fn an gn bn
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 Prove the Leibniz test for alternating series: If  and  in  then  converges, and the sum 
 differs from  by  at most.

 (Dirichlet test.) Let the  and  be as in Problem 8 with  uniformly convergent on  to a function 
and with 

 
Suppose that 
(i) the range space of the  is complete; and 
(ii) there is  such that 

 
Show that  converges uniformly on . 
[Proof outline: We have 

 
Also, 

 
by assumption. Hence 

 
Using Problem  obtain 

Prove that if , then  converges conditionally. 
[Hint: Use Problems 11 and 2 .]

 Continuing Problem 14 in §12, prove that if  and  converge on  (pointwise or uniformly), then so do the
series 

 Exercise 4.13.E. 10

⇒ 10. { } ↓bn → 0bn ,E1 ∑(−1)nbn

(−1∑∞
n=1 )nbn = (−1sn ∑n

k=1 )kbk bn+1

 Exercise 4.13.E. 11

⇒ 11. , ,fn gn hn ∑∞
n=0 fn B f ,

= −  on B.hn ∑
i=n+1

∞

fi (4.13.E.12)

gn

K ∈ E1

| | + | − | < K on B.g0 ∑
n=0

∞

gn+1 gn (4.13.E.13)

∑fngn B

| | = + ( − ) ≤ | | + | − | < K  by (ii). gn

∣

∣
∣g0 ∑

i=0

n−1

gi+1 gi

∣

∣
∣ g0 ∑

i=0

n−1

gi+1 gi (4.13.E.14)

| | = −f → 0 (uniformly) on Bhn

∣

∣
∣∑

i=0

n

fi

∣

∣
∣ (4.13.E.15)

(∀ε > 0)(∃k)(∀n > k) | | < ε on B.hn (4.13.E.16)

8,

(∀m > n > k) < 2Kε. ]
∣

∣

∣
∣ ∑
i=n+i

m

figi

∣

∣

∣
∣ (4.13.E.17)

 Exercise 4.13.E. 12

0 < p ≤ 1 ∑
(−1)n

np

 Exercise 4.13.E. 13

⇒ 13. ∑ | |fn ∑ | |gn B

∑ |a +b | ,∑ | ± | ,  and ∑ |a | .fn gn fn gn fn (4.13.E.18)
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For the rest of the section, we define 

 Given  show the following: 
(i) . 
(ii) If  or  then . 
(iii) If  converges conditionally, then . 
(iv) If  then for any , 

 

 

 (Abel's theorem.) Show that if a power series 

 
converges for some  it converges uniformly on  (or . 
[Proof outline: First let  and  Use Problem 11 with 

 
As , the series  converges by assumption. The convergence is uniform since the  are
constant. Verify that if , then 

 
and if  then 

 
Also,  Thus by Problem  converges uniformly on  proving the theorem for 

 and  The general case reduces to this case by the substitution  Verify!]

Prove that if 

[ Hint  : |a +b | ≤ |a| | | + |b| | | .  Use Theorem 2. ]fn gn fn gn

= max(x, 0) and  = max(−x, 0).x+ x− (4.13.E.19)

 Exercise 4.13.E. 14

⇒ 14. { } ⊂an E∗

∑ +∑ =∑ | |a+
n a−

n an

∑ < +∞a+
n ∑ < +∞,a−

n ∑ =∑ −∑an a+
n a−

n

∑an ∑ = +∞ =∑a+
n a−

n

∑ | | < +∞,an { } ⊂bn E1

∑ | ± | < +∞ iff ∑ | | < ∞;an bn bn (4.13.E.20)

 moreover, ∑ ±∑ =∑ ( ± )  if ∑  exists. an bn an bn bn (4.13.E.21)

 [Hint: Verify that  | | = + and  = − . Use the rules of §4. ]an a+
n a−

n an a+
n a−

n

 Exercise 4.13.E. 15

⇒ 15.

(x −p ( ∈ E, x, p ∈ )∑
n=0

∞

an )n an E1 (4.13.E.22)

x = ≠ p,x0 [p, ]x0 [ , p]  if  < p)x0 x0

p = 0 = 1.x0

=  and  (x) = = (x −p .fn an gn xn )n (4.13.E.23)

= =fn an1n an( −p)x0
n ∑fn fn

x = 1

| − | = 0,∑
k=1

∞

gk+1 gk (4.13.E.24)

0 ≤ x < 1,

| − | = |x −1| = (1 −x) = 1  (a geometric series). ∑
k=0

∞

gk+1 gk ∑
k=0

∞

xk ∑
k=0

∞

xk (4.13.E.25)

| (x)| = = 1.g0 x0 11( with K = 2),∑fngn [0, 1],
p = 0 = 1.x0 x −p = ( −p) y.x0

 Exercise 4.13.E. 16

0 < ≤ < +∞,lim– –– an lim
¯ ¯¯̄¯̄¯

an (4.13.E.26)
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then the convergence radius of  is 1.

Show that a conditionally convergent series  can be rearranged so as to diverge, or to converge to any
prescribed sum . [Proof for  Using Problem 14(iii), take the first partial sum 

 
Then adjoin terms 

 
until the partial sum becomes less than  Then add terms  until it exceeds . Then adjoin terms  until it becomes less
than  and so on. 
As  and  (why?), the rearranged series tends to  (Why?) 
Give a similar proof for . Also, make the series oscillate, with no sum.]

Prove that if a power series  converges at some , it converges absolutely (pointwise) on  if 
.  

[Hint: By Theorem  Show that the line  when
extended, contains a point  such that  By Theorem  the series converges absolutely at 
hence at  as well, by Theorem 7.]

4.13.E: More Problems on Series of Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

∑ (x −pan )n

 Exercise 4.13.E. 17

∑ ( ∈ )an an E1

s s ∈ :E1

+⋯ + > s.a+
1 a+

m (4.13.E.27)

− , − , … , −a−
1 a−

2 a−
n (4.13.E.28)

s. a+
k s −a−

k

s,
→ 0a+

k
→ 0a−

k
s.

s = ±∞

 Exercise 4.13.E. 18

∑ (x −pan )n x = ≠ px0 (δ)Gp

δ ≤ | −p|x0

6, δ ≤ | −p| ≤ r (r =  convergence radius). Fix any x ∈ (δ).x0 Gp ,px
−→

x1 |x −p| < | −p| < δ ≤ r.x1 6, ,x1

x
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5.1: Derivatives of Functions of One Real Variable
In this chapter,  will always denote any one of  (the complex field  or another normed space. We shall
consider functions  of one real variable with values in . Functions  (admitting finite and infinite
values) are said to be extended real. Thus  may be real, extended real, complex, or vector valued.

Operations in  were defined in Chapter 4, §4. Recall, in particular, our conventions  there. Due to them, addition,
subtraction, and multiplication are always defined in  (with sums and products possibly "unorthodox").

To simplify formulations, we shall also adopt the convention that

 function  is defined on all of . For
convenience, we call  "finite" if .

For each function  we define its derived function  
by setting, for every point ,

Thus  is always defined.

If the limit in  exists, we call it the derivative of  at .

If, in addition, this limit is finite, we say that  is differentiable at .

If this holds for each  in a set  we say that  has a derivative (respectively, is differentiable) on  and we call the
function  thederivative of  on .

If the limit in  is one sided (with  or  we call it a one-sided (left or right) derivative at  denoted  or 
.

Given a function  we define its  th derived function (or derived function of order  denoted 
by induction:

Thus  is the derived function of  By our conventions,  is defined on all of  for each  and each function 
 We have  and we write  for  for  etc. We say that  has  derivatives at a point  iff the

limits

exist for all  in a neighborhood  of  and for  and also

exists. If all these limits are finite, we say that  is  times differentiable on  similarly for one-sided derivatives.

It is an important fact that differentiability implies continuity.

" E " , ,CE1 E∗ ),En,∗

f : → EE1 E f : →E1 E∗

f : → EE1

E∗ ( )2∗

E∗

f(x) = 0 unless defined otherwise. (5.1.1)

(" 0 "  stands also for the zero-vector in E if E is a vector space.) Thus each  f E1

f(x) f(x) ≠ ±∞( also if it is a vector )

 Definition

f : → E,E1 : → Ef ′ E1

p ∈ E1

(p) = {f ′  if this limit exists (finite or not); limx→p
f(x)−f(p)

x−p

0,  otherwise. 
(5.1.2)

(p)f ′

(1) f p

f p

p B ⊆ ,E1 f B,
f ′ f B

(1) x → p− x → ),p+ p, f ′
−

f ′
+

 Definition

f : → E,E1 n n), : → E,f (n) E1

= f , = , n = 0, 1, 2, …f (0) f (n+1) [ ]f (n)
′

(5.1.3)

f (n+1) .f (n) f (n) E1 n

f : → E.E1 = ,f (1) f ′ f ′′ ,f (2) f ′′′ ,f (3) f n p

lim
x→q

(x) − (q)f (k) f (k)

x−q
(5.1.4)

q Gp p k = 0, 1, … ,n−2,

lim
x→p

(x) − (p)f (n−1) f (n−1)

x−p
(5.1.5)

f n I;
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If a function  is differentiable at a point  it is continuous at  and  is finite (even if .

Proof

Setting  and  we have the identity

By assumption,

exists and is finite. Thus as  the right side of  (hence the left side as well) tends to  so

proving continuity at .

Also,  for otherwise  for all  and so  cannot tend to 

Note 1. Similarly, the existence of a finite left (right) derivative at  implies left (right) continuity at . The proof is the same.

Note 2. The existence of an infinite derivative does not imply continuity, nor does it exclude it. For example, consider the two cases

(i)  with  and

(ii) .

Give your comments for .

Caution: A function may be continuous on  without being differentiable anywhere (thus the converse to Theorem 1 fails). The
first such function was indicated by Weierstrass. We give an example due to Olmsted (Advanced Calculus).

(a) We first define a sequence of functions  as follows. For each  let

Between  and  is linear (see Figure  so it is continuous on  The series  converges
uniformly on  (Verify!)

Let

Then  is continuous on 

To prove this fact, fix any  For each  let

choosing the sign of  so that  and  are in the same half of a "sawtooth" in the graph of  (Figure 21 . Then

Also,

 Theorem 5.1.1

f : → EE1 p ∈ ,E1 p, f(p) E = )E∗

Δx = x−p Δf = f(x) −f(p),

|f(x) −f(p)| = ⋅ (x−p)  for x ≠ p.
∣

∣
∣
Δf

Δx

∣

∣
∣ (5.1.6)

(p) =f ′ lim
x→p

Δf

Δx
(5.1.7)

x → p, (2) 0,

|f(x) −f(p)| = 0,  or  f(x) = f(p)lim
x→p

lim
x→p

(5.1.8)

p

f(p) ≠ ±∞, |f(x) −f(p)| = +∞ x, |f(x) −f(p)| 0. □

p p

f(x) = ,1
x

f(0) = 0,

f(x) = x−−√3

p = 0

E1

 Example 5.1.1

: → (n = 1, 2, …)fn E1 E1 k = 0, ±1, ±2, … ,

(x) = 0 if x = k ⋅ ,  and  (x) = ⋅  if x =(k+ ) ⋅ .fn 4−n fn
1

2
4−n 1

2
4−n (5.1.9)

k ⋅ 4−n (k± ) ⋅ ,1
2

4−n fn 21), .E1 ∑fn

.E1

f = .∑
n=1

∞

fn (5.1.10)

f ( why? yet it is nowhere differentiable.E1

p ∈ .E1 n,

= p+ ,  where  = ± ,xn dn dn 4−n−1 (5.1.11)

dn p xn fn )

( ) − (p) = ± = ±( −p) . ( Why ?)fn xn fn dn xn (5.1.12)

( ) − (p) = ±  if m ≤ nfm xn fm dn (5.1.13)
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but vanishes for  (Why?)

Thus, when computing  we may replace

Since

the fraction

is an integer, odd if  is odd and even if  is even. Thus this fraction cannot tend to a finite limit as  i.e., as 
 and  A fortiori, this applies to

Thus  is not differentiable at any .

The expressions  and  briefly denoted  and  and  are called the increments of  and  (at 
respectively. 2 We now show that for differentiable functions,  and  are "nearly proportional' when  approaches  that is,

with  constant and .

A function  is differentiable at  and  iff there is a finite  and a function  such that 
 and such that

Proof

If  is differentiable at  put  Define  and

Then  Also,  follows.

Conversely, if  holds, then

Thus by definition,

m > n.

f ( ) −f(p),xn

f =  by f = .∑
m=1

∞

fm ∑
m=1

n

fm (5.1.14)

= ±1 for m ≤ n.
( ) − (p)fm xn fm

−pxn
(5.1.15)

f ( ) −f(p)xn

−pxn
(5.1.16)

n n n → ∞,
= → 0dn 4−n−1 = p+ → p.xn dn

.lim
x→p

f(x) −f(p)

x−p
(5.1.17)

f p

f(x) −f(p) x−p, Δf Δx, Δx, f x p),
Δf Δx x p;

= c+δ(x)
Δf

Δx
(5.1.18)

c δ(x) = 0limx→p

 Theorem 5.1.2

f : → EE1 p, (p) = c,f ′ c ∈ E δ : → EE1

δ(x) = δ(p) = 0,limx→p

Δf = [c+δ(x)]Δx  for all x ∈ .E1 (5.1.19)

f p, c = (p).f ′ δ(p) = 0

δ(x) = − (p) for x ≠ p.
Δf

Δx
f ′ (5.1.20)

δ(x) = (p) − (p) = 0 = δ(p).limx→p f ′ f ′ (3)

(3)

= c+δ(x) → c as x → p( since δ(x) → 0).
Δf

Δx
(5.1.21)

c = = (p) and  (p) = c is finite. □lim
x→p

Δf

Δx
f ′ f ′ (5.1.22)
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(chain rule). Let the functions  and  (real or not) be differentiable at  and  respectively,
where  Then the composite function  is differentiable at  and

Proof

Setting

we must show that

Now as  is differentiable at  Theorem 2 yields a function  such that  and such that

Taking  we get

where

as noted above. Hence

Let  Then we obtain  for, by the continuity of  at  (Chapter 4, §2, Theorem 3),

The proofs of the next two theorems are left to the reader.

If  and  are real or complex and are differentiable at  so are

(the latter if  and at the point  we have

(i) ;

(ii)  and

(iii) .

All this holds also if  and  are vector valued and  is scalar valued. It also applies to infinite (even one-sided) derivatives,
except when the limits involved become indeterminate (Chapter 4, §4).

Note 3. By induction, if  and  are  times differentiable at a point  so are  and  and, denoting by  the

binomial coefficients, we have

(i*)  and

 Theorem 5.1.3

g : → ( real )E1 E1 f : → EE1 p q,
q = g(p). h = f ∘ g p,

(p) = (q) (p).h′ f ′ g′ (5.1.23)

Δh = h(x) −h(p) = f(g(x)) −f(g(p)) = f(g(x)) −f(q). (5.1.24)

= (q) (p) ≠ ±∞.lim
x→p

Δh

Δx
f ′ g′ (5.1.25)

f q, δ : → EE1 δ(x) = δ(q) = 0limx→q

(∀y ∈ ) f(y) −f(q) = [ (q) +δ(y)] Δy, Δy = y−q.E1 f ′ (5.1.26)

y = g(x),

(∀x ∈ ) f(g(x)) −f(q) = [ (q) +δ(g(x))] [g(x) −g(p)],E1 f ′ (5.1.27)

g(x) −g(p) = y−q = Δy and f(g(x)) −f(q) = Δh, (5.1.28)

= [ (q) +δ(g(x))] ⋅  for all x ≠ p.
Δh

Δx
f ′ g(x) −g(p)

x−p
(5.1.29)

x → p. (p) = (q) (p),h′ f ′ g′ δ ∘ g p

δ(g(x)) = δ(g(p)) = δ(q) = 0. □lim
x→p

(5.1.30)

 Theorem 5.1.4

f , g, h p,

f ±g,hf ,  and 
f

h
(5.1.31)

h(p) ≠ 0), p

(f ±g = ±)′ f ′ g′

(hf = h + f ;)′ f ′ h′

=( )f
h

′
h − ff ′ h′

h2

f g h

f , g, h n p, f ±g hf , ( )
n

k

(f ±g = ± ;)(n) f (n) g(n)
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(ii*) .

Formula (ii  is known as the Leibniz formula; its proof is analogous to that of the binomial theorem. It is symbolically written as 
 with the last term interpreted accordingly.

(componentwise differentiation). A function  is differentiable at  iff each of its  components 
 is, and then

with  as in Theorem 2 of Chapter 3, §§1-3.

In particular, a complex function  is differentiable iff its real and imaginary parts are, and 
Chapter 4, §3, Note 5).

(b) Consider the complex exponential

We assume the derivatives of  and  to be known (see Problem 8  By Theorem  we have

Hence by induction,

(c) Define  by

Here Theorem 5 yields

For a fixed  we may consider the line

where

This is, by definition, the tangent vector at  to the curve  in .

More generally, if  is differentiable at  and continuous on some globe about  we define the tangent at  to the curve 
 to be the line

 is its direction vector in  while  is the variable real parameter. For real functions  we usually consider not 
 but the curve  in  i.e., the set

The tangent to that curve at  is the line through  with slope .

(hf = ( ))(n) ∑n
k=0

n

k
h(k)f (n−k)

)
(hf = (h+f ,)(n) )n

 Theorem 5.1.5

f : → ( )E1 En ∗Cn p n

( , … , )f1 fn

(p) = ( (p), … , (p)) = (p) ,f ′ f ′
1 f ′

n ∑
k=1

n

f ′
k

ē̄̄k (5.1.32)

ē̄̄k

f : → CE1 = + i ⋅f ′ f ′
re f ′

 im 

 Example 5.1.2

f(x) = cosx+ i ⋅ sinx = ( Chapter 4, §3).exi (5.1.33)

cosx sinx ). 5,

(x) = −sinx+ i ⋅ cosx = cos(x+ π)+ i ⋅ sin(x+ π) = .f ′ 1

2

1

2
e
(x+ π)i1

2 (5.1.34)

(x) = ,n = 1, 2, … . ( Verify! )f (n) e
(x+ nπ)i1

2 (5.1.35)

f : →E1 E3

f(x) = (1, cosx, sinx), x ∈ .E1 (5.1.36)

(p) = (0, −sinp, cosp), p ∈ .f ′ E1 (5.1.37)

p = ,p0

= + t ,x̄̄̄ ā̄̄ u⃗  (5.1.38)

= f ( )  and  = ( ) = (0, −sin , cos ) .ā̄̄ p0 u⃗  f ′ p0 p0 p0 (5.1.39)

p0 f [ ]E1 E3

f : → EE1 p p, p

f [ ]Gp

= f(p) + t ⋅ (p);x̄̄̄ f ′ (5.1.40)

(p)f ′ E, t f : → ,E1 E1

f [ ]E1 y = f(x) ,E2

{(x, y)|y = f(x), x ∈ } .E1 (5.1.41)

p (p, f(p)) (p)f ′
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In conclusion, let us note that differentiation (i.e., taking derivatives) is a local limit process at some point  Hence (cf. Chapter 4,
§1, Note 4 ) the existence and the value of  is not affected by restricting  to some globe  about  or by arbitrarily
redefining  outside  For one-sided derivatives, we may replace  by its corresponding "half."

This page titled 5.1: Derivatives of Functions of One Real Variable is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

p.
(p)f ′ f Gp p

f .Gp Gp
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5.1.E: Problems on Derived Functions in One Variable

Prove Theorems 4 and  including  and  Do it for dot products as well.

Verify Note 2.

Verify Example (a).

Verify Example (b).

Prove that if  has finite one-sided derivatives at  it is continuous at .

Restate and prove Theorems 2 and 3 for one-sided derivatives.

Prove that if the functions  are differentiable at  so is their product, and

A function  is said to satisfy a Lipschitz condition  of order  at  iff 

 
(i) This implies continuity at  but not conversely; take 

 
 

(ii)  of order  implies differentiability at  with . 
(iii) Differentiability implies  of order  but not conversely. (Take 

 
then even one-sided derivatives fail to exist.)

 Exercise 5.1.E. 1

5, ( )i∗ (i ) .i∗

 Exercise 5.1.E. 2

 Exercise 5.1.E. 3

 Exercise 5.1.E. 3′

 Exercise 5.1.E. 4

f p, p

 Exercise 5.1.E. 5

 Exercise 5.1.E. 6

: → (C)fi E1 E∗ p,

= ( ⋯ ⋯ )  at p.( ⋯ )f1f2 fm
′ ∑

i=1

m

f1f2 fi−1 f ′
i fi+1 fm (5.1.E.1)

 Exercise 5.1.E. 7

f : → EE1 (L) α(α > 0) p

(∃δ > 0)(∃K ∈ ) (∀x ∈ (δ)) |f(x) −f(p)| ≤ K|x −p .E1 G¬p |α (5.1.E.2)

p

f(x) = , f(0) = 0, p = 0.
1

ln |x|
(5.1.E.3)

 [Hint: For the converse, start with Problem 14 (iii) of Chapter 4, §2. ]

L α > 1 p, (p) = 0f ′

L 1,

f(x) = x sin , f(0) = 0, p = 0;
1

x
(5.1.E.4)
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Let 

 
Show that  and  are differentiable on  with 

 
Hence prove for  that 

 
[Hint: Evaluate  as in Example (d) of Chapter  Then use the continuity of  and the formula 

 
To prove the latter, note that 

 
whence 

 
similarly for .]

Prove that if  is differentiable at  then 

 
i.e.,  

 
Show, by redefining  at  that even if the limit exists,  may not be 

 
[Hint: If  then 

 Exercise 5.1.E. 8

f(x) = sinx and g(x) = cos x. (5.1.E.5)

f g ,E1

(p) = cos p and  (p) = −sinp for each p ∈ .f ′ g′ E1 (5.1.E.6)

n = 0, 1, 2, …

(p) = sin(p + ) and  (p) = cos(p + ).f (n) nπ

2
g(n) nπ

2
(5.1.E.7)

Δf 4, §8. f

= = 1.lim
z→0

sinz

z
lim
z→0

z

sinz
(5.1.E.8)

| sinz| ≤ |z| ≤ | tanz|, (5.1.E.9)

1 ≤ ≤ → 1;
z

sinz

1

| cos z|
(5.1.E.10)

g

 Exercise 5.1.E. 9

f p

 exists, is finite, and equals  (p);lim
x→p+

y→p−

f(x) −f(y)

x −y
f ′ (5.1.E.11)

(∀ε > 0)(∃δ > 0)(∀x ∈ (p, p +δ))(∀y ∈ (p −δ, p))

− (p) < ε.
∣

∣
∣

f(x) −f(y)

x −y
f ′ ∣

∣
∣ (5.1.E.12)

f p, f

 differentiable (note that the above limit does not involve f(p)).

y < p < x

− (p)
∣

∣
∣

f(x) −f(y)

x −y
f ′ ∣

∣
∣ ≤ − (p) + − (p)

∣

∣
∣

f(x) −f(p)

x −y

x −p

x −y
f ′ ∣

∣
∣

∣

∣
∣

f(p) −f(y)

x −y

p −y

x −y
f ′ ∣

∣
∣

≤ − (p) + − (p) → 0. ]
∣

∣
∣

f(x) −f(p)

x −p
f ′ ∣

∣
∣

∣

∣
∣

f(p) −f(y)

p −y
f ′ ∣

∣
∣

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/23751?pdf


5.1.E.3 https://math.libretexts.org/@go/page/23751

Prove that if  is twice differentiable at  then 

 
Does the converse hold (cf. Problem 9)?

In Example  find the three coordinate equations of the tangent line at 

Judging from Figure 22 in §2, discuss the existence, finiteness, and sign of the derivatives (or one-sided derivatives) of  at the
points  indicated.

Let  be linear, i.e., such that 

 
Prove that if  is differentiable at  so is  and  
[Hint:  is continuous since  See Problem 5 in Chapter 3, §§4-6.]

5.1.E: Problems on Derived Functions in One Variable is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 5.1.E. 10

f p,

(x) = ≠ ±∞.f ′′ lim
h→0

f(p +h) −2f(p) +f(p −h)

h2
(5.1.E.13)

 Exercise 5.1.E. 11

(c), p = π.1
2

 Exercise 5.1.E. 12

f

pi

 Exercise 5.1.E. 13

f : → EEn

(∀ , ∈ )(∀a, b ∈ ) f(a +b ) = af( ) +bf( ).x̄̄̄ ȳ̄̄ En E1 x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ (5.1.E.14)

g : →E1 En p, h = f ∘ g (p) = f ( (p)) .h′ g′

f f( ) = f ( ) .x̄̄̄ ∑n
k=1 xk ē̄̄k
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5.2: Derivatives of Extended-Real Functions
For a while (in §§2 and 3), we limit ourselves to extended-real functions. Below,  and  are real or extended real (f, 

 We assume, however, that they are not constantly infinite on any interval .

If  at some  then

implies

for all  in a sufficiently small globe 

Similarly, if  then  implies  for  in some 

Proof

If  the "0" case in Definition 1 of §1, is excluded, so

Hence we must also have  for  in some .

It follows that  and  have the same sign in  i.e.,

(This implies  Why? Hence

as claimed; similarly in case 

If  is the maximum or minimum value of  for  in some  then  i.e.,  has a zero derivative, or none
at all, at 

For, by Lemma 1,  excludes a maximum or minimum at  (Why?)

Note 1. Thus  is a necessary condition for a local maximum or minimum at  It is insufficient, however. For example, if 
 has no maxima or minima at all, yet  For sufficient conditions, see §6.

Figure 22 illustrates these facts at the points  Note that in Figure 22, the isolated points  belong to the
graph.

Geometrically,  means that the tangent at  is horizontal, or that a two-sided tangent does not exist at 

Let  be relatively continuous on an interval , with  on  Then  is strictly monotone on 
and  is signconstant there (possibly 0 at a and b), with  if  and  if .

Proof

By Theorem 2 of Chapter 4, §8,  attains a least value  and a largest value  at some points of  However, neither
can occur at an interior point  for, by Corollary 1, this would imply  contrary to our assumption.

f g

g : → ).E1 E∗ (a, b), a < b

 Lemma 5.2.1

(p) > 0f ′ p ∈ ,E1

x < p < y (5.2.1)

f(x) < f(p) < f(y) (5.2.2)

x, y (δ) = (p −δ, p +δ).Gp

(p) < 0,f ′ x < p < y f(x) > f(p) > f(y) x, y (δ).Gp

(p) > 0,f ′

(p) = > 0.f ′ lim
x→p

Δf

Δx
(5.2.3)

Δf/Δx > 0 x (δ)Gp

Δf Δx (δ);Gp

f(x) −f(p) > 0 if x > p and f(x) −f(p) < 0 if x < p. (5.2.4)

f(p) ≠ ±∞.

x < p < y⟹ f(x) < f(p) < f(y), (5.2.5)

(p) < 0. □f ′

 Corollary 5.2.1

f(p) f(x) x (δ),Gp (p) = 0;f ′ f

p.

(p) ≠ 0f ′ p.

(p) = 0f ′ p.

f(x) = , fx3 (0) = 0.f ′

, , … , .p2 p3 p11 P , Q, R

(p) = 0f ′ p p.

 Theorem 5.2.1

f : →E1 E∗ [a, b] ≠ 0f ′ (a, b). f [a, b],

f ′ ≥ 0f ′ f ↑, ≤ 0f ′ f ↓

f m, M , [a, b].

p ∈ (a, b), (p) = 0,f ′
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Thus  or  for the moment we assume  and  We must have  for 
 would make  constant on , implying  Thus 

Now let . Applying the previous argument to each of the intervals  and  (now using
that , we find that

Thus  implies  i.e.,  increases on  Hence  cannot be negative at any  for,
otherwise, by Lemma 1,  would decrease at  Thus  on 

In the case  we would obtain . 

Caution: The function  may increase or decrease at  even if  
See Note 1.

If :  is relatively continuous on  and if  then  for at least one interior point .

For, if  on all of  then by Theorem 1,  would be strictly monotone on  so the equality  would
be impossible.

Figure 22 illustrates this on the intervals  and  with   A discontinuity at 0 causes an
apparent failure on 

Note 2. Theorem 1 and Corollary 2 hold even if  and  are infinite, if continuity is interpreted in the sense of the metric 
of Problem 5 in Chapter 3, §11. (Weierstrass' Theorem 2 of Chapter 4, §8 applies to  with the same proof.)

Let the functions  be relatively continuous and finite on  and have derivatives on  with  and 
never both infinite at the same point  Then

Proof

Let  and  We must show that  for some . For this purpose,
consider the function . It is relatively continuous and finite on  as are  and  Also,

M = f(a) M = f(b); M = f(b) m = f(a). m < M ,

m = M f [a, b] = 0.f ′ m = f(a) < f(b) = M .

a ≤ x < y ≤ b [a, x], [a, y], [x, y], [x, b]

m = f(a) < f(b) = M)

f(a) ≤ f(x) < f(y) ≤ f(b).  (Why?)  (5.2.6)

a ≤ x < y ≤ b f(x) < f(y); f [a, b]. f ′ p ∈ [a, b],

f p. ≥ 0f ′ [a, b].

M = f(a) > f(b) = m, ≤ 0f ′ □

f p (p) = 0.f ′

 Corollary  (Rolle's theorem)5.2.2

→E1 E∗ [a, b] f(a) = f(b), (p) = 0f ′ p ∈ (a, b)

≠ 0f ′ (a, b), f [a, b], f(a) = f(b)

[ , ]p2 p4 [ , ] ,p4 p6 ( ) =f ′ p3 ( ) = 0.f ′ p5

[0, ].p2

f(a) f(b) ρ′

( , ) ,E∗ ρ′

 Theorem  (Cauchy's law of the mean)5.2.2

f , g : →E1 E∗ [a, b] (a, b), f ′ g′

p ∈ (a, b).

(q)[f(b) −f(a)] = (q)[g(b) −g(a)] for at least one q ∈ (a, b).g′ f ′ (5.2.7)

A = f(b) −f(a) B = g(b) −g(a). A (q) = B (q)g′ f ′ q ∈ (a, b)

h = Ag −Bf [a, b], g f .

h(a) = f(b)g(a) −g(b)f(a) = h(b).  (Verify!)  (5.2.8)
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Thus by Corollary 2,  for some  Here, by Theorem 4 of §1,  (This is
legitimate, for, by assumption,  and  never both become infinite, so no indeterminate limits occur.) Thus 

 and (1) follows. 

If  is relatively continuous on  with a derivative on  then

Proof

Take  in Theorem 2, so  on 

Note 3. Geometrically,

is the slope of the secant through  and  and  is the slope of the tangent line at  Thus Corollary 3 states that
the secant is parallel to the tangent at some intermediate point  see Figure 23. Theorem 2 states the same for curves given
parametrically: .

Let  be as in Corollary 3. Then

(i)  is constant on  iff  on ;

(ii)  on  iff  on  and

(iii)  on  iff  on .

Proof

Let  on  If  apply Corollary 3 to the interval  to obtain

Thus  for  so  is constant.

The rest is left to the reader. 

(q) = 0h′ q ∈ (a, b). = (Ag −Bf = A −B .h′ )′ g′ f ′

f ′ g′

(q) = A (q) −B (q) = 0,h′ g′ f ′
□

 Corollary  (Lagrange's law of the mean)5.2.3

f : →E1 E1 [a, b] (a, b),

f(b) −f(a) = (q)(b −a) for at least one q ∈ (a, b).f ′ (5.2.9)

g(x) = x = 1g′ . □E1

f(b) −f(a)

b −a
(5.2.10)

(a, f(a)) (b, f(b)), (q)f ′ q.

q;

x = f(t), y = g(t)

 Corollary 5.2.4

f

f [a, b] = 0f ′ (a, b)

f ↑ [a, b] ≥ 0f ′ (a, b);

f ↓ [a, b] ≤ 0f ′ (a, b)

= 0f ′ (a, b). a ≤ x ≤ y ≤ b, [x, y]

f(y) −f(x) = (q)(y −x) for some q ∈ (a, b) and  (q) = 0.f ′ f ′ (5.2.11)

f(y) −f(x) = 0 x, y ∈ [a, b], f

□
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Let  be relatively continuous and strictly monotone on an interval . Let  at some interior point 
 Then the inverse function  (with  restricted to  has a derivative at  and

(If  then 

Proof

By Theorem 3 of Chapter 4, §9,  is strictly monotone and relatively continuous on  itself an interval. If  is
interior to  then  is interior to  (Why?)

Now if  we set

and obtain

Now if  the continuity of  at  yields  i.e.,  Also,  iff , for  and  are one-to-one
functions. Thus we may substitute  or  to get

where we use the convention  if 

(A) Let

Let  Then 

Thus

Now let  (Why is this substitution admissible?) Then using the formula

and the continuity of the log and power functions, we obtain

The same formula results also if  i.e.,  At  has one-sided derivatives  only (verify!), so 
 by Definition 1 in §1.

(B) The inverse of the log  function is the exponential  with

 Theorem  (inverse functions)5.2.3

f : →E1 E1 I ⊆ E1 (p) ≠ 0f ′

p ∈ I. g = f −1 f I) q = f(p),

(q) = .g′ 1

(p)f ′
(5.2.12)

(p) = ±∞,f ′ (q) = 0.)g′

g = f −1 f [I], p

I, q = f(p) f [I].

y ∈ f [I],

Δg = g(y) −g(q), Δy = y −q, x = (y) = g(y),  and f(x) = yf −1 (5.2.13)

= = =  for x ≠ p.
Δg

Δy

g(y) −g(q)

y −q

x −p

f(x) −f(p)

Δx

Δf
(5.2.14)

y → q, g q g(y) → g(q); x → p. x ≠ p y ≠ q f g

y = f(x) x = g(y)

(q) = = = = ,g′ lim
y→q

Δg

Δy
lim
x→p

Δx

Δf

1

(Δf/Δx)limx→p

1

(p)f ′
(5.2.15)

= 01
∞ (p) = ∞. □f ′

 Examples

f(x) = |x| with f(0) = 0.loga (5.2.16)

p > 0. (∀x > 0)

Δf = f(x) −f(p) = x − p = (x/p)loga loga loga

= = (1 + ).loga

p +(x −p)

p
loga

Δx

p

= .
Δf

Δx
loga (1 + )

Δx

p

1/Δx

(5.2.17)

z = Δx/p.

(1 +z = e  (see Chapter 4, §2, Example (C)) lim
z→0

)1/z (5.2.18)

(p) = = = = e.f ′ lim
x→p

Δf

Δx
lim
z→0

loga [(1 +z ])1/z
1/p

loga e1/p 1

p
loga (5.2.19)

p < 0, |p| = −p. p = 0, f (±∞)

(0) = 0f ′

a g : → ,E1 E1
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By Theorem 3, we have

Thus

Symbolically,

In particular, if  we have  and  hence

(C) The power function  is given by

By the chain rule (§1, Theorem 3), we obtain

Thus we have the symbolic formula

If  is relatively continuous and has a derivative on an interval I, then  has the Darboux property (Chapter 4, §9
) on 

Proof

Let  and  Put  Assume  on  and find a contradiction to
Theorem 1. Details are left to the reader. 

This page titled 5.2: Derivatives of Extended-Real Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

g(y) = (a > 0, a ≠ 1).ay (5.2.20)

(∀q ∈ ) (q) = , p = g(q) = .E1 g′ 1

(p)f ′
aq (5.2.21)

(q) = = = .g′ 1

e1
p loga

p

eloga

aq

eloga

(5.2.22)

= e(x ≠ 0); = = lna.( |x|)loga
′ 1

x
loga ( )ax ′ ax

eloga

ax (5.2.23)

a = e, a = 1loge x = lnx;loga

(ln |x| = (x ≠ 0)  and  = (x ∈ ) .)′ 1

x
( )ex ′ ex E1 (5.2.24)

g : (0, +∞) → E1

g(x) = = exp(a ⋅ lnx) for x > 0 and fixed a ∈ .xa E1 (5.2.25)

(x) = exp(a ⋅ lnx) ⋅ = ⋅ = a ⋅ .g′ a

x
xa a

x
xa−1 (5.2.26)

= a ⋅  for x > 0 and fixed a ∈ .( )xa ′
xa−1 E1 (5.2.27)

 Theorem  (Darboux)5.2.4

f : →E1 E∗ f ′

I.

p, q ∈ I (p) < c < (q).f ′ f ′ g(x) = f(x) −cx. ≠ 0g′ (p, q)

□
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5.2.E: Problems on Derivatives of Extended-Real Functions

Complete the missing details in the proof of Theorems  and  Corollary  and Lemma 1. 

Do cases  in Example .

Show that Theorems  and 4 and Corollaries 2 to 4 hold also if  is discontinuous at  and  but  and  exist
and are finite. (In Corollary  assume also  in Theorems 1 and 4 and Corollary  finiteness is unnecessary.) 

Under the assumptions of Corollary  show that  cannot stay infinite on any interval  

Justify footnote  
[Hint: Let 

 
At  find  from Definition 1 in §1. Use also Problem 8 of §1. Show that  is not 

Show that  need not be continuous or bounded on  (under the standard metric), even if  is differentiable there. 

With  as in Corollaries 3 and  prove that if  on  and if  is not constantly 0 on any subinterval 
 then  is strictly monotone on 

Let  where  varies over an open interval , define a curve in  parametrically. Prove that if  and 
 have derivatives on  and  then the function  has a derivative on , and the slope of the tangent to the

curve at  equals . 
 so Theorems 1 and 3 apply, and 

 is a function. Also,  Use 

 Exercise 5.2.E. 1

1, 2, 4, 4,
 [Hint for converse to Corollary 4(ii) :  Use Lemma 1 for an indirect proof. ]

 Exercise 5.2.E. 2

p ≤ 0 (A)

 Exercise 5.2.E. 3

1, 2, f a b f ( )a+ f ( )b−

2, f ( ) = f ( ) ;a+ b− 2,
 [Hint: Redefine f(a) and f(b). ]

 Exercise 5.2.E. 4

3, f ′ (p, q), a ≤ p < q ≤ b.
 [Hint: Apply Corollary 3 to the interval [p, q]. ]

 Exercise 5.2.E. 5

1.

f(x) = x +2 sin  with f(0) = 0.x2 1

x2
(5.2.E.1)

0, f ′ f  monotone on any  (δ). ]G0

 Exercise 5.2.E. 6

f ′ [a, b] f

 [Hint: Take f  as in Problem 5. ]

 Exercise 5.2.E. 7

f 4, ≥ 0 ( ≤ 0)f ′ f ′ (a, b) f ′

(p, q) ≠ ∅, f [a, b].

 Exercise 5.2.E. 8

x = f(t), y = g(t), t I ⊆ E1 E2 f

g I ≠ 0,f ′ h = f −1 f [I]
t0 ( ) / ( )g′ t0 f ′ t0

 [Hint: The word "curve" implies that f  and g are continuous on I (Chapter 4, §10),
h = f −1 y = g(h(x)).  Theorem 3 of §1. ]
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Prove that if  is continuous and has a derivative on  and if  has a finite or infinite (even one-sided) limit at some 
 then this limit equals  Deduce that  is continuous at  if  and  exist. 

[Hint: By Corollary  for each  there is some  between  and  such that 

 

From Theorem 3 and Problem 8 in §1, deduce the differentiation formulas 

Prove that if  has a derivative at  then  is finite, provided  is not constantly infinite on any interval  or 
. 

[Hint: If  each  has points at which  as well as those  

5.2.E: Problems on Derivatives of Extended-Real Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 5.2.E. 9

f (a, b) f ′

p ∈ (a, b), (p).f ′ f ′ p ( )f ′ p− ( )f ′ p+

3, x ∈ (a, b), qx p x

( ) = → (p) as x → p.f ′ qx

Δf

Δx
f ′ (5.2.E.2)

 Set y = ,  so  (y) = (p). ]qx limy→p f ′ f ′

 Exercise 5.2.E. 10

(arcsinx = ; (arccos x = ; (arctanx = .)′ 1

1 −x2
− −−−−

√
)′ −1

1 −x2
− −−−−

√
)′ 1

1 +x2
(5.2.E.3)

 Exercise 5.2.E. 11

f p, f(p) f (p, q)
(q, p), p ≠ q

f(p) = ±∞, Gp = +∞,
Δf

Δx
x  with  = −∞. ]Δf

Δx
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5.3: L'Hôpital's Rule
We shall now prove a useful rule for resolving indeterminate limits. Below,  denotes a deleted globe  in  or one
about  of the form  or  For one-sided limits, replace  by its appropriate "half."

Let  be differentiable on , with  there. If  and  tend both to  or both to  as 
 and if

then also

similarly for  or .

Proof

It suffices to consider left and right limits. Both combined then yield the two-sided limit.

First, let ,

Then given  we can fix  such that

Now apply Cauchy's law of the mean (§2, Theorem 2) to each interval   This yields, for each such 
some  with

As  (by assumption),  by Theorem 1, §2, so we may divide to obtain

This combined with (1) yields

or, setting

we have

As  and  (by assumption), we have  as . Hence by rules for right limits, there is 
 such that for all , both  and . (Why?) For such , formula (2) holds as

well. Also,

G¬p (δ)G¬p ,E1

±∞ (a, +∞) (−∞, a). G¬p

 Theorem  (L'Hôpital's rule)5.3.1

f , g : →E1 E∗ G¬p ≠ 0g′ |f(x)| |g(x)| +∞,1 0,

x → p

= r exists in  ,lim
x→p

(x)f ′

(x)g′
E∗ (5.3.1)

= r;lim
x→p

f(x)

g(x)
(5.3.2)

x → p+ x → p−

−∞ ≤ p < +∞

|f(x)| = |g(x)| = +∞ and  = r (finite).lim
x→p+

lim
x→p+

lim
x→p+

(x)f ′

(x)g′
(5.3.3)

ε > 0, a > p (a ∈ )G¬p

−r < ε,  for all x in the interval (p, a).
∣

∣
∣

(x)f ′

(x)g′

∣

∣
∣ (5.3.4)

[x, a], p < x < a. x,

q ∈ (x, a)

(q)[f(x) −f(a)] = (q)[g(x) −g(a)].g′ f ′ (5.3.5)

≠ 0g′ g(x) ≠ g(a) ≠ g(a)

= ,  where p < x < q < a.
f(x) −f(a)

g(x) −g(a)

(q)f ′

(q)g′
(5.3.6)

−r < ε,
∣

∣
∣

f(x) −f(a)

g(x) −g(a)

∣

∣
∣ (5.3.7)

F (x) = ,
1 −f(a)/f(x)

1 −g(a)/g(x)
(5.3.8)

⋅ F (x) −r < ε for all x inside (p, a).
∣

∣
∣
f(x)

g(x)

∣

∣
∣ (5.3.9)

|f(x)| |g(x)| → +∞ F (x) → 1 x → p+

b ∈ (p, a) x ∈ (p, b) |F (x) −1| < ε F (x) > 1
2

x
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Combining this with (2), we have for 

Thus, given  we found  such that

As  is arbitrary, we have  as claimed.

The case  is simpler. As before, we obtain

Here we may as well replace  by any  Keeping  fixed, let . Then  and  so we
get

As  is arbitrary, this implies  Thus the case  is settled for a finite 

The cases  and  are analogous, and we leave them to the reader. 

Note 1.  may exist even if  does not. For example, take

Then

but

does not tend to any limit as .

Note 2. The rule fails if the required assumptions are not satisfied, e.g., if  has zero values in each  see Problem 4 below.

Often it is useful to combine L'Hôpital's rule with some known limit formulas, such as

(a) 

(b) 

< 2 and |r −rF (x)| = |r||1 −F (x)| < |r|ε.
1

|F (x)|
(5.3.10)

x ∈ (p, b)

−r
∣

∣
∣
f(x)

g(x)

∣

∣
∣ = F (x) −rF (x)

1

|F (x)|

∣

∣
∣
f(x)

g(x)

∣

∣
∣

< 2 ⋅ F (x) −r +r −rF (x)
∣

∣
∣
f(x)

g(x)

∣

∣
∣

< 2ε(1 +|r|).

ε > 0, b > p

−r < 2ε(1 +|r|), x ∈ (p, b).
∣

∣
∣
f(x)

g(x)

∣

∣
∣ (5.3.11)

ε = r,limx→p+
f(x)

g(x)

f(x) = g(x) = 0limx→p+ limx→p+

−r < ε.
∣

∣
∣

f(x) −f(a)

g(x) −g(a)

∣

∣
∣ (5.3.12)

" a′′ y ∈ (p, a). y x → p+ f(x) → 0 g(x) → 0,

−r ≤ ε for any y ∈ (p, a).
∣

∣
∣
f(y)

g(y)

∣

∣
∣ (5.3.13)

ε = r.limy→p+
f(y)

g(y)
x → p+ r.

r = ±∞ x → p−
□

lim
f(x)

g(x)
lim

(x)f ′

(x)g ′

f(x) = x +sinx and g(x) = x. (5.3.14)

= (1 + ) = 1 ( why? ),lim
x→+∞

f(x)

g(x)
lim

x→+∞

sinx

x
(5.3.15)

= 1 +cos x
(x)f ′

(x)g′
(5.3.16)

x → +∞

g′ ;G¬p

(1 +z = e or  = 1 (see §1, Problem 8).lim
z→0

)1/z lim
x→0

x

sinx
(5.3.17)

 Examples

= = = 0.limx→+∞
ln x

x limx→+∞
(ln x)

′

1
limx→+∞

1
x

= = 1.limx→0
ln(1+x)

x limx→0
1/(1+x)

1
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(c) 

(Here we had to apply L'Hôpital's rule repeatedly.)

(d) Consider

Taking derivatives (even  times), one gets

Thus the rule gives no results. In this case, however, a simple device helps (see Problem 5 below).

(e)  does not have the form  or  so the rule does not apply directly. Instead we compute

Hence

by the continuity of exponential functions. The answer is then 1.

This page titled 5.3: L'Hôpital's Rule is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The Trilla
Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit
history is available upon request.

= = = = .limx→0
x−sin x

x3
limx→0

1−cos x

3x2
limx→0

sin x
6x

1
6

limx→0
sin x

x
1
6

.lim
x→0+

e−1/x

x
(5.3.18)

n

, n = 1, 2, 3, …  (always indeterminate!).lim
x→0+

e−1/x

n!xn+1
(5.3.19)

limn→∞ n1/n 0
0

,∞
∞

ln = = 0 (Example (a)).lim
n→∞

n1/n lim
n→∞

lnn

n
(5.3.20)

= exp(ln ) → exp(0) = = 1n1/n n1/n e0 (5.3.21)
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5.3.E: Problems on L ′ L′ Hôpital's Rule
Elementary differentiation formulas are assumed known.

Complete the proof of L'Hôpital's rule. Verify that the differentiability assumption may be replaced by continuity plus
existence of finite or infinite (but not both together infinite) derivatives  and  on  (same proof).

Show that the rule fails for complex functions. See, however, Problems   and  
[Hint: Take  with 

 
Then 

 
Indeed,  (Verify!) Hence 

 
so 

 
Deduce that 

Prove the "simplified rule of  Hôpital" for real or complex functions  If 
 and  are differentiable at  with  and , then 

 
[Hint: 

 Exercise 5.3.E. 1

f ′ g′ G¬p

 Exercise 5.3.E. 2

3, 7, 8.

p = 0

f(x) = x and g(x) = x + = x + (cos + i ⋅ sin ) .x2ei/x2

x2 1

x2

1

x2
(5.3.E.1)

= 1,  though  = = 0.lim
x→0

f(x)

g(x)
lim
x→0

(x)f ′

(x)g′
lim
x→0

1

(x)g′
(5.3.E.2)

(x) −1 = (2x −2i/x) .g′ ei/x2

| (x)| +1 ≥ |2x −2i/x|  (for  = 1) ,g′ ∣∣e
i/x2 ∣∣ (5.3.E.3)

| (x)| ≥ −1 + . ( Why? )g′ 2

x
(5.3.E.4)

≤ → 0. ]
∣

∣
∣

1

(x)g′

∣

∣
∣

∣
∣
∣

x

2 −x

∣
∣
∣ (5.3.E.5)

 Exercise 5.3.E. 3

L′  (also for vector-valued f  and scalar-valued g) :

f g p, (p) ≠ 0g′ f(p) = g(p) = 0

= .lim
x→p

f(x)

g(x)

(p)f ′

(p)g′
(5.3.E.6)

= = / → .
f(x)

g(x)

f(x) −f(p)

g(x) −g(p)

Δf

Δx

Δg

Δx

(p)f ′

(p)g′
(5.3.E.7)
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Why does  not exist, though  does, in the following example? Verify and explain. 

 
[Hint:  vanishes many times in each  Use the Darboux property for the 

Find .

Verify that the assumptions of L'Hôpital's rule hold, and find the following limits.
(a) ; 

(b) ; 

(c) ; 
(d) ; 
(e) ; 
(f) ; 
(g) ; 

(h) ; 

(i) ; 

(j) .

Prove L'Hôpital's rule for  and  with 

 
leaving the other assumptions unchanged. 

Let  and  be complex and differentiable on  Let 

 

Prove that . 

[Hint: 

 Exercise 5.3.E. 4

limx→+∞
f(x)

g(x)
limx→+∞

(x)f ′

(x)g ′

f(x) = (cos x +2 sinx), g(x) = (cos x +sinx).e−2x e−x (5.3.E.8)

g′ .G+∞  proof. ]

 Exercise 5.3.E. 5

limx→0+
e−1/x

x

 [Hint: Substitute z = → +∞.  Then use the rule. ]1
x

 Exercise 5.3.E. 6

limx→0
−ex e−x

ln(e−x)+x−1

limx→0
− −2xex e−x

x−sin x

limx→0
(1+x −e)

1/x

x

( lnx) , q > 0limx→0+ xq

( lnx) , q > 0limx→+∞ x−q

limx→0+ xx

( ) , a > 1, q > 0limx→+∞ xqa−x

( − x)limx→0
1

x2 cotan2

limx→+∞ ( −arctanx)π

2

1/ ln x

limx→0 ( )sin x
x

1/(1−cos x)

 Exercise 5.3.E. 7

f : → (C)E1 En g : → ,E1 E1

|f(x)| = 0 = |g(x)|, p ∈  and r ∈ ,lim
k→p

lim
x→p

E∗ En (5.3.E.9)

 [Hint: Apply the rule to the components of   (respectively, to   and  ) . ]
f

g ( )
f

g
re

( )
f

g
im

 Exercise 5.3.E. 8

f g , p ∈ .G¬p E1

f(x) = g(x) = 0, (x) = q,  and  (x) = r ≠ 0.lim
x→p

lim
x→p

lim
x→p

f ′ lim
x→p

g′ (5.3.E.10)

=limx→p
f(x)

g(x)

q

r

= / .
f(x)

g(x)

f(x)

x −p

g(x)

x −p
(5.3.E.11)
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Apply Problem 7 to find 

Do Problem 8 for  and .

5.3.E: Problems on  Hôpital's Rule is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 and  . ]lim
x→p

f(x)

x −p
lim
x→p

g(x)

x −p
(5.3.E.12)

 Exercise 5.3.E. ∗9

f : →E1 C n g : → CE1

L′
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5.4: Complex and Vector-Valued Functions on E 1 E1
The theorems of §§2-3 fail for complex and vector-valued functions (see Problem 3 below and Problem 2 in §3). However, some
analogues hold. In a sense, they even are stronger, for, unlike the previous theorems, they do not require the existence of a
derivative on an entire interval  but only on , where  is a countable set, one contained in the range of a sequence, 

 (We henceforth presuppose §9 of Chapter 1.)

In the following theorem, due to N. Bourbaki,  is extended real while  may also be complex or vector valued. We
call it the finite increments law since it deals with "finite increments"  and  Roughly, it states that 

 implies a similar inequality for increments.

Let  and  be relatively continuous and finite on a closed interval  and have
derivatives with  on  where  Then

The proof is somewhat laborious, but worthwhile. (At a first reading, one may omit it, however.) We outline some preliminary
ideas.

Given any  suppose first that  for at least one  In this case, we put

here the summation is only over those  for which  If, however, there are no  with  we put 
Thus  is defined for all  It gives an idea as to "how many"  (at which  may have no derivative) precede  Note that

 implies . (Why?) Also,

Our plan is as follows. To prove (1), it suffices to show that for some fixed  we have

for then, letting  we obtain (1). We choose

Temporarily fixing  let us call a point  "good" iff

and "bad" otherwise. We shall show that  is "good." First, we prove a lemma.

Every "good" point  is followed by a whole interval  consisting of "good" points only.

Proof

First let  so by assumption,  and  have derivatives at  with

Suppose  Then (treating  as a right derivative) we can find   such that, for all  in the interval 
,

I ⊆ ,E1 I −Q Q

Q ⊆ { } .pm

g : →E1 E∗ f

f(b) −f(a) g(b) −g(a).
| | ≤f ′ g′

 Theorem  (finite increments law)5.4.1

f : → EE1 g : →E1 E∗ I = [a, b] ⊆ ,E1

| | ≤ ,f ′ g′ I −Q Q ⊆ { , , … , , …} .p1 p2 pm

|f(b) −f(a)| ≤ g(b) −g(a). (5.4.1)

x ∈ I, x > pm ∈ Q.pm

Q(x) = ;∑
<xpm

2−m (5.4.2)

m < x.pm ∈ Qpm < x,pm Q(x) = 0.
Q(x) x ∈ I. pm f x.

x < y Q(x) ≤ Q(y)

Q(x) ≤ = 1.∑
m=1

∞

2−m (5.4.3)

K ∈ ,E1

(∀ε > 0) |f(b) −f(a)| ≤ g(b) −g(a) +Kε, (5.4.4)

ε → 0,

K = b −a +Q(b),  with Q(x) as above.  (5.4.5)

ε > 0, r ∈ I

|f(r) −f(a)| ≤ g(r) −g(a) +[r −a +Q(r)]ε (5.4.6)

b

 Lemma 5.4.1

r ∈ I(r < b) (r, s), r < s ≤ b,

r ∉ Q, f g r,

| (r)| ≤ (r).f ′ g′ (5.4.7)

(r) < +∞.g′ g′ s > r (s ≤ b) x

(r, s),

− (r) < (why?);
∣

∣
∣

g(x) −g(r)

x −r
g′ ∣

∣
∣

ε

2
(5.4.8)
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similarly for  Multiplying by  we get

and hence by the triangle inequality (explain!),

and

Combining this with  we obtain

Now as  is "good," it satisfies  hence, certainly, as ,

Adding this to (3) and using the triangle inequality again, we have

By definition, this shows that each  is "good," as claimed. Thus the lemma is proved for the case 
with .

The cases  and  are left as Problems 1 and 2. 

We now return to Theorem 1.

Proof of Theorem 1. Seeking a contradiction, suppose  is "bad," and let  be the set of all "bad" points in  Let

Then the interval  can contain only "good" points, i.e., points  such that

As  implies  we have

Note that  for by (2),  is certainly "good' (why?), and so Lemma 1 yields a whole interval  of "good" points
contained in 

Letting  in (4) and using the continuity of  at  we obtain (2). Thus  is "good" itself. Then, however, Lemma 1 yields a
new interval  of "good" points. Hence  has no "bad" points, and so  is a lower bound of the set  of "bad" points in ,
contrary to . This contradiction shows that  must be "good," i.e.,

Now, letting  we obtain formula (1), and all is proved. 

If  is relatively continuous and finite on   and has a derivative on  then there is a real 
such that

f . x −r,

|f(x) −f(r) − (r)(x −r)| < (x −r)  and f ′ ε

2

|g(x) −g(r) − (r)(x −r)| < (x −r) ,g′ ε

2

|f(x) −f(r)| ≤ | (r)| (x −r) +(x −r)f ′ ε

2
(5.4.9)

(r)(x −r) +(x −r) < g(x) −g(r) +(x −r)ε.g′ ε

2
(5.4.10)

| (r)| ≤ (r),f ′ g′

|f(x) −f(r)| ≤ g(x) −g(r) +(x −r)ε whenever r < x < s. (5.4.11)

r (2); Q(r) ≤ Q(x)

|f(r) −f(a)| ≤ g(r) −g(a) +(r −a)ε +Q(x)ε whenever r < x < s. (5.4.12)

|f(x) −f(a)| ≤ g(x) −g(a) +[x −a +Q(x)]ε for all x ∈ (r, s). (5.4.13)

x ∈ (r, s) r ∈ I −Q,
(r) < +∞g′

(r) = +∞g′ r ∈ Q □

b B ≠ ∅ [a, b].

r = inf B, r ∈ [a, b]. (5.4.14)

[a, r) x

|f(x) −f(a)| ≤ g(x) −g(a) +[x −a +Q(x)]ε. (5.4.15)

x < r Q(x) ≤ Q(r),

|f(x) −f(a)| ≤ g(x) −g(a) +[x −a +Q(r)]ε for all x ∈ [a, r). (5.4.16)

[a, r) ≠ ∅, a [a, s)
[a, r).

x → r f r, r

(r, q) [a, q) q B I

q > r = glbB b

|f(b) −f(a)| ≤ g(b) −g(a) +[b −a +Q(b)]ε. (5.4.17)

ε → 0, □

 Corollary 5.4.1

f : → EE1 I = [a, b] ⊆ ,E1 I −Q, M

|f(b) −f(a)| ≤ M(b −a) and M ≤ | (t)| .sup
t∈I−Q

f ′ (5.4.18)
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Proof

Let

If  put  on  and take  in Theorem 1. Then  on  so
formula (1) yields (5) since

If, however,  let

Then (5) clearly is true. Thus the required  exists always. 

Let  be as in Corollary 1. Then  is constant on  iff  on 

Proof

If  on  then  in Corollary 1, so Corollary 1 yields, for any subinterval 
 i.e.,  for all  Thus  is constant on 

Conversely, if so, then  even on all of 

Let  be relatively continuous and finite on  and differentiable on  Then  is constant on 
iff  on 

Proof

Apply Corollary 2 to the function 

We can now also strengthen parts (ii) and (iii) of Corollary 4 in §2.

Let  be real and have the properties stated in Corollary 1. Then

(i)  on  iff  on  and

(ii)  on  iff  on .

Proof

Let  on  Fix any  and define  on  Then  on  Thus  and 
satisfy Theorem 1 (with their roles reversed on  and certainly on the subinterval  Thus we have

so  on .

Conversely, if  on  then for every  we must have  for otherwise, by Lemma 1 of §2,  would
decrease at  Thus , even on all of  and (i) is proved. Assertion (ii) is proved similarly. 

= | (t)| .M0 sup
t∈I−Q

f ′ (5.4.19)

< +∞,M0 M = ≥ | |M0 f ′ I −Q, g(x) = Mx = M ≥ | |g′ f ′ I −Q,

g(b) −g(a) = Mb −Ma = M(b −a). (5.4.20)

= +∞,M0

M = < .
∣

∣
∣

f(b) −f(a)

b −a

∣

∣
∣ M0 (5.4.21)

M □

 Corollary 5.4.2

f f I = 0f ′ I −Q.

= 0f ′ I −Q, M = 0
[a, x](x ∈ I), |f(x) −f(a)| ≤ 0; f(x) = f(a) x ∈ I. f I.

= 0,f ′ I. □

 Corollary 5.4.3

f , g : → EE1 I = [a, b], I −Q. f −g I

=f ′ g′ I −Q.

f −g. □

 Theorem 5.4.2

f

f ↑ I = [a, b] ≥ 0f ′ I −Q;

f ↓ I ≤ 0f ′ I −Q

≥ 0f ′ I −Q. x, y ∈ I(x < y) g(t) = 0 .E1 | | = 0 ≤g′ f ′ I −Q. g f

I, [x, y].

f(y) −f(x) ≥ |g(y) −g(x)| = 0,  i.e., f(y) ≥ f(x) whenever y > x in I, (5.4.22)

f ↑ I

f ↑ I, p ∈ I, (p) ≥ 0,f ′ f

p. ≥ 0f ′ I, □
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5.4.E: Problems on Complex and Vector-Valued Functions on E 1 E1

Do the case  in Lemma 1. 
[Hint: Show that there is  with 

 

Do the case  in Lemma  
[Hint: Show by continuity that there is  such that  

 
Show that all such  are "good" since  implies 

Show that Corollary 3 in §2 (hence also Theorem 2 in §2) fails for complex functions. 

(i) Verify that all propositions of §4 hold also if  and  are only right derivatives on . 
(ii) Do the same for left derivatives. (See footnote 2.)

(i) Prove that if  is continuous and finite on  and differentiable on  and if 

 
then  is uniformly continuous on . 
(ii) Moreover, if  is complete  then  and  exist and are finite. 

Prove that if  is as in Theorem  with  on  and  at some  then  Do it also with 
treated as a right derivative (see Problem 4).

 Exercise 5.4.E. 1

(r) = +∞g′

s > r

g(x) −g(r) ≥ (| (r)| +1) (x−r) ≥ |f(x) −f(r)| for x ∈ (r, s).f ′ (5.4.E.1)

 Such x are "good." ]

 Exercise 5.4.E. 2

r = ∈ Qpn 1.

s > r (∀x ∈ (r, s))

|f(x) −f(r)| <  and |g(x) −g(r)| < .
ε

2n+1

ε

2n+1
(5.4.E.2)

x x > r = pn

+Q(r) ≤ Q(x). ( Why? )]2−n (5.4.E.3)

 Exercise 5.4.E. 3

 [Hint: Let f(x) = = cosx+ i ⋅ sinx.  Verify that  | | = 1 yet f(2π) −f(0) = 0. ]exi f ′

 Exercise 5.4.E. 4

f ′ g′ I −Q

 Exercise 5.4.E. 5

f : → EE1 I = (a, b) I −Q,

| (t)| < +∞,sup
t∈I−Q

f ′ (5.4.E.4)

f I

E (e. g. ,E = ) ,En f ( )a+ f ( )b−

 [Hints: (i) Use Corollary 1. (ii) See the "hint" to Problem 11 (iii) of Chapter 4, §8. ]

 Exercise 5.4.E. 6

f 2, ≥ 0f ′ I −Q > 0f ′ p ∈ I, f(a) < f(b). f ′
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Let  be relatively continuous on  and have right derivatives  and  (finite or infinite, but not both
infinite) on . 
(i) Prove that if 

 
for some fixed  then 

 
 

(ii) Hence prove that 

 
where 

 

(i) Let  be finite, continuous, with a right derivative on  Prove that  exists (finite) iff 

 
i.e., iff 

 
[Hints: If so, let  (keeping  fixed) to obtain 

 
Conversely, if  then 

 
Put 

 
and 

. 
Apply Corollary 1 and Problem 4 to  on the interval  to get 

 Exercise 5.4.E. 7

f , g : →E1 E1 I = [a, b] f ′
+ g′

+

I −Q

m ≤ ≤ M  on I −Qg′
+ f ′

+ g′
+ (5.4.E.5)

m,M ∈ ,E1

m[g(b) −g(a)] ≤ f(b) −f(a) ≤ M [g(b) −g(a)]. (5.4.E.6)

 [Hint: Apply Theorem 2 and Problem 4 to each of Mg−f  and f −mg. ]

(b−a) ≤ f(b) −f(a) ≤ (b−a),m0 M0 (5.4.E.7)

= inf [I −Q] and  = sup [I −Q] in  .m0 f ′
+ M0 f ′

+ E∗ (5.4.E.8)

 [Hint: Take g(x) = x if  ∈  or  ∈ .  The infinite case is simple. ]m0 E1 M0 E1

 Exercise 5.4.E. 8

f : (a, b) → E (a, b). q = (x)limx→a+ f ′
+

q = ,lim
x,y→a+

f(x) −f(y)

x−y
(5.4.E.9)

(∀ε > 0)(∃c > a)(∀x, y ∈ (a, c)|x ≠ y) −q < ε.
∣

∣
∣
f(x) −f(y)

x−y

∣

∣
∣ (5.4.E.10)

y → x+ x

(∀x ∈ (a, c)) | (x) −q| ≤ ε.  (Why?) f ′
+ (5.4.E.11)

(x) = q,limx→a+ f ′
+

(∀ε > 0)(∃c > a)(∀t ∈ (a, c)) | (t) −q| < ε.f ′
+ (5.4.E.12)

M = | (t) −q| ≤ ε ( why  ≤ ε?)sup
a<t<c

f ′
+ (5.4.E.13)

h(t) = f(t) − tq, t ∈ (a, b)

h [x, y] ⊆ (a, c),

|f(y) −f(x) −(y−x)q| ≤ M(y−x) ≤ ε(y−x). (5.4.E.14)
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Proceed.] 
(ii) Prove similar statements for the cases  and . 

From Problem 8 deduce that if  is as indicated and if  is left continuous at some  then  also has a left derivative
at  
If  is also right continuous at  then . 

In Problem  prove that if, in addition,  is complete and if 

 
then  exists, and 

 
similarly in case . 
If both exist, set  and  Show that then  becomes relatively continuous on  with 

 and .
[Hint: If 

 
then  is bounded on some subinterval  continuous on  by Problem 
and  exists. Let  as in the hint to 

Do Problem 9 in §2 for complex and vector-valued functions. 

Continuing Problem  show that the equalities 

 
hold iff  is linear, i.e.,  for some  and then 

Let  be as in Corollary  with  on  Let  be the real part of  
(i) Prove that  on  iff  on . 
(ii) Extend Problem 4 to this result.

q = ±∞ x → b−

[Hint: In case q = ±∞,  use Problem 7 (ii) instead of Corollary 1. ]

 Exercise 5.4.E. 9

f f ′
+ p ∈ (a, b), f

p.

f ′
+ p, (p) = (p) = (p)f ′

+ f ′
− f ′

 [Hint: Apply Problem 8 to (a, p) and (p, b). ]

 Exercise 5.4.E. 10

8, E

q = (x) ≠ ±∞  (finite) ,lim
x→a+

f ′
+ (5.4.E.15)

f ( ) ≠ ±∞a+

= q;lim
x→a+

f(x) −f ( )a+

x−a
(5.4.E.16)

(x) = rlimx→b− f ′
+

f(a) = f ( )a+ f(b) = f ( ) .b− f [a, b],

(a) = qf ′
+ (b) = rf ′

−

(x) = q ≠ ±∞,lim
x→a+

f ′
+ (5.4.E.17)

f ′
+ (a, c), a < c ≤ b( why?), so f  is uniformly  (a, c), 5,

f ( )a+ y → ,a+ Problem 8. ]

 Exercise 5.4.E. 11

 [Hint: Use Corollary 1 of §4. ]

 Exercise 5.4.E. 12

7,

m = = M
f(b) −f(a)

b−a
(5.4.E.18)

f f(x) = cx+d c, d ∈ ,E1 c = m = M .

 Exercise 5.4.E. 13

f : → CE1 1, f ≠ 0 I. g /f .f ′

|f | ↑ I g ≥ 0 I −Q
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Define  by 

 
Show that  is differentiable on  yet  is not a convex 

5.4.E: Problems on Complex and Vector-Valued Functions on  is shared under a CC BY 1.0 license and was authored, remixed, and/or curated
by LibreTexts.

 Exercise 5.4.E. 14

f : → CE1

f(x) = {
= (cos + i ⋅ sin )x2ei/x x2 1

x
1
x

0

 if x > 0,  and 

 if x ≤ 0.
(5.4.E.19)

f I = (−1, 1), [I]f ′

 set in  = C  (thus there is no analogue to Theorem 4 of §2) .E2

E1
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5.5: Antiderivatives (Primitives, Integrals)
Given  we often have to find a function  such that  on , or at least on  We also require  to be
relatively continuous and finite on  This process is called antidifferentiation or integration.

We call  a primitive, or antiderivative, or an indefinite integral, of  on  iff

(i)  is relatively continuous and finite on  and

(ii)  is differentiable, with  on  at least.

We then write

(The latter is classical notation.)

If such an  exists (which is not always the case), we shall say that  exists on  or that  has a primitive (or antiderivative) on 
 or that  is primitively integrable (briefly integrable) on .

If  on a set  we say that  is exact on  and call  an exact primitive on  Thus if  is exact on all of 

Note 1. Clearly, if  then also  for a finite constant c. Thus the notation  is rather incomplete; it means
that  is one of many primitives. We now show that all of them have the form  (or 

If  and G are primitive to  on , then  is constant on .

Proof

By assumption,  and  are relatively continuous and finite on ; hence so is  Also,  on  and 
 on  and  are countable, but possibly 

Hence both  and  equal  on  where  and  is countable itself by Theorem 2 of Chapter 1, §9.

Thus by Corollary 3 in §4,  on  implies  (constant) on each  hence  (or 
 on 

If  on  and if  (where  or  we define

This expression is called the definite integral of  from  to 

The definite integral of  from  to  is independent of the particular choice of the primitive  for  and thus unambiguous, for if 
 is another primitive, Theorem 1 yields  so

and it does not matter whether we take  or 

Note that  or  is a constant in the range space  (a vector if  is vector valued). The " " in  is a
"dummy variable" only, and it may be replaced by any other letter. Thus

f : → E,E1 F = fF ′ I I −Q. F

I.

 Definition 1

F : → EE1 f I

F I,

F = f ,F ′ I −Q

F = ∫ f ,  or F (x) = ∫ f(x)dx,  on I. (5.5.1)

F ∫ f I, f

I, f I

= fF ′ B ⊆ I, ∫ f B F B. Q = ∅, ∫ f
I.

= f ,F ′ (F +c = f)′ F = ∫ f
F F +c

∫ f +c).

 Theorem 5.5.1

F f I G−F I

F G I G−F . = fF ′ I −Q

= fG′ I −P . (Q P Q ≠ P . )

F ′ G′ f I −S, S = P ∪Q, S

=F ′ G′ I −S G−F = c [x, y] ⊆ I; G−F = c

G= F +c) I. □

 Definition 2

F = ∫ f I a, b ∈ I a ≤ b b ≤ a),

f = f(x)dx = F (b) −F (a),  also written F .∫
b

a

∫
b

a

(x)|
b
a (5.5.2)

f a b.

f a b F f ,
G G= F +c,

G(b) −G(a) = F (b) +c−[F (a) +c] = F (b) −F (a), (5.5.3)

F G.

f(x)dx,∫ b

a
f ,∫ b

a
E f x f(x)dx∫ b

a
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On the other hand, the indefinite integral is a function: .

Note 2. We may, however, vary  or  (or both) in (1). Thus, keeping  fixed and varying  we can define a function

Then  on  and  Thus if  exists on  has  (unique) primitive  on  such that 
 (It is unique by Theorem 1. Why?)

(a) Let

Then  and  on  and on  but not on  since  is discontinuous at  contrary to Definition
1. We compute

(b) On  let

Here  is continuous and  on  Thus  on , exact on  Here .

We compute

(even though  never vanishes on .

Basic properties of integrals follow from those of derivatives. Thus we have the following.

If  and  exist on  so does  for any scalars  (in the scalar field of  Moreover, for any  we
obtain

(i) ;

(ii)  and

(iii) .

Proof

By assumption, there are  and  such that

Thus, setting  and  we have

with  and  countable. Also,  is relatively continuous and finite on  as are  and 

f(x)dx = f(y)dy = F (b) −F (a).∫
b

a

∫
b

a

(5.5.4)

F : → EE1

a b a b,

G(t) = f = F (t) −F (a), t ∈ I.∫
t

a

(5.5.5)

= = fG′ F ′ I, G(a) = F (a) −F (a) = 0. ∫ f I, f a G I

G(a) = 0.

 Examples

f(x) =  and F (x) = ln |x|,  with F (0) = f(0) = 0.
1

x
(5.5.6)

= fF ′ F = ∫ f (−∞, 0) (0, +∞) ,E1 F 0,

f = ln2 −ln1 = ln2.∫
2

1
(5.5.7)

,E1

f(x) =  and F (x) = |x|,  with f(0) = 1.
|x|

x
(5.5.8)

F = fF ′ −{0}.E1 F = ∫ f E1 −{0}.E1 I = ,Q = {0}E1

f = F (2) −F (−2) = 2 −2 = 0∫
2

−2
(5.5.9)

f )E1

 Corollary  (linearity)5.5.1

∫ f ∫ g I, ∫(pf +qg) p, q E). a, b ∈ I,

(pf +qg) = p f +q g∫ b

a
∫ b

a
∫ b

a

(f ±g) = f ± g;∫
b

a ∫
b

a ∫
b

a

pf = p f∫ b

a ∫ b

a

F G

= f  on I −Q and  = g on I −P .F ′ G′ (5.5.10)

S = P ∪Q H = pF +qG,

= p +q = pf +qg on I −S,H ′ F ′ G′ (5.5.11)

P ,Q, S H = pF +qG I, F G.
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Thus by definition,  exists on  and by (1),

proving (i*).

With  and  we obtain (ii*).

Taking  we get (iii*). 

If both  and  exist on  then

Proof

As before, let

where  and  are relatively continuous and finite on  and  is real. Also,  on  Thus by
Theorem 1 of §4,

If  exists on  exact on  then

for some real

This is simply Corollary 1 of §4, when applied to a primitive, 

If  on I and  on  then  is also a primitive of  and

(Thus we may arbitrarily redefine  on a countable 

Proof

Let  on  Then  on  The rest is clear. 

H = ∫(pf +qg) I,

(pf +qg) = H(b) −H(a) = pF (b) +qG(b) −pF (a) −qG(a) = p f +q g,∫
b

a

∫
b

a

∫
b

a

(5.5.12)

p = 1 q = ±1,

q = 0, □

 Corollary 5.5.2

∫ f ∫ |f | I = [a, b],

f ≤ |f |.
∣

∣
∣∫

b

a

∣

∣
∣ ∫

b

a

(5.5.13)

= f  and  = |f | on I −S(S = Q∪P ,  all countable),F ′ G′ (5.5.14)

F G I G= ∫ |f | | | = |f | =F ′ G′ I −S.

|F (b) −F (a)| ≤ G(b) −G(a) = |f |. □∫
b

a

(5.5.15)

 Corollary 5.5.3

∫ f I = [a, b], I −Q,

f ≤ M(b−a)
∣

∣
∣∫

b

a

∣

∣
∣ (5.5.16)

M ≤ |f(t)|.sup
t∈I−Q

(5.5.17)

F = ∫ f

 Corollary 5.5.4

F = ∫ f f = g I −Q, F g,

f = g  for a, b ∈ I.∫
b

a

∫
b

a

(5.5.18)

f Q. )

= fF ′ I −P . = gF ′ I −(P ∪Q). □
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Let  and  be real or complex (or let  be scalar valued and  vector valued), both relatively continuous on I and
differentiable on  Then if  exists on  so does  and we have

Proof

By assumption,  is relatively continuous and finite on  and

Thus, setting  we have  on  Hence by Corollary 1 if  exists on  so does 
 and

Thus (2) follows. 

The proof of the next three corollaries is left to the reader.

If  exists on  then, for , we have

(i) ;

(ii)  and

(iii) .

A function  is integrable on  iff all its components  are, and then by Theorem 5 in §1)

Hence if  is complex,

(see Chapter 4, §3, Note 5).

(c) Define  by

Verify that

(d) 

 Corollary  (integration by parts)5.5.5

f g f g

I −Q. ∫ gf ′ I, ∫ f ,g′

f = f(b)g(b) −f(a)g(a) − g  for any a, b ∈ I.∫
b

a

g′ ∫
b

a

f ′ (5.5.19)

fg I,

(fg = f + g on I −Q.)′ g′ f ′ (5.5.20)

H = fg, H = ∫ (f + g)g′ f ′ I. ∫ gf ′ I,
∫ ((f + g) − g) = ∫ f ,g′ f ′ f ′ g′

f + g = (f + g) = H(b) −H(a) = f(b)g(b) −f(a)g(a).∫
b

a

g′ ∫
b

a

f ′ ∫
b

a

g′ f ′ (5.5.21)

□

 Corollary  (additivity of the integral)5.5.6

∫ f I a, b, c ∈ I

f = f + f∫
b

a ∫
c

a ∫
b

c

f = 0;∫ a

a

f = − f∫ a

b
∫ b

a

 Corollary  (componentwise integration)5.5.7

f : → ( )E1 En ∗Cn I ( , , … , )f1 f2 fn

f =( , … , ) =  for any a, b ∈ I.∫
b

a

∫
b

a

f1 ∫
b

a

fn ∑
k=1

n

e ⃗ k ∫
b

a

fk (5.5.22)

f

f = + i ⋅∫
b

a

∫
b

a

fre ∫
b

a

fim (5.5.23)

 Examples (continued)

f : →E1 E3

f(x) = (a ⋅ cosx, a ⋅ sinx, 2cx), a, c ∈ .E1 (5.5.24)

f(x)dx = = (0, 2a, c ) = 2a +c .∫
π

0
(a ⋅ sinx, −a ⋅ cosx, c )x2 ∣∣

π

0
π2 j ⃗  π2k⃗  (5.5.25)

dx = (cosx+ i ⋅ sinx)dx = = 2i.∫ π

0 eix ∫ π

0 (sinx− i ⋅ cosx)| π
0
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If  on  then  exists on  and

Suppose  (real) is differentiable on  while  has a primitive on  exact on .

Then

exists on  and for any  we have

Thus, using classical notation, we may substitute  provided that we 
also substitute  and change the bounds of integrals (3). Here we treat the expressions  and  purely
formally, without assigning them any separate meaning outside the context of the integrals.

Proof

Let  on  and  on  Then the composite function  is relatively continuous and finite
on  (Why?) By Theorem 3 of §1,

i.e.,

Thus  exists on  and

Note 3. The theorem does not require that  be one to one on  but if it is, then one can drop the assumption that  is exact on 
 (See Problem 4.)

(e) Find .

Here   and  so
(3) yields

For real functions, we obtain some inferences dealing with inequalities.

 Corollary 5.5.8

f = 0 I −Q, ∫ f I,

f = |f | = 0  for a, b ∈ I.
∣

∣
∣∫

b

a

∣

∣
∣ ∫

b

a

(5.5.26)

 Theorem  (change of variables)5.5.2

g : →E1 E1 I, f : → EE1 g[I], g[I −Q]

∫ f(g(x)) (x)dx (i. e. , ∫ (f ∘ g) )g′ g′ (5.5.27)

I, a, b ∈ I,

f(g(x)) (x)dx = f(y)dy,  where p = g(a) and q = g(b).∫
b

a

g′ ∫
q

p

(5.5.28)

y = g(x),
dy = (x)dxg′ dy (x)dxg′

F = ∫ f g[I], = fF ′ g[I −Q]. H = F ∘ g
I.

(x) = (g(x)) (x) for x ∈ I −Q;H ′ F ′ g′ (5.5.29)

= ( ∘ g)  on I −Q.H ′ F ′ g′ (5.5.30)

H = ∫(f ∘ g)g′ I,

(f ∘ g) = H(b) −H(a) = F (g(b)) −F (g(a)) = F (q) −F (p) = f . □∫
b

a

g′ ∫
q

p

(5.5.31)

g I, ∫ f
g[I −Q].

 Examples (continued)

x ⋅ cosxdx∫ π/2
0

sin2

f(y) = , y = g(x) = sinx, dy = cosxdx,F (y) = /3, a = 0,y2 y3 b = π/2, p = sin0 = 0, q = sin(π/2) = 1,

x ⋅ cosxdx = dy = = −0 = .∫
π/2

0
sin2 ∫

1

0
y2 y3

3

∣

∣
∣
1

0

1

3

1

3
(5.5.32)
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If  are integrable on  then we have the following:

(i)  on  implies .

(i')  on  implies .

(ii)  on  implies

(iii) If  on  and  then

(iv) If  and  on  then  on some  countable.

Proof

By Corollary 4, we may redefine  on  so that our assumptions in (i)-(iv) hold on all of . Thus we write " " for "
"

By assumption,  and  exist on  Here  and  are relatively continuous and finite on  with 
 and  for another countable set  (this  cannot be omitted). Now consider the cases (i)-(iv). (  is fixed

henceforth.)

(i) Let  on  i.e.,  on  Then by Theorem 2 in §4,  on  Hence  and so

One proves (i') similarly.

(ii) If  then by (i),

so  as claimed.

(iii) Let  on  and  Then by (i),

Thus by Corollary 6,

as asserted.

(iv) Seeking a contradiction, suppose  on  yet  for some  (  as above), so 
.

Now if  Lemma 1 of §2 yields  for some  Then by (iii),

contrary to  similarly in case 

 Theorem 5.5.3

f , g : →E1 E1 I = [a, b],

f ≥ 0 I −Q f ≥ 0∫ b

a

f ≤ 0 I −Q f ≤ 0∫ b

a

f ≥ g I −Q

f ≥ g (dominance law).∫
b

a

∫
b

a

(5.5.33)

f ≥ 0 I −Q a ≤ c ≤ d ≤ b,

f ≥ f  (monotonicity law).∫
b

a

∫
d

c

(5.5.34)

f = 0,∫ b

a
f ≥ 0 I −Q, f = 0 I −P ,P

f Q I I

I −Q.

F = ∫ f G= ∫ g I. F G I = [a, b],
= fF ′ I −P , P P P

f ≥ 0 I; = f ≥ 0F ′ I −P . F ↑ I = [a, b]. F (a) ≤ F (b),

f = F (b) −F (a) ≥ 0.∫
b

a

(5.5.35)

f −g ≥ 0,

(f −g) = f − g ≥ 0,∫
b

a

∫
b

a

∫
b

a

(5.5.36)

f ≥ g,∫ b

a
∫ b

a

f ≥ 0 I a ≤ c ≤ d ≤ b.

f ≥ 0 and  f ≥ 0.∫
c

a

∫
b

d

(5.5.37)

f = f + f + f ≥ f ,∫
b

a

∫
c

a

∫
d

c

∫
b

d

∫
d

c

(5.5.38)

f = 0, f ≥ 0∫ b

a I, f(p) > 0 p ∈ I −P P

(p) = f(p) > 0F ′

a ≤ p < b, F (c) > F (p) c ∈ (p, b].

f ≥ f = F (c) −F (p) > 0,∫
b

a

∫
c

p

(5.5.39)

f = 0;∫ b

a
a < p ≤ b. □
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Note 4. Hence

(  countable), even for vector-valued functions (for  is always real, and so Theorem 3 applies).

However,  does not suffice, even for real functions (unless  is signconstant). For example,

See also Example (b).

If  is real and  exists on  exact on  then

Proof

Apply Corollary 3 in §2 to the function 

Caution: Corollary 9 may fail if  is inexact at some  (Exactness on  does not suffice, as it does not in
Corollary 3 of §2, used here.) Thus in Example (b) above,  Yet for no  is  since  The
reason is that  is inexact just at  an interior point of 

This page titled 5.5: Antiderivatives (Primitives, Integrals) is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

|f | = 0 implies f = 0 on [a, b] −P∫
b

a

(5.5.40)

P |f |

f = 0∫ b

a
f

sinxdx = 0,  yet  sinx ≢ 0 on any I −P .∫
2π

0
(5.5.41)

 Corollary  (first law of the mean)5.5.9

f ∫ f [a, b], (a, b),

f = f(q)(b−a) for some q ∈ (a, b).∫
b

a

(5.5.42)

F = ∫ f . □

∫ f p ∈ (a, b). [a, b] −Q

f = 0.∫ 2
−2

q f(q)(2 +2) = 0, f(q) = ±1.

∫ f 0, [−2, 2].
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5.5.E: Problems on Antiderivatives

Prove in detail Corollaries  and 9 and Theorem 3  and 

In Examples (a) and (b) discuss continuity and differentiability of  and  at  In (a) show that  does not exist on any
interval  
[Hint: Use Theorem 1.]

Show that Theorem 2 holds also if  is relatively continuous on  and differentiable on .

Under the assumptions of Theorem  show that if  is one to one on  then automatically  is exact on 
 

[Hint: If  on  then 

 
Let  Use Problem 6 of Chapter  and Problem 2 of Chapter 1 §9 to show that  is countable and 

Prove Corollary 5 for dot products  of vector-valued functions.

Prove that if  exists on  and  then it exists on  By induction, extend this to unions of  adjacent intervals. 
[ Hint: Choose  on  and  on  such that . (Why do such  exist?) Then construct a
primitive  that is relatively 

Prove the weighted law of the mean: If  is real and nonnegative on  and if  and  exist on  for some 
 then there is a finite  with 

 
(The value  is called a -weighted mean of .) 
[Hint: If  put 

 Exercise 5.5.E. 1

3, 4, 6, 7, 8, ( )i′ ( iv ).

 Exercise 5.5.E. 2

f F 0. ∫ f

(−a, a).

 Exercise 5.5.E. 3

g I I −Q

 Exercise 5.5.E. 4

2, g I, ∫ f

g[I −Q](Q countable). 

F = ∫ f g[I],

= f  on g[I] −P , P  countable. F ′ (5.5.E.1)

Q = [P ].g−1 1, §§4 −7 Q

g[I] −P = g[I −Q].

 Exercise 5.5.E. 5

f ⋅ g

 Exercise 5.5.E. 6

∫ f [a, p] [p, b], [a, b]. n

F = ∫ f [a, p] G = ∫ f [p, b] F (p) = G(p) F , G

H = ∫ f  continuous on all of [a, b]. ]

 Exercise 5.5.E. 7

g I = [a, b], ∫ g ∫ gf I

f : → E,E1 c ∈ E

gf = c g.∫
b

a

∫
b

a

(5.5.E.2)

c g f

g > 0,∫ b

a

c = gf/ g.∫
b

a

∫
b

a

(5.5.E.3)
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In Problem  prove that if, in addition,  is real and has the Darboux property on  then  for some  (the second
law of the mean). 
[Hint: Choose  as in Problem 7. If  put 

 
so  on  Deduce that 

 
whence .
If  then  for some  (why?), so the Darboux property applies. 
If  then  and Theorem 3  yields  on  (Why?) Deduce that  if  and 

 (Why does such a  exist?) 

Taking  in Problem  obtain a new version of Corollary  State it precisely!

 Prove that if  on  and  is right (left) continuous and finite at  then 

 
Deduce that if  is continuous and finite on  all its primitives on  are exact on  
[Hint: Fix  If  is right continuous at  there is  with 

 
Fix such an  Let 

 
Deduce that  for . 
By Corollary 1 of §4, 

 
with  (Why?) Hence 

 
and so 

 If  g = 0,  use Theorem 3(i) and (iv) to show that also  gf = 0,  so any c will do. ]∫ b

a
∫ b

a

 Exercise 5.5.E. 8

7, f I, c = f(q) q ∈ I

c g > 0,∫
b

a

m = inf f [I] and M = supf [I],  in  ,E∗ (5.5.E.4)

m ≤ f ≤ M I.

m g ≤ gf ≤ M g,∫
b

a

∫
b

a

∫
b

a

(5.5.E.5)

m ≤ c ≤ M

m < c < M , f(x) < c < f(y) x, y ∈ I

c = m, g ⋅ (f −c) ≥ 0 ( iv ) gf = gc I −P . f(q) = c g(q) ≠ 0

q ∈ I −P . q

 What if c = M?]

 Exercise 5.5.E. 9

g(x) ≡ 1 8, 9.

 Exercise 5.5.E. 10

⇒ 10. F = ∫ f I = (a, b) f p ∈ I,

f(p) = (p) (respectively,  (p)) .F ′
+ F ′

− (5.5.E.6)

f I, I I.

ε > 0. f p, c ∈ I(c > p),

|f(x) −f(p)| < ε for x ∈ [p, c). (5.5.E.7)

x.

G(t) = F (t) − tf(p), t ∈ .E1 (5.5.E.8)

(t) = f(t) −f(p)G′ t ∈ I −Q

|G(x) −G(p)| = |F (x) −F (p) −(x −p)f(p)| ≤ M(x −p), (5.5.E.9)

M ≤ ε.

−f(p) ≤ ε for x ∈ [p, c),
∣

∣
∣
ΔF

Δx

∣

∣
∣ (5.5.E.10)
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State and solve Problem 10 for the case .

(i) Prove that if  is constant  on  then 

 
(ii) Hence prove that if  on 

 
then  exists on  and 

 
Show that this is true also if  on . 

Prove that if  exists on each  where 

 
then  exists on 

 
itself an interval with endpoints  and . 
[Hint: Fix some . Define 

 
Prove that 

 
Thus  is the same for all  such that  so we may simply write  for  on  Show that  on
all of  verify that  is, indeed, an interval.]

= f(p) ( why? );lim
x→p+

ΔF

Δx
(5.5.E.11)

 similarly for a left-continuous f . ]

 Exercise 5.5.E. 11

I = [a, b]

 Exercise 5.5.E. 12

f (f = c ≠ ±∞) I −Q,

f = (b −a)c  for a, b ∈ I.∫
b

a

(5.5.E.12)

f = ≠ ±∞ck

= [ , ) , a = < < ⋯ < = b,Ik ak ak+1 a0 a1 an (5.5.E.13)

∫ f [a, b],

f = ( − ) .∫
b

a

∑
k=0

n−1

ak+1 ak ck (5.5.E.14)

f = ≠ ±∞ck −Ik Qk

 [Hint: Use Problem 6. ]

 Exercise 5.5.E. 13

∫ f = [ , ] ,In an bn

≤ ≤ ≤ , n = 1, 2, … ,an+1 an bn bn+1 (5.5.E.15)

∫ f

I = [ , ] ,⋃
n=1

∞

an bn (5.5.E.16)

a = inf an b = sup , a, b ∈bn E∗

c ∈ I1

(t) = f  on  , n = 1, 2, … .Hn ∫
t

c

In (5.5.E.17)

(∀n ≤ m) =  on  ( since  { } ↑) .Hn Hm In In (5.5.E.18)

(t)Hn n t ∈ ,In H Hn I = .⋃∞
n=1 In H = ∫ f

I; I
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Continuing Problem  prove that  exists on an interval  iff it exists on each closed subinterval  
[Hint: Show that each  is the union of an expanding sequence  For example, if  put 

 
and show that 

5.5.E: Problems on Antiderivatives is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 5.5.E. 14

13, ∫ f I [a, b] ⊆ I.

I = [ , ] .In an bn I = (a, b), a, b ∈ ,E1

= a +  and  = b −  for large n (how large?) ,an

1

n
bn

1

n
(5.5.E.19)

I = [ , ]  over such n. ]⋃
n

an bn (5.5.E.20)
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5.6: Differentials. Taylor’s Theorem and Taylor’s Series
Recall (Theorem 2 of §1) that a function  is differentiable at  iff

with  It is customary to write  for  and  for  is called the differential of 
(at  and ). Thus

i.e.,  approximates  to within .

More generally, given any function  and  we define

where  is the  th derived function (Definition 2 in §1);  is called the nth differential, or differential of order n, of  (at 
and ). In particular,  By our conventions,  is always defined, as is .

As we shall see, good approximations of  (suggested by Taylor) can often be obtained by using higher differentials (1), as
follows:

where

is the error of the approximation. Substituting the values of  and  and transposing  we have

Formula (3) is known as the nth Taylor expansion of  about  (with remainder term  to be estimated). Usually we treat  as
fixed and  as variable. Writing  for  and setting

we have

The function  so defined is called the nth Taylor polynomial for  about  Thus (3) yields approximations of  by
polynomials  This is one way of interpreting it. The other (easy to remember) one is (2), which gives
approximations of  by the  It remains, however, to find a good estimate for  We do it next.

Let the function  and its first n derived functions be relatively continuous and finite on an interval I and
differentiable on  (Q countable). Let  Then formulas (2) and (3) hold, with

and

f p

Δf = (p)Δx+δ(x)Δx,f ′ (5.6.1)

δ(x) = δ(p) = 0.limx→p df (p)Δxf ′ o(Δx) δ(x)Δx; df f

p x

Δf = df +o(Δx); (5.6.2)

df Δf o(Δx)

f : → EE1 p, x ∈ ,E1

f = f(p, x) = (p)(x−p , n = 0, 1, 2, … ,dn dn f (n) )n (5.6.3)

f (n) n fdn f p

x f = (p)Δx = df .d1 f ′ fdn f (n)

Δf

Δf = df + + +⋯ + + , n = 1, 2, 3, … ,
fd2

2!

fd3

3!

fdn

n!
Rn (5.6.4)

= Δf − (the "remainder term")Rn ∑
k=1

n
fdk

k!
(5.6.5)

Δf fdk f(p),

f(x) = f(p) + (x−p) + (x−p +⋯ + (x−p + .
(p)f ′

1!

(p)f ′′

2!
)2 (p)f (n)

n!
)n Rn (5.6.6)

f p Rn p

x (x)Rn Rn

(x) = (x−p ,Pn ∑
k=0

n (p)f (k)

k!
)k (5.6.7)

f(x) = (x) + (x).Pn Rn (5.6.8)

: → EPn E1 f p. f

,n = 1, 2, 3, … .Pn

Δf f .dk .Rn

 Theorem  (taylor)5.6.1

f : → EE1

I −Q p, x ∈ I.

= (t) ⋅ (x− t dt ("integral form of  ")Rn

1

n!
∫

x

p

f (n+1) )n Rn (5.6.9)

| | ≤  for some real  ≤ (t) .Rn Mn

|x−p|
n+1

(n+1)!
Mn sup

t∈I−Q

∣∣f
(n+1) ∣∣ (5.6.10)
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Proof

By definition,  or

We use the right side as a "pattern" to define a function  This time, we keep  fixed  and
replace  by a variable  Thus we set

Then  and  Our assumptions imply that  is relatively continuous and finite on  and differentiable
on  Differentiating (4), we see that all cancels out except for one term

Hence by Definitions 1 and 2 of §5,

and

As  (3') is proved.

Next, let

If  define

In both cases,

Hence, applying Theorem 1 in §4 to the functions  and  on the interval  (or  we get

or

Thus (3") follows, with .

Finally, if  we put

For real functions, we obtain some additional estimates of .

= f − ,Rn Pn

= f(x) −f(p) − (p) .Rn ∑
k=1

n

f (k) (x−p)k

k!
(5.6.11)

h : → E.E1 x ( say , x = a ∈ I)

p t.

h(t) = f(a) −f(t) − (a− t) −⋯ − (a− t  for all t ∈ .
(t)f ′

1!

(t)f (n)

n!
)n E1 (5.6.12)

h(p) = Rn h(a) = 0. h I,

I −Q.

(t) = − (t) , t ∈ I −Q. (Verify!)h′ f (n+1)
(a− t)n

n!
(5.6.13)

−h(t) = (s)(a−s ds  on I
1

n!
∫

a

t

f (n+1) )n (5.6.14)

(t)(a− t dt = −h(a) +h(p) = 0 + = (for h(p) = ) .
1

n!
∫

a

p

f (n+1) )n Rn Rn Rn (5.6.15)

x = a,

M = (t) .sup
t∈I−Q

∣∣f
(n+1) ∣∣ (5.6.16)

M < +∞,

g(t) = M  for t ≥ a and g(t) = −M  for t ≤ a.
(t−a)n+1

(n+1)!

(a− t)n+1

(n+1)!
(5.6.17)

(t) = M ≥ | (t)|  on I −Q by (5).g′
|a− t|n

n!
h′ (5.6.18)

h g [a, p] [p, a]),

|h(p) −h(a)| ≤ |g(p) −g(a)|, (5.6.19)

| −0| ≤ M .Rn

|a−p|n+1

(n+1)!
(5.6.20)

= MMn

M = +∞,

= | | < M . □Mn Rn

(n+1)!

|a−p|
n+1

(5.6.21)

Rn
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If  is real and  times differentiable on , then for   there are  in the interval  (respectively, 
 such that

and

(Formulas (5') and (5") are known as the Lagrange and Cauchy forms of  respectively.)

Proof

Exactly as in the proof of Theorem 1, we obtain the function  and formula (5). By our present assumptions,  is
differentiable (hence continuous) on  so we may apply to it Cauchy's law of the mean (Theorem 2 of §2) on the interval 

 (or  if  where .

For this purpose, we shall associate  with another suitable function  (to be specified later). Then by Theorem 2 of §2,
there is a real  (respectively,  such that

Here by the previous proof,  and

Thus

Now define  by

Then

so (6) yields (5") (with  and .

Similarly, setting  we obtain (5'). (Verify!) Thus all is proved. 

Note 1. In (5') and (5"), the numbers  and  depend on  and are different in general  for they depend on the choice
of the function . Since they are between  and  they may be written as

where  and  (Explain!)

Note 2. For any function  the Taylor polynomials  are partial sums of a power series, called the Taylor series for 
(about  We say that  admits such a series on a set  iff the series converges to  on  i.e.,

This is clearly the case iff

 Theorem 5.6.1′

f n+1 I p ≠ x (p, x ∈ I), ,qn q ′
n (p, x)

(x, p))

= (x−pRn

( )f (n+1) qn

(n+1)!
)n+1 (5.6.22)

= (x−p) .Rn

( )f (n+1) q ′
n

n!
(x− )q ′

n
n

(5.6.23)

,Rn

h h

I,

[a, p] [p, a] p < a), a = x ∈ I

h g

q ∈ (a, p) q ∈ (p, a))

(q)[h(a) −h(p)] = (q)[g(a) −g(p)].g′ h′ (5.6.24)

h(a) = 0,h(p) = ,Rn

(q) = − (a−q .h′ f (n+1)

n!
)n (5.6.25)

(q) ⋅ = (a−q [g(a) −g(p)].g′ Rn

(q)f (n+1)

n!
)n (5.6.26)

g

g(t) = a− t, t ∈ .E1 (5.6.27)

g(a) −g(p) = −(a−p) and  (q) = −1,g′ (5.6.28)

= qq ′
n a = x)

g(t) = (a− t ,)n+1
□

qn q ′
n n ( ≠ ) ,qn q ′

n

g p x,

= p+ (x−p) and  = p+ (x−p),qn θn q ′
n θ′

n (5.6.29)

0 < < 1θn 0 < < 1.θ′
n

f : → E,E1 Pn f

p). f B f B;

f(x) = (x) = (x−p ≠ ±∞ for x ∈ B.lim
n→∞

Pn ∑
n=1

∞ (p)f (n)

n!
)n (5.6.30)

(x) = [f(x) − (x)] = 0 for x ∈ B;lim
n→∞

Rn lim
n→∞

Pn (5.6.31)
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briefly,  Thus

Caution: The convergence of the series alone (be it pointwise or uniform) does not suffice. Sometimes the series converges to a
sum other than  then (7) fails. Thus all depends on the necessary and sufficient condition: .

We say that  is of class , or continuously differentiable  times, on a set  iff  is  times differentiable on  and 
is relatively continuous on . Notation:  (on 

If this holds for each  we say that  is infinitely differentiable on  and write  (on 

The notation  means that  is finite and relatively continuous (all on 

(a) Let

Then

so  on  At  so we obtain by Theorem 1' (using (5') and Note 1)

Thus on an interval ,

to within an error  with

which tends to 0 as  For  we get

Taking  we have

with a nonnegative error of no more than

all digits are correct before the vertical bar.

(b) Let

As  is continuous at  We now show that  on 

For  this is clear; moreover, induction yields

→ 0.Rn

f  admits a Taylor series (about p) iff  → 0.Rn (5.6.32)

f(x); → 0Rn

 Definition 1

f CDn n B f n B, f (n)

B f ∈ CDn B).

n ∈ N , f B f ∈ CD∞ B).

f ∈ CD0 f B).

 Examples

f(x) =  on  .ex E1 (5.6.33)

(∀n) (x) = ,f (n) ex (5.6.34)

f ∈ CD∞ .E1 p = 0, (p) = 1,f (n)

= 1 + + +⋯ + + , 0 < < 1.ex
x

1!

x2

2!

xn

n!

e xθn

(n+1)!
xn+1 θn (5.6.35)

[−a, a]

≈ 1 + + +⋯ +ex
x

1!

x2

2!

xn

n!
(5.6.36)

(> 0 if x > 0)Rn

| | < ,Rn ea
an+1

(n+1)!
(5.6.37)

n → +∞. a = 1 = x,

e = 1 + + +⋯ + +  with 0 < < .
1

1!

1

2!

1

n!
Rn Rn

e1

(n+1)!
(5.6.38)

n = 10,

e ≈ 2.7182818|011463845 … (5.6.39)

= 0.00000006809869 … ;
e

11!
(5.6.40)

f(x) =  with f(0) = 0.e−1/x2
(5.6.41)

f(x) = 0 = f(0), flimx→0 0. f ∈ CD∞ .E1

x ≠ 0,

(x) = (x),f (n) e−1/x2

x−3nSn (5.6.42)
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where  is a polynomial in  of degree 2  (this is all we need know about  A repeated application of L'Hôpital's
rule then shows that

To find  we have to use the definition of a derivative:

or by L'Hôpital's rule,

Using induction again, we get

Thus, indeed,  has finite derivatives of all orders at each  including  so  on  as claimed.

Nevertheless, any attempt to use formula (3) at  yields nothing. As all  vanish at  so do all terms except  Thus
no approximation by polynomials results - we only get  on  and .  does not tend to 0 except at 

 so  admits no Taylor series about 0 (except on 

Taylor's theorem also yields sufficient conditions for maxima and minima, as we see in the following theorem.

Let  be of class  on  for an even number  and let

while

Then  is the maximum (respectively, minimum) value of  on some  

If, however, these conditions hold for some odd  (i.e., the first nonvanishing derivative at  is of odd order),  has no
maximum or minimum at 

Proof

As

Theorem 1' (with  replaced by  yields

with  between  and .

Also, as  is continuous at  Thus if  then  on some  However, 
 implies  so

while

It follows that

Sn x (n−1) ).Sn

(x) = 0 for each n.lim
x→0

f (n) (5.6.43)

(0),f ′

(0) = ,f ′ lim
x→0

f(x) −f(0)

x−0
(5.6.44)

(0) = = 0.f ′ lim
x→0

(x)f ′

1
(5.6.45)

(0) = 0, n = 1, 2, … .f (n) (5.6.46)

f x ∈ ,E1 x = 0, f ∈ CD∞ ,E1

p = 0 f (n) 0, .Rn

= 0Pn E1 (x) =Rn e−1/x2
Rn

x = 0, f E = {0}).

 Theorem 5.6.2

f : →E1 E∗ CDn (δ)Gp n ≥ 2,

(p) = 0 for k = 1, 2, … ,  n−1,f (k) (5.6.47)

(p) < 0 (respectively,  (p) > 0).f (n) f (n) (5.6.48)

f(p) f (ε)Gp ε ≤ δ.

n ≥ 1 p f

p.

(p) = 0, k = 1, 2, … ,  n−1,f (k) (5.6.49)

n n−1)

f(x) = f(p) + ( )  for all x ∈ (δ),f (n) qn
(x−p)n

n!
Gp (5.6.50)

qn x p

f ∈ ,CDn f (n) p. (p) < 0,f (n) < 0f (n) (ε), 0 < ε ≤ δ.Gp

x ∈ (ε)Gp ∈ (ε),qn Gp

( ) < 0,f (n) qn (5.6.51)

(x−p ≥ 0 if n is even.)n (5.6.52)
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and so

i.e.,  is the maximum value of  on  as claimed.

Similarly, in the case  a minimum would result.

If, however,  is odd, then  is negative for  but positive for  The same argument then shows that 
 on one side of  and  on the other side; thus no local maximum or minimum can exist at  This

completes the proof. 

(a') Let

Then

so

By Theorem 2,  is a minimum value.

It turns out to be a minimum on all of . Indeed,  for , and  for  so  strictly decreases on 
 and increases on 

Actually, even without using Theorem 2, the last argument yields the answer.

(b') Let

Then

This shows that  strictly increases everywhere and hence can have no maximum or minimum anywhere. The same follows by
the second part of Theorem 2, with .

(b") In Example (b'), consider also

In this case,  has no bearing on the existence of a maximum or minimum because  Still, the formula  does
have a certain meaning. In fact, if  and  on  then (using the same argument as in Theorem 2) the
reader will easily find that

since  is the equation of the tangent at , it follows that  i.e., near  the curve lies below the
tangent at 

Similarly,  and  on  implies that the curve near  lies above the tangent.

( ) ≤ 0,f (n) qn
(x−p)n

n!
(5.6.53)

f(x) = f(p) + ( ) ≤ f(p)  for x ∈ (ε),f (n) qn
(x−p)n

n!
Gp (5.6.54)

f(p) f (ε),Gp

(p) > 0,f (n)

n (x−p)n x < p x > p.

f(x) < f(p) p f(x) > f(p) p.

□

 Examples

f(x) =  on   and p = 0.x2 E1 (5.6.55)

(x) = 2x and  (x) = 2 > 0,f ′ f ′′ (5.6.56)

(0) = 0 and  (0) = 2 > 0.f ′ f ′′ (5.6.57)

f(p) = = 002

E1 (x) > 0f ′ x > 0 < 0f ′ x < 0, f

(−∞, 0) (0, +∞).

f(x) = lnx on (0, +∞). (5.6.58)

(x) = > 0 on all of (0, +∞).f ′ 1

x
(5.6.59)

f

n = 1

(x) = − < 0.f ′′ 1

x2
(5.6.60)

f ′′ ≠ 0.f ′ < 0f ′′

(p) < 0f ′′ f ∈ CD2 (δ),Gp

f(x) ≤ f(p) + (p)(x−p)  for x in some  (ε), 0 < ε ≤ δ.f ′ Gp (5.6.61)

y = f(p) + (p)(x−p)f ′ p f(x) ≤ y; p

p.

(p) > 0f ′′ f ∈ CD2 (δ)Gp p
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5.6.E: Problems on Tayior's Theorem

Complete the proofs of Theorems  and 2.

Verify Note 1 and Examples (b) and .

Taking  in  find 

 
Obtain  and  from it.

Prove that  (as defined) is the only polynomial of degree  such that 

 
[Hint: Differentiate  times to verify that it satisfies this property. 
For uniqueness, suppose this also holds for 

 
Differentiate  times to show that 

 

With  as defined, prove that if  is  times differentiable at  then 

 
(Taylor's theorem with Peano remainder term). 
[Hint: Let  and 

 
Using the "simplified" L'Hôpital rule (Problem 3 in  ) repeatedly  times, prove 

 Exercise 5.6.E. 1

1, ,1′

 Exercise 5.6.E. 2

( )b′′

 Exercise 5.6.E. 3

g(t) = (a − t , s > 0,)s (6),

= (x −p (x −q ( Schloemilch-Roche remainder ).Rn

(q)f (n+1)

n!s
)s )n+1−s (5.6.E.1)

( )5′ ( )5′′

 Exercise 5.6.E. 4

Pn n

(p) = (p), k = 0, 1, … , n.f (k) P
(k)

n (5.6.E.2)

nPn

P (x) = (x −p .∑
k=0

n

ak )k (5.6.E.3)

P n

(p) = (p) = k!,P (k) f (k) ak (5.6.E.4)

 so P = .  (Why?) ]Pn

 Exercise 5.6.E. 5

Pn f n p,

f(x) − (x) = o((x −p )  as x → pPn )n (5.6.E.5)

R(x) = f(x) − (x)Pn

δ(x) =  with δ(p) = 0.
R(x)

(x −p)n
(5.6.E.6)

§3 n  that  δ(x) = 0. ]limx→p
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Use Theorem  with  to verify the following expansions, and prove that . 

(a)  

for all  ; 

(b)  for 

all  
[Hints: Let  and  Induction shows that

 
Using formula  prove that 

 
Indeed,  is the general term of a convergent series 

 

For any  and  define 

 
Then prove the following.

(i)  if , 

(ii)  if , 

(iii) For any fixed  and . 

 
hence 

 

 

 Exercise 5.6.E. 6

1′ p = 0 = 0limn→∞ Rn

sinx = x − + −⋯ − + cos xx3

3!
x5

5!

(−1)
m

x2m−1

(2m−1)!

(−1)
m

x2m+1

(2m+1)!
θm

x ∈ E1

cos x = 1 − + −⋯ + − sin xx2

2!
x4

4!

(−1)mx2m

(2m)!

(−1)mx2m+2

(2m+2)!
θm

x ∈ .E1

f(x) = sinx g(x) = cos x.

(x) = sin(x + ) and  (x) = cos(x + ).f (n) nπ

2
g(n) nπ

2
(5.6.E.7)

( ) ,5′

| (x)| ≤ → 0.Rn

∣

∣
∣

xn+1

(n +1)!

∣

∣
∣ (5.6.E.8)

/n!xn

∑  (see Chapter 4, §13,  Example (d)) .
xn

n!
(5.6.E.9)

 Thus  /n! → 0 by Theorem 4 of the same section. ]xn

 Exercise 5.6.E. 7

s ∈ E1 n ∈ N ,

( ) =  with ( ) = 1.
s

n

s(s −1) ⋯ (s −n +1)

n!

s

0
(5.6.E.10)

n( ) = 0limn→∞
s

n
s > 0

( ) = 0limn→∞
s

n
s > −1

s ∈ E1 x ∈ (−1, 1)

( )n = 0;lim
n→∞

s

n
xn (5.6.E.11)

( ) = 0.lim
n→∞

s

n
xn (5.6.E.12)

[ Hints: (i) Let  = n( ) .  Verify that an

∣

∣
∣

s

n

∣

∣
∣

= |s| 1 − 1 − ⋯ 1 − .an
∣
∣

s

1
∣
∣
∣
∣

s

2
∣
∣

∣
∣
∣

s

n −1
∣
∣
∣ (5.6.E.13)
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If  for  so we may put  (Explain!) 
Prove that 

 
so for large , 

 

With  fixed, let  to get  Then with  obtain . 

 this implies  as claimed. 

(ii) For  so by , 

 

(iii) Use the ratio test to show that the series  converges when . 

Continuing Problems 6 and  prove that 

 
where  if either  or  and  or  and  
[Hints: (a) If  use  for 

 

Deduce that  Use Problem 7  if . 

(b) If  write  as 

 
As  the last fraction is  (Why?) Also, 

 

Thus, with  fixed, these expressions are bounded, while  by Problem 7  

s > 0, { } ↓an n > s +1, L = lim = lim ≥ 0.an a2n

< →  as n → ∞,
a2n

an

1 −∣
∣

s

2n
∣
∣

n

e− s1

2 (5.6.E.14)

n

< +ε;  i.e.,  < ( +ε) .
a2n

an

e− s1
2 a2n e− s1

2 an (5.6.E.15)

ε n → ∞ L ≤ ( +ε)L.e− s1
2 ε → 0, L ≤ Le s1

2

 As  > 1 (for s > 0) ,e s
1

2 L = 0,

s > −1, s +1 > 0, (i)

(n +1)( ) → 0;  i.e., (s +1)( ) → 0. ( Why? )
s +1

n +1

s

n
(5.6.E.16)

∑( )n
s

n
xn |x| < 1

 Then apply Theorem 4 of Chapter 4, §13. ]

 Exercise 5.6.E. 8

7,

(1 +x = ( ) + (x),)s ∑
k=0

n
s

k
xk Rn (5.6.E.17)

(x) → 0Rn |x| < 1, x = 1 s > −1, x = −1 s > 0.
0 ≤ x ≤ 1, ( )5′

(x) =( ) , 0 < < 1.  (Verify!) Rn−1
s

n
xn (1 + x)θn

s−n
θn (5.6.E.18)

| (x)| ≤ ( ) → 0.Rn−1
∣

∣
∣

s

n
xn

∣

∣
∣ ( iii) if |x| < 1 or Problem 7( ii ) x = 1

−1 ≤ x < 0, ( )5′′

(x) =( )n (1 + x) .  (Check!) Rn−1
s

n
xn θ′

n s−1( )
1 −θ′

n

1 + xθ′
n

n−1

(5.6.E.19)

−1 ≤ x < 0, ≤ 1.

≤ 1 if s > 1,  and  ≤ (1 +x  if s ≤ 1.(1 + x)θ′
n

s−1 )s−1 (5.6.E.20)

x ( )n → 0
s

n
xn (i)

 or ( iii ).  Deduce that  → 0,  hence  → 0. ]Rn−1 Rn
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Prove that 

 
where  if . 
[Hints: If  use formula . 
If  use formula  with  to obtain 

 

Prove that if  is of class  on  and if  on  then for each ,  

 
i.e., the curve  lies above the secant through  and  
[Hint: This formula is equivalent to

 
i.e., the average of  on  is strictly greater than the average of  on  

Prove that if  and  are positive reals and  then 

 
(This inequality is important for the theory of so-called  -spaces.) 
[Hints: If , all is trivial. 
Therefore, assume . Then 

 
Use Problem 10 with  and 

 
Verify that 

 Exercise 5.6.E. 9

ln(1 +x) = (−1 + (x),∑
k=1

n

)k+1 xk

k
Rn (5.6.E.21)

(x) = 0limn→∞ Rn −1 < x ≤ 1
0 ≤ x ≤ 1, ( )5′

−1 < x < 0, (6) g(t) = ln(1 + t)

(x) = .Rn

ln(1 +x)

(−1)n
( ⋅ x)

1 −θn

1 + xθn

n

(5.6.E.22)

 Proceed as in Problem 8. ]

 Exercise 5.6.E. 10

f : →E1 E∗ CD1 [a, b] −∞ < < 0f ′′ (a, b), ∈ (a, b)x0

f ( ) > ( −a) +f(a);x0
f(b) −f(a)

b −a
x0 (5.6.E.23)

y = f(x) (a, f(a)) (b, f(b)).

> ,
f ( ) −f(a)x0

−ax0

f(b) −f(a)

b −a
(5.6.E.24)

f ′ [a, ]x0 f ′ [a, b],
 which follows because   decreases on (a, b). ( Explain! )]f ′

 Exercise 5.6.E. 11

a, b, r, s r +s = 1,

≤ ra +sb.arbs (5.6.E.25)

Lp

a = b

a < b

a = (r +s)a < ra +sb < b. (5.6.E.26)

= ra +sb ∈ (a, b)x0

f(x) = lnx, (x) = − < 0.f ′′ 1

x2
(5.6.E.27)

−a = −(r +s)a = s(b −a)x0 x0 (5.6.E.28)
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and  hence deduce that 

 
After substitutions, obtain 

Use Taylor's theorem (Theorem 1') to prove the following inequalities: 
(a)  if . 
(b)  if . 
(c)  if . 
(d)  if .

5.6.E: Problems on Tayior's Theorem is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

r ⋅ lna = (1 −s) lna;

r ⋅ lna +s ⋅ lnb −lna = s(lnb −lna) = s(f(b) −f(a)). (5.6.E.29)

f ( ) = ln(ra +sb) > r ⋅ lna +s ⋅ lnb = ln( ). ]x0 arbs (5.6.E.30)

 Exercise 5.6.E. 12

< 1 +1 +x
− −−−−

√3 x
3

x > −1, x ≠ 0

cos x > 1 − 1
2

x2 x ≠ 0

< arctanx < xx

1+x2 x > 0

x > sinx > x − 1
6

x3 x > 0

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/24085?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/05%3A_Differentiation_and_Antidifferentiation/5.06%3A_Differentials._Taylors_Theorem_and_Taylors_Series/5.6.E%3A_Problems_on_Tayior's_Theorem
https://creativecommons.org/licenses/by/1.0


5.7.1 https://math.libretexts.org/@go/page/21242

5.7: The Total Variation (Length) of a Function f - E1 → E

This page is a draft and is under active development. 

The question that we shall consider now is how to define reasonably (and precisely) the notion of the length of a curve (Chapter 4,
§10) described by a function  over an interval  i.e., .

We proceed as follows (see Figure 24).

Subdivide  by a finite set of points  with

 is called a partition of  Let

and, for ,

We also define

Geometrically,  is the length of the line segment  in  and  is the sum of such lengths, i.e.,
the length of the polygon

inscribed into  we denote it by

Now suppose we add a new partition point  with

Then we obtain a new partition

f : → EE1 I = [a, b], f [I]

[a, b] P = { , , … , } ,t0 t1 tm

a = ≤ ≤ ⋯ ≤ = b;t0 t1 tm (5.7.1)

P [a, b].

= f ( ) , i = 1, 2, … ,m,qi ti (5.7.2)

i = 1, 2, … ,m

fΔi = −qi qi−1

= f ( ) −f ( ) .ti ti−1

S(f ,P ) = | f | = | − | .∑
i=1

m

Δi ∑
i=1

m

qi qi−1 (5.7.3)

| f | = | − |Δi qi qi−1 L [ , ]qi−1 qi E, S(f ,P )

W = L [ , ]⋃
i=1

m

qi−1 qi (5.7.4)

f [I];

ℓW = S(f ,P ). (5.7.5)

c,

≤ c ≤ .ti−1 ti (5.7.6)
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called a refinement of  and a new inscribed polygon  in which  is replaced by two segments,  and 
 where  see Figure 24. Accordingly, the term  in  is replaced by

It follows that

Hence we obtain the following result.

The sum  cannot decrease when  is refined.

Thus when new partition points are added,  grows in general; i.e., it approaches some supremum value (finite or not).
Roughly speaking, the inscribed polygon  gets "closer" to the curve. It is natural to define the desired length of the curve to
be the  of all lengths  i.e., of all sums  resulting from the various partitions . This supremum is also called the
total variation of  over  denoted 

Given any function  and  we set

where the supremum is over all partitions  of  We call  the total variation, or length, of  on 
Briefly, we denote it by .

Note 1. If  is continuous on  the image set  is an arc (Chapter 4, §10). It is customary to call  the length of
that arc, denoted  or briefly  Note, however, that there may well be another function  continuous on an interval  such
that  but  and so  Thus it is safer to say "the length of  as described by  on I." Only for
simple arcs (where  is one to one), is " " unambiguous. (See Problems 6-8.)

In the propositions below,  is an arbitrary function, .

If  then

i.e., the length of the whole equals the sum of the lengths of the parts.

Proof

Take any partition  of  If  refine  to

Then by Corollary 1, .

Now  splits into partitions of  and  namely,

so that

= { , … , , c, , … , } ,Pc t0 ti−1 ti tm (5.7.7)

P , Wc L [ , ]qi−1 qi L [ , q]qi−1

L [q, ] ,qi q = f(c); | f | = | − |Δi qi qi−1 S(f ,P )

| −q| + |q− | ≥ | − |  (triangle law).qi qi−1 qi qi−1 (5.7.8)

S(f ,P ) ≤ S (f , ) ;  i.e., ℓW ≤ ℓ .Pc Wc (5.7.9)

 Corollary 5.7.1

S(f ,P ) = ℓW P

S(f ,P )
W

lub ℓW , S(f ,P ) P

f [a, b], [a, b].Vf

 Definition 1

f : → E,E1 I = [a, b] ⊂ ,E1

[I] = [a, b] = S(f ,P ) = |f ( ) −f ( )| ≥ 0 in  ,Vf Vf sup
P

sup
P

∑
i=1

m

ti ti−1 E∗ (5.7.10)

P = { , … , }t0 tm I. [I]Vf f I.
Vf

f [a, b], A = f [I] [I]Vf
Aℓf ℓA. g, J,

g[J] = A [I] ≠ [J],Vf Vg A ≠ A.ℓf ℓg A f

f ℓA

f f : → EE1

 Theorem  (additivity of 5.7.1 )Vf

a ≤ c ≤ b,

[a, b] = [a, c] + [c, b];Vf Vf Vf (5.7.11)

P = { , … , }t0 tm [a, b]. c ∉ P , P

= { , … , , c, , … , } .Pc t0 ti ti tm (5.7.12)

S(f ,P ) ≤ S (f , )Pc

Pc [a, c] [c, b],

= { , … , , c}  and  = {c, , … , } ,P ′ t0 ti−1 P ′′ ti tm (5.7.13)

S (f , ) +S (f , ) = S (f , ) .  (Verify!)P ′ P ′′ Pc (5.7.14)
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Hence ,

As  is an arbitrary partition of  we also have

Thus it remains to show that, conversely,

The latter is trivial if  Thus assume  Let  and  be any partitions of  and 
 respectively. Then  is a partition of  and

whence

Keeping  fixed and varying  we see that  is an upper bound of all  over  Hence

or

Similarly, varying  we now obtain

or

as required. Thus all is proved. 

If  then

Proof

By Theorem 1,

If  we say that  is of bounded variation on  and that the set  is rectifiable (by  on .

For each ,

Hence if  is of bounded variation on  it is bounded on .

Proof

(as   is the lub of the corresponding sums)Vf

[a, c] + [c, d] ≥ S (f , ) ≥ S(f ,P ).Vf Vf Pc (5.7.15)

P [a, b],

[a, c] + [c, b] ≥ supS(f ,P ) = [a, b].Vf Vf Vf (5.7.16)

[a, b] ≥ [a, c] + [c, b].Vf Vf Vf (5.7.17)

[a, b] = +∞.Vf [a, b] = K < +∞.Vf P ′ P ′′ [a, c]
[c, b], = ∪P ∗ P ′ P ′′ [a, b],

S (f , ) +S (f , ) = S (f , ) ≤ [a, b] = K,P ′ P ′′ P ∗ Vf (5.7.18)

S (f , ) ≤ K−S (f , ) .P ′ P ′′ (5.7.19)

P ′′ ,P ′ K−S (f , )P ′′ S (f , )P ′ [a, c].

[a, c] ≤ K−S (f , )Vf P ′′ (5.7.20)

S (f , ) ≤ K− [a, c].P ′′ Vf (5.7.21)

,P ′′

[c, b] ≤ K− [a, c]Vf Vf (5.7.22)

[a, c] + [c, b] ≤ K = [a, b],Vf Vf Vf (5.7.23)

□

 Corollary  (monotonicity of 5.7.2 )Vf

a ≤ c ≤ d ≤ b,

[c, d] ≤ [a, b].Vf Vf (5.7.24)

[a, b] = [a, c] + [c, d] + [d, b] ≥ [c, d]. □Vf Vf Vf Vf Vf (5.7.25)

 Definition 2

[a, b] < +∞,Vf f I = [a, b], f [I] f I)

 Corollary 5.7.3

t ∈ [a, b]

|f(t) −f(a)| ≤ [a, b].Vf (5.7.26)

f [a, b], [a, b]
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If  let  so

proving our first assertion. Hence

This proves the second assertion. 

Note 2. Neither boundedness, nor continuity, nor differentiability of  on  implies  but boundedness of 
does. (See Problems 1 and 3.)

A function  is finite and constant on  iff .

The proof is left to the reader. (Use Corollary 3 and the definitions.

Let  be real or complex (or let  and  be vector valued and  scalar valued). Then on any interval  we have

(i) ;

(ii)  and

(iii)  with  and .

Hence if  and  are of bounded variation on  so are  and .

Proof

We first prove (iii).

Take any partition  of  Then

Adding these inequalities, we obtain

As this holds for all sums  it holds for their supremum, so

as claimed.

Similarly, (i) follows from

The analogous proof of (ii) is left to the reader.

Finally, (i)-(iii) imply that , and  are finite if  and  are. This proves our last assertion. 

Note 3. Also  is of bounded variation on  if  and  are, provided  is bounded away from 0 on  i.e.,

(See Problem 5.)

t ∈ [a, b], P = {a, t, b},

|f(t) −f(a)| ≤ |f(t) −f(a)| +|f(b) −f(t)| = S(f ,P ) ≤ [a, b],Vf (5.7.27)

(∀t ∈ [a, b]) |f(t)| ≤ |f(t) −f(a)| +|f(a)| ≤ [a, b] + |f(a)|.Vf (5.7.28)

□

f [a, b] [a, b] < +∞,Vf f ′

 Corollary 5.7.4

f [a, b] [a, b] = 0Vf

 Theorem 5.7.2

f , g,h f g h I = [a, b],

≤V|f| Vf

≤ + ;Vf±g Vf Vg

≤ s +r ,Vhf Vf Vh r = |f(t)|supt∈I s = |h(t)|supt∈I

f , g, h I, f ±g,hf , |f |

P = { , … , }t0 tm I.

| hf |Δi = |h ( )f ( ) −h ( )f ( )|ti ti ti−1 ti−1

≤ |h ( )f ( ) −h ( )f ( )| +|h ( )f ( ) −h ( )f ( )|ti ti ti−1 ti ti−1 ti ti−1 ti−1

= |f ( ) ∥ h| + |h ( )∥ f |ti Δi ti−1 Δi

≤ r | h| +s | f | .Δi Δi

S(hf ,P ) ≤ r ⋅S(h,P ) +s ⋅S(f ,P ) ≤ r +s .Vh Vf (5.7.29)

S(hf ,P ),

= supS(hf ,P ) ≤ r +s ,Vhf Vh Vf (5.7.30)

||f ( ) | −|f ( ) || ≤ |f ( ) −f ( )| .ti ti−1 ti ti−1 (5.7.31)

,Vf Vf±g Vhf , ,Vf Vg Vh □

f/h I f h h I;

(∃ε > 0) |h| ≥ ε on I. (5.7.32)
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Special theorems apply in case the range space  is  or .

(i) A real function  is of bounded variation on  iff  for some nondecreasing real functions  and  on 

(ii) If  is real and monotone on  it is of bounded variation there.

Proof

We prove (ii) first.

Let  on  If  then

Hence  i.e.,  Thus

for any  (Verify!) This implies that also

Thus (ii) is proved.

Now for (i), let  with  and  on . By (ii),  and  are of bounded variation on  Hence so is 
by Theorem 2 (last clause).

Conversely, suppose  Then define

so  and it only remains to show that  and .

To prove it, let  Then Theorem 1 yields

i.e.,

Hence  Also, as  we have

Thus  We see that  implies  and  so  and  indeed. 

(i) A function  is of bounded variation on  iff all of its components  are.

(ii) If this is the case, then finite limits  and  exist for every 

Proof

(i) Take any partition  of  Then

E E1 (  or  )En ∗ Cn

 Theorem 5.7.3

f I = [a, b] f = g−h g h I.

f I,

f ↑ I. P = { , … , } ,t0 tm

≥  implies f ( ) ≥ f ( ) .ti ti−1 ti ti−1 (5.7.33)

f ≥ 0;Δi | f | = f .Δi Δi

S(f ,P ) = | f | = f = [f ( ) −f ( )]∑
i=1

m

Δi ∑
i=1

m

Δi ∑
i=1

m

ti ti−1

= f ( ) −f ( ) = f(b) −f(a)tm t0

P .

[I] = supS(f ,P ) = f(b) −f(a) < +∞.Vf (5.7.34)

f = g−h g ↑ h ↑ I g h I. f = g−h

[I] < +∞.Vf

g(x) = [a, x], x ∈ I,  and h = g−f  on I,Vf (5.7.35)

f = g−h, g ↑ h ↑

a ≤ x ≤ y ≤ b.

[a, y] − [a, x] = [x, y];Vf Vf Vf (5.7.36)

g(y) −g(x) = [x, y] ≥ |f(y) −f(x)| ≥ 0  (by Corollary 3).Vf (5.7.37)

g(y) ≥ g(x). h = g−f ,

h(y) −h(x) = g(y) −f(y) −[g(x) −f(x)]

= g(y) −g(x) −[f(y) −f(x)]

≥ 0 by (2).

h(y) ≥ h(x). a ≤ x ≤ y ≤ b g(x) ≤ g(y) h(x) ≤ h(y), h ↑ g ↑, □

 Theorem 5.7.4

f : → ( )E1 En ∗Cn I = [a, b] ( , , … , )f1 f2 fn

f ( )p+ f ( )q− p ∈ [a, b) and q ∈ (a, b].

P = { , … , }t0 tm I.

≤ = ;| ( ) − ( )|fk ti fk ti−1
2 ∑

j=1

n

| ( ) − ( )|fj ti fj ti−1
2 |f ( ) −f ( )|ti ti−1

2 (5.7.38)
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i.e.,  Thus

and  follows. Thus

The converse follows by Theorem 2 since  (Explain!)

(ii) For real monotone functions,  and  exist by Theorem 1 of Chapter 4, §5. This also applies if  is real and
of bounded variation, for by Theorem 3,

and so

The limits are finite since  is bounded on  by Corollary 3.

Via components (Theorem 2 of Chapter 4, §3), this also applies to functions  (Why?) In particular, (ii)
applies to complex functions (treat  as  (*and so it extends to functions  as well). 

We also have proved the following corollary.

A complex function  is of bounded variation on  iff its real and imaginary parts are. (See Chapter 4, §3, Note
5).

This page titled 5.7: The Total Variation (Length) of a Function f - E1 → E is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of
the LibreTexts platform; a detailed edit history is available upon request.

| | ≤ | f | , i = 1, 2, … ,  m.Δifk Δi

(∀P ) S ( ,P ) ≤ S(f ,P ) ≤ ,fk Vf (5.7.39)

≤Vfk Vf

< +∞ implies  < +∞, k = 1, 2, … ,  n.Vf Vfk (5.7.40)

f = .∑n
k=1 fke ⃗ k

f ( )p+ f ( )q− f

f = g−h with g ↑  and h ↑  on I, (5.7.41)

f ( ) = g( )−h ( )  and f ( ) = g( )−h ( )  exist.p+ p+ p+ q− q− q− (5.7.42)

f I

f : → .E1 En

C E2 f : → .E1 Cn
□

 Corollary 5.7.5

f : → CE1 [a, b]
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5.7.E: Problems on Total Variation and Graph Length

In the following cases show that  though  is bounded on 
  

(i) For  

(ii) . 
(iii) . 
(iv) . 
[Hints: (i) For any  there is  with 

 
so . 
(iii) Let 

 

Let  be monotone on each of the intervals 

 
Prove that 

 
In particular, show that this applies if  (polynomial), with . 
[Hint: It is known that a polynomial of degree  has at most  real roots. Thus it is piecewise monotone, for its derivative
vanishes at finitely many points (being of 

 Prove that if  is finite and relatively continuous on  with a bounded derivative,  on 
then 

 
However, we may have  and yet  at some  

 Exercise 5.7.E. 1

[I] = +∞,Vf f

I. ( In case (iii), f  is continuous, and in case (iv), it is even differentiable   on I. )

I = [a, b](a < b), f(x) ={
1

0

 if x ∈ R( rational ),  and 

 if x ∈ −R.E1

f(x) = sin ; f(0) = 0; I = [a, b], a ≤ 0 ≤ b, a < b1
x

f(x) = x ⋅ sin ; f(0) = 0; I = [0, 1]π

2x

f(x) = sin ; f(0) = 0; I = [0, 1]x2 1
x2

m P ,

| f | = 1, i = 1, 2, … ,m,Δi (5.7.E.1)

S(f ,P ) = m → +∞

={0, , , … , , 1} .Pm

1

m

1

m−1

1

2
(5.7.E.2)

 Prove that S (f , ) ≥ → +∞. ]Pm ∑m
k=1

1
k

 Exercise 5.7.E. 2

f : →E1 E1

[ , ] , k = 1, … ,n ("piecewise monotone") .ak−1 ak (5.7.E.3)

[ , ] = |f ( ) −f ( )| .Vf a0 an ∑
k=1

n

ak ak−1 (5.7.E.4)

f(x) = ∑n
i=1 cix

i ∈ci E1

n n

 degree n−1).  Use Theorem 1 in §2. ]

 Exercise 5.7.E. 3

⇒ f I = [a, b], | | ≤ M ,f ′ I −Q( see §4),

[a, b] ≤ M(b−a).Vf (5.7.E.5)

[I] < +∞,Vf | | = +∞f ′ p ∈ I.
 [Hint: Take f(x) =  on [−1, 1]. ]x−−√3
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Complete the proofs of Corollary 4 and Theorems 2 and 4.

Prove Note 3. 
[Hint: If  on  show that 

 
and hence 

 
Deduce that  is of bounded variation on  if  is. Then apply Theorem 2  

Let  (real) and  be relatively continuous on  and  respectively, with 
and  Let 

 
Prove that if  is one to one on  then 
(i)  so  and  describe one and the same arc ; 
(ii)  i.e., . 
[Hint for (ii): Given  show that the points  form a partition  of  with 

 Hence deduce   
Then prove that  taking an arbitrary , 

Prove that if  are relatively continuous and one to one on  and  respectively, and if 

 
 then 

 
Thus for simple arcs,  is independent of  
[Hint: Define  by  Use Problem 6 and Chapter  Theorem  First check that Problem 6 works
also if  and  i.e.,  

Let  and define  by 

 Exercise 5.7.E. 4

 Exercise 5.7.E. 5

|h| ≥ ε I,

− ≤
∣

∣
∣

1

h ( )ti

1

h ( )ti−1

∣

∣
∣

| h|Δi

ε2
(5.7.E.6)

S( ,P) ≤ ≤ .
1

h

S(h,P )

ε2

Vh

ε2
(5.7.E.7)

1
h

I h ( iii) to  ⋅ f . ]1
h

 Exercise 5.7.E. 6

g : →E1 E1 f : → EE1 J = [c, d] I = [a, b], a = g(c)
b = g(d).

h = f ∘ g. (5.7.E.8)

g J,
g[J] = I, f h A = f [I] = h[J]

[I] = [J];Vf Vh A = Aℓf ℓh
P = {a = , … , = b} ,t0 tm = ( )si g−1 ti P ′ J = [c, d],

S (h, ) = S(f ,P ).P ′ [I] ≤Vf [J].Vh
[J] ≤ [I],Vh Vf = {c = , … , = d}P ′ s0 sm

 and defining P = { , … , } ,  with  = g ( ) .  What if g(c) = b, g(d) = a?]t0 tm ti si

 Exercise 5.7.E. 7

f ,h : → EE1 I = [a, b] J = [c, d],

f [I] = h[J] = A (5.7.E.9)

 (i.e., f  and h describe the same simple arc A),

A = A.ℓf ℓh (5.7.E.10)

Aℓf f .
g : J → E1 g = ∘ h.f−1 4, §9, 3.

g(c) = b g(d) = a, g ↓  on J. ]

 Exercise 5.7.E. 8

I = [0, 2π] f , g,h : → (C)E1 E2
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 yet ,  while  (Thus the result

of Problem 7 fails for 

In Theorem  define two functions  by 

 
and 

 
  Prove that 

(i)  and  on ; 
(ii)  (thus the functions  and  of Theorem 3 are not unique); 
(iii) ; 
(iv) if  with  and  on  then 

 
(v) .

Prove that if  is of bounded variation on  then  has at most countably many discontinuities in 
 

[Hint: Apply Problem 5 of Chapter 4,  Proceed as in the proof of Theorem 4 in  

5.7.E: Problems on Total Variation and Graph Length is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

f(x) = (sinx, cosx),

g(x) = (sin3x, cos 3x),

h(x) = (sin , cos )  with h(0) = (0, 1).1
x

1
x

(5.7.E.11)

 Show that f [I] = g[I] = h[I] (the unit circle; call it A), A = 2πℓf A = 6π,ℓg [I] = +∞.Vh
 closed curves and nonsimple arcs. )

 Exercise 5.7.E. 9

3, G,H : →E1 E1

G(x) = [ [a, x] +f(x) −f(a)]
1

2
Vf (5.7.E.12)

H(x) = G(x) −f(x) +f(a). (5.7.E.13)

(G and H are called, respectively, the positive and negative variation   functions for f . )
G ↑ H ↑ [a, b]
f(x) = G(x) −[H(x) −f(a)] f g

[a, x] = G(x) +H(x)Vf
f = g−h, g ↑ h ↑ [a, b],

[a, b] ≤ [a, b],  and  [a, b] ≤ [a, b] ;VG Vg VH Vh (5.7.E.14)

G(a) = H(a) = 0

 Exercise 5.7.E. 10∗

f : → ( )E1 En ∗Cn I = [a, b], f

I.
§5.

 §7. Finally, use Theorem 2 of Chapter 1, §9. ]
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5.8: Rectifiable Arcs. Absolute Continuity

This page is a draft and is under active development. 

If a function  is of bounded variation (§7) on an interval  we can define a real function  on  by

 is called the total variation function, or length function, generated by  on . Note that  on  (Why?) We now consider the
case where  is also relatively continuous on  so that the set  is a rectifiable arc (see §7, Note 1 and Definition 2).

A function  is (weakly) absolutely continuous on  iff  and  is relatively continuous on .

The following are equivalent:

(i)  is (weakly) absolutely continuous on ;

(ii)  is finite and relatively continuous on  and

(iii) .

Proof

We shall show that (ii)  (iii)  (i)  (ii).

(ii)  (iii). As  is compact, (ii) implies that  is uniformly continuous on  (Theorem 4 of Chapter 4, §8). Thus

However,

by additivity (Theorem 1 in §7). Thus (iii) follows.

(iii)  (i). By Corollary 3 of §7,  Therefore, (iii) implies that

and so  is relatively (even uniformly) continuous on .

Now with  and  as in (iii), take a partition  of  so fine that

Then  Adding up these  inequalities and using the additivity of  we obtain

Thus (i) follows, by definition.

That (i)  (ii) is given as the next theorem. 

f : → EE1 I = [a, b], vf I

(x) = [a, x](=  total variation of f  on [a, x]) for x ∈ I;vf Vf (5.8.1)

vf f I ↑vf I.

f I, A = f [I]

 Definition 1

f : → EE1 I = [a, b] [I] < +∞Vf f I

 Theorem 5.8.1

f I = [a, b]

vf I;

(∀ε > 0) (∃δ > 0) (∀x, y ∈ I|0 ≤ y−x < δ)  [x, y] < εVf

⇒ ⇒ ⇒

⇒ I = [a, b] vf I

(∀ε > 0) (∃δ > 0) (∀x, y ∈ I|0 ≤ y−x < δ) (y) − (x) < ε.vf vf (5.8.2)

(y) − (x) = [a, y] − [a, x] = [x, y]vf vf Vf Vf Vf (5.8.3)

⇒ |f(x) −f(y)| ≤ [x, y].Vf

(∀ε > 0) (∃δ > 0) (∀x, y ∈ I||x−y| < δ) |f(x) −f(y)| < ε, (5.8.4)

f I

ε δ P = { , … , }t0 tm I

− < δ, i = 1, 2, … ,  m.ti ti−1 (5.8.5)

(∀i) [ , ] < ε.Vf ti−1 ti m ,Vf

[I] = [ , ] < mε < +∞.Vf ∑
i=1

m

Vf ti−1 ti (5.8.6)

⇒ □
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If  and if  is relatively continuous at some  (over  then the same applies to the length function 
.

Proof

We consider left continuity first, with .

Let  By assumption, there is  such that

Fix any such  Also,  over  Thus

for some partition

We may assume  as above. (If  add  to  Then

and hence

However,

and

Thus (1) yields

This shows that  is left continuous at .

Right continuity is proved similarly on noting that

Thus  is, indeed, relatively continuous at  Observe that  is also of bounded variation on  being monotone and finite
(see Theorem 3(ii) of §7).

This completes the proof of both Theorem 2 and Theorem 1. 

We also have the following.

If  is real and absolutely continuous on  (weakly), so are the nondecreasing functions  and  defined
in Theorem 3 of §7.

Indeed, the function  as defined there is simply  Thus it is relatively continuous and finite on  by Theorem 1. Hence so
also is  Both are of bounded variation (monotone!) and hence absolutely continuous (weakly).

 Theorem 5.8.2

[I] < +∞Vf f p ∈ I I = [a, b]),

vf

a < p ≤ b

ε > 0. δ > 0

|f(x) −f(p)| <  when |x−p| < δ and x ∈ [a, p].
ε

2
(5.8.7)

x. [a, p] = S(f ,P )Vf supP [a, p].

[a, p] − < | f |Vf
ε

2
∑
i=1

k

Δi (5.8.8)

P = { = a, … , , = p}  of [a, p].  (Why?)t0 tk−1 tk (5.8.9)

= x, xtk−1 ≠ x,tk−1 x P . )

| f | = |f(p) −f(x)| < ,Δk

ε

2
(5.8.10)

[a, p] − < | f | + | f | < | f | + ≤ [a, ] + .Vf
ε

2
∑
i=1

k−1

Δi Δk ∑
i=1

k−1

Δi

ε

2
Vf tk−1

ε

2
(5.8.11)

[a, p] = (p)Vf vf (5.8.12)

[a, ] = [a, x] = (x).Vf tk−1 Vf vf (5.8.13)

| (p) − (x)| = [a, p] − [a, x] < ε for x ∈ [a, p] with |x−p| < δ.vf vf Vf Vf (5.8.14)

vf p

(x) − (p) = [p, b] − [x, b] for p ≤ x < b.  (Why?)vf vf Vf Vf (5.8.15)

vf p. vf I,

□

 Corollary 5.8.1

f I = [a, b] g h(f = g−h)

g .vf I

h = f −g.
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Note 1. The proof of Theorem 1 shows that (weak) absolute continuity implies uniform continuity. The converse fails, however
(see Problem 1(iv) in §7).

We now apply our theory to antiderivatives (integrals).

If  on  and if  is bounded  on  (  countable), then  is weakly absolutely
continuous on 

(Actually, even the stronger variety of absolute continuity follows. See Chapter 7, §11, Problem 17).

Proof

By definition,  is finite and relatively continuous on  so we only have to show that  This, however,
easily follows by Problem 3 of §7 on noting that  on  (  countable). Details are left to the reader. 

Our next theorem expresses arc length in the form of an integral.

If  is continuously differentiable on  (§6), then  on  and

Proof

Let  and

As a first step, we shall show that

For any partition  of  we have

Since this holds for any partition  we have

which implies (2).

On the other hand,

Combining, we get

since  is relatively continuous on  hence also uniformly continuous and bounded. (Here we assumed 
. However, (3) holds also if  with  and  Verify!)

Now

 Corollary 5.8.2

F = ∫ f I = [a, b] f (|f | ≤ K ∈ )E1 I −Q Q F

I.

F = ∫ f I, [I] < +∞.VF
= fF ′ I −S S □

 Theorem 5.8.3

f : → EE1 I = [a, b] = ∫ | |vf f ′ I

[a, b] = | | .Vf ∫
b

a

f ′ (5.8.16)

a < p < x ≤ b, Δx = x−p,

Δ = (x) − (p) = [p, x]. (Why?)vf vf vf Vf (5.8.17)

≤ | | .
Δvf

Δx
sup
[p,x]

f ′ (5.8.18)

P = {p = , … , = x}t0 tm [p, x],

S(f ,P ) = | f | ≤ | | ( − ) ≤ | | Δx.∑
i=1

m

Δi ∑
i=1

m

sup
[ , ]ti−1 ti

f ′ ti ti−1 sup
[p,x]

f ′ (5.8.19)

P ,

[p, x] ≤ | | Δx,Vf sup
[p,x]

f ′ (5.8.20)

Δ = [p, x] ≥ |f(x) −f(p)| = |Δf |.vf Vf (5.8.21)

≤ ≤ | | < +∞
∣

∣
∣
Δf

Δx

∣

∣
∣

Δvf

Δx
sup
[p,x]

f ′ (5.8.22)

f ′ [a, b],

a < p < x ≤ b a ≤ x < p < b, Δ = −V [x, p]vf Δx < 0.
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so, taking limits as  we obtain

Thus  is differentiable at each  in  with  Also,  is relatively continuous and finite on  (by
Theorem 1). Hence  on  and we obtain

Note 2. If the range space  is  (*or ),  has  components

By Theorem 5 in §1,  so

and we get

In particular, for complex functions, we have (see Chapter 4, §3, Note 5)

In practice, formula (5) is used when a curve is given parametrically by

with the  differentiable on  Curves in  are often given in nonparametric form as

Here  is  the desired curve but simply a set in  To apply (5) here, we first replace " " by suitable parametric
equations,

i.e., we introduce a function  with  An obvious (but not the only) way of achieving it is to set

so that  and  Then formula (5) may be written as

Find the length of the circle

Here it is convenient to use the parametric equations

|| (p)| −| (x)|| ≤ | (p) − (x)| → 0  as x → p,f ′ f ′ f ′ f ′ (5.8.23)

x → p,

= | (p)| .lim
x→p

Δvf

Δx
f ′ (5.8.24)

vf p (a, b), (p) = | (p)| .v′
f f ′ vf [a, b]

= ∫ | |vf f ′ [a, b],

| | = (b) − (a) = [a, b],  as asserted. □∫
b

a

f ′ vf vf Vf (5.8.25)

E En Cn f n

, , … , .f1 f2 fn (5.8.26)

= ( , , … , ) ,f ′ f ′
1 f ′

2 f ′
n

| | = ,f ′ ∑
k=1

n

∣∣f ′
k
∣∣
2

− −−−−−−

√ (5.8.27)

[a, b] = = dt (classical notation).Vf ∫
b

a

∑
k=1

n

∣∣f ′
k
∣∣
2

− −−−−−−

√ ∫
b

a

∑
k=1

n

(t)∣∣f ′
k

∣∣
2

− −−−−−−−−

√ (5.8.28)

[a, b] = dt.Vf ∫
b

a

(t + (tf ′
re )2 f ′

im )2
− −−−−−−−−−−−−

√ (5.8.29)

= (t), k = 1, 2, … ,  n,xk fk (5.8.30)

fk [a, b]. E2

y = F (x), F : → .E1 E1 (5.8.31)

F [I] not .E1 y = F (x)

x = (t) and y = (t);f1 f2 (5.8.32)

f : → E,E1 f = ( , ) .f1 f2

x = (t) = t and y = (t) = F (t)f1 f2 (5.8.33)

= 1f ′
1 = .f ′

2 F ′

[a, b] = dx, f(x) = (x,F (x)).Vf ∫
b

a

1 + (xF ′ )2
− −−−−−−−−

√ (5.8.34)

 Example

+ = .x2 y2 r2 (5.8.35)

x = r cos t and y = r sin t, (5.8.36)
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i.e., to define  by

or, in complex notation,

Then the circle is obtained by letting  vary through  Thus (5) yields

Note that  describes the same circle  over  More generally, we could let  vary through any interval 
with  However, the length,  would change (depending on . This is because the circle  is
not a simple arc (see §7, Note 1), so  depends on  and  and one must be careful in selecting both appropriately.

This page titled 5.8: Rectifiable Arcs. Absolute Continuity is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

f : →E1 E2

f(t) = (r cos t, r sin t), (5.8.37)

f(t) = r .eti (5.8.38)

t [0, 2π].

[0, 2π] = r dt = r 1dt = r = 2rπ.Vf ∫
b

a

t+ tcos2 sin2− −−−−−−−−−−
√ ∫

b

a

t|2π0 (5.8.39)

f A = f [I] I = [0, 4π]. t [a, b]

b−a ≥ 2π. [a, b],Vf b−a) A = f [I]

ℓA f I,
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5.8.E: Problems on Absolute Continuity and Rectifiable Arcs

Complete the proofs of Theorems 2 and  giving all missing details.

 Show that  is absolutely continuous (in the weaker sense) on  if for every  there is  such that 

 
(This is absolute continuity in the stronger sense.)

Prove that  is strictly monotone on  iff  is not constant on any nondegenerate subinterval of  

With  as in Theorem 2 of  prove that if  are absolutely continuous (in the weaker sense) on  so are 
and  so also is  if  on .

Prove that 
(i) If  is finite and  on  so also is  derivatives at the endpoints of the interval); moreover, 

 

. 

(ii) Under the same assumptions,  is differentiable on  (with one-sided derivatives at the endpoints
of the interval) and  i.e.,  and  describe the same simple arc, with . 
Note that this is tantamount to a change of parameter. Setting  i.e.,  we have 

 with the arclength  as parameter.

5.8.E: Problems on Absolute Continuity and Rectifiable Arcs is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 5.8.E. 1

3,

 Exercise 5.8.E. 2

⇒ f [a, b] ε > 0 δ > 0

|f ( ) −f ( )| < ε∑
i=1

m

ti si

a ≤ ≤ ≤ ≤ ≤ ⋯ ≤ ≤ ≤ b.s1 t1 s2 t2 sm tm

 whenever  ( − ) < δ and ∑
i=1

m

ti si

 Exercise 5.8.E. 3

vf [a, b] f [a, b].

 [Hint: If x < y, [x, y] > 0,  by Corollary 4 of §7] .Vf

 Exercise 5.8.E. 4

f , g, h §7, f , g, h I, f ±g, hf ,

|f |; f/h (∃ε > 0)|h| ≥ ε I

 Exercise 5.8.E. 5

f ′ ≠ 0 I = [a, b], ( with one-sided v′
f

= 1 on I.
∣

∣
∣
f ′

v′
f

∣

∣
∣ (5.8.E.1)

 Thus show that  /  is the tangent unit vector (see §1)f ′ v′
f

F = f ∘ v−1
f J = [0, (b)]vf

F [J] = f [I]; F f [I] = [I]VF Vf

s = (t),vf t = (s),v−1
f

f(t) = f ( (s))= F (s),v−1
f

s
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5.9: Convergence Theorems in Differentiation and Integration

This page is a draft and is under active development. 

Given

what can one say about  or  if the limits exist? Below we give some answers, for complete range spaces  (such
as ). Roughly, we have  on  if

(a)  converges for at least one  and

(b)  converges uniformly.

Here  is a finite or infinite interval in  and  is countable. We include in  the endpoints of  (if any), so 

Let  be finite and relatively continuous on  and differentiable on  Suppose that

(a)  exists for some ;

(b)  on  for each finite subinterval ;

(c)  is complete.

Then

(i)  exists uniformly on each finite subinterval ;

(ii)  on  and

(iii)  on .

Proof

Fix  and any subinterval  of length  with  (  as in (a)). By (b),  (uniformly) on  so
there is a  such that for ,

hence

Now apply Corollary 1 in §4 to the function  on  Then for each 
where

by (2). Hence for  and

As  is arbitrary, this shows that the sequence

satisfies the uniform Cauchy criterion (Chapter 4, §12, Theorem 3). Thus as  is complete,  converges
uniformly on  So does  for  converges, by (a). Thus we may set

= ∫  or  = , n = 1, 2, … ,Fn fn F ′
n fn (5.9.1)

∫ limfn (lim )Fn
′

E

En lim =F ′
n (lim )Fn

′ I −Q

{ (p)}Fn p ∈ I

{ }F ′
n

I E1 Q Q I

I −Q ⊆ (=  interior of I).I 0

 Theorem 5.9.1

: → E (n = 1, 2, …)Fn E1 I I −Q.

(p)limn→∞ Fn p ∈ I

→ f ≠ ±∞(uniformly)F ′
n J −Q J ⊆ I

E

= Flimn→∞ Fn J ⊆ I

F = ∫ f I;

(lim = = f =Fn)′ F ′ limn→∞ F ′
n I −Q

ε > 0 J ⊆ I δ < ∞, p ∈ J p → fF ′
n J −Q,

k m,n > k

| (t) −f(t)| < , t ∈ J −Q;F ′
n

ε

2
(5.9.2)

| (t) − (t)| ≤ ε. (Why?)sup
t∈J−Q

F ′
m F ′

n (5.9.3)

h = −Fm Fn J. x ∈ J, |h(x) −h(p)| ≤ M |x−p|,

M ≤ | (t)| ≤ εsup
t∈J−Q

h′ (5.9.4)

m,n > k, x ∈ J

| (x) − (x) − (p) + (p)| ≤ ε|x−p| ≤ εδ.Fm Fn Fm Fn (5.9.5)

ε

{ − (p)}Fn Fn (5.9.6)

E { − (p)}Fn Fn

J. { } ,Fn { (p)}Fn
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proving assertion (i).

Here by Theorem 2 of Chapter 4, §12,  is relatively continuous on each such  hence on all of . Also, letting 
 (with  fixed), we have  in (3), and it follows that for  and 

Having proved (i), we may now treat  as just any point in . Thus formula (4) holds for any globe  We now
show that

Indeed, if  each  is differentiable at  (by assumption), and  (since  by our convention).
Thus for each  there is  such that

for all .

By assumption (b) and by (4), we can fix  so large that

and so that (4) holds for  Then, dividing by  we have

Combining with (5), we infer that for each  there is  such that

This shows that

i.e.,  on  with  finite by assumption, and  finite by (4). As  is also relatively continuous on  assertion
(ii) is proved, and (iii) follows since  and 

Note 1. The same proof also shows that  (uniformly) on each closed subinterval  if  (uniformly) on 
for all such  (with the other assumptions unchanged). In any case, we then have  (pointwise) on all of 

We now apply Theorem 1 to antiderivatives.

Let the functions  have antiderivatives,  on  Suppose  is complete and 
(uniformly) on each finite subinterval  with  finite there. Then  exists on  and

Proof

Fix any  By Note 2 in §5, we may choose

F = lim  (uniformly) on J,Fn (5.9.7)

F J ⊆ I, I

m → +∞ n → FFm n > k x ∈ (δ) ∩ I.Gp

|F (x) − (x) −F (p) + (p)| ≤ ε|x−p| ≤ εδ.Fn Fn (5.9.8)

p I (δ), p ∈ I.Gp

= f  on I −Q;  i.e., F = ∫ f  on I.F ′ (5.9.9)

p ∈ I −Q, Fn p p ∈ I 0 I −Q ⊆ I 0

n, > 0δn

− (p) = − (p) <
∣

∣
∣
ΔFn

Δx
F ′
n

∣

∣
∣

∣

∣
∣

(x) − (p)Fn Fn

x−p
F ′
n

∣

∣
∣

ε

2
(5.9.10)

x ∈ ( ) ; ( ) ⊆ IG¬p δn Gp δn

n

| (p) −f(p)| <F ′
n

ε

2
(5.9.11)

δ = .δn |Δx| = |x−p|,

− ≤ ε.
∣
∣
∣
ΔF

Δx

ΔFn

Δx

∣
∣
∣ (5.9.12)

ε > 0, δ > 0

−f(p) ≤ − + − (p) +| (p) −f(p)| < 2ε, x ∈ (δ).
∣
∣
∣
ΔF

Δx

∣
∣
∣

∣
∣
∣
ΔF

Δx

ΔFn

Δx

∣
∣
∣

∣
∣
∣
ΔFn

Δx
F ′
n

∣
∣
∣ F ′

n Gp (5.9.13)

= f(p) for p ∈ I −Q,lim
x→p

ΔF

Δx
(5.9.14)

= fF ′ I −Q, f F F I,
F = limFn f = lim . □F ′

n

→ FFn J ⊆ I → fF ′
n J −Q

J → FFn I.

 Theorem 5.9.2

: → E,n = 1, 2, … ,fn E1 = ∫ ,Fn fn I. E → ffn
J ⊆ I, f ∫ f I,

f = =  for any p, x ∈ I.∫
x

p

∫
x

p

lim
n→∞

fn lim
n→∞

∫
x

p

fn (5.9.15)

p ∈ I.
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Then  and so  exists, as required in Theorem 1(a).

Also, by definition, each  is relatively continuous and finite on  and differentiable, with  on  The
countable sets  need not be the same, so we replace them by

(including in  also the endpoints of  if any. Then  is countable (see Chapter 1, §9, Theorem 2), and 
 so all  are differentiable on  with  there.

Additionally, by assumption,

on finite subintervals  Hence

for all such  and so the conditions of Theorem 1 are satisfied.

By that theorem, then,

and, recalling that

we obtain for 

As  was arbitrary, and  (by assumption), all is proved. 

Note 2. By Theorem 1, the convergence

is uniform in  (with  fixed), on each finite subinterval .

We now "translate" Theorems 1 and 2 into the language of series.

Let  and the functions  be as in Theorem 1. Suppose the series

converges for some  and

converges uniformly on  for each finite subinterval .

Then  converges uniformly on each such  and

(x) =  for x ∈ I.Fn ∫
x

p

fn (5.9.16)

(p) = = 0,Fn ∫ p

p
fn (p) = 0limn→∞ Fn

Fn I = ,F ′
n fn I − .Qn

Qn

Q = ⋃
n=1

∞

Qn (5.9.17)

Q I, Q

I −Q ⊆ I − ,Qn Fn I −Q, =F ′
n fn

→ f  (uniformly)fn (5.9.18)

J ⊆ I.

→ f  (uniformly) on J −QF ′
n (5.9.19)

J,

F = ∫ f = lim  exists on IFn (5.9.20)

(x) = ,Fn ∫
x

p

fn (5.9.21)

x ∈ I

f = F (x) −F (p) = lim (x) −lim (p) = lim (x) −0 = lim .∫
x

p

Fn Fn Fn ∫
x

p

fn (5.9.22)

p ∈ I f = limfn □

→ f ( i.e. , → F )∫
x

p

fn ∫
x

p

Fn (5.9.23)

x p J ⊆ I

 Corollary 5.9.1

E : → EFn E1

∑ (p)Fn (5.9.24)

p ∈ I,

∑F ′
n (5.9.25)

J −Q, J ⊆ I

∑Fn J,
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is differentiable on  with

In other words, the series can be differentiated termwise.

Proof

Let

be the partial sums of  From our assumptions, it then follows that the  satisfy all conditions of Theorem 1.
(Verify!) Thus the conclusions of Theorem 1 hold, with  replaced by .

We have  and  whence (7) follows. 

If  and the  are as in Theorem 2 and if  converges uniformly to  on each finite interval  then  exists on 
and

Briefly, a uniformly convergent series can be integrated termwise.

Let  be the convergence radius of

Suppose  is complete. Set

Then the following are true:

(i)  is differentiable and has an exact antiderivative on 

(ii)  and .

(iii)  is also the convergence radius of the two series in (ii).

(iv)  is exactly the Taylor series for  on  about .

Proof

We prove (iii) first.

By Theorem 6 of Chapter 4, §13,  where

Let  be the convergence radius of  so

F =∑
n=1

∞

Fn (5.9.26)

I −Q,

= =  there.F ′ ( )∑
n=1

∞

Fn

′

∑
n−1

∞

F ′
n (5.9.27)

= , n = 1, 2, … ,sn ∑
k=1

n

Fk (5.9.28)

∑ .Fn sn
Fn sn

F = limsn = = lim ,F ′ (lim )sn
′

s′
n □

 Corollary 5.9.2

E fn ∑fn f J ⊆ I, ∫ f I,

f = =  for any p, x ∈ I.∫
x

p

∫
x

p

∑
n=1

∞

fn ∑
n=1

∞

∫
x

p

fn (5.9.29)

 Theorem  (Power Series)5.9.3

r

∑ (x−p , ∈ E, p ∈ .an )n an E1 (5.9.30)

E

f(x) = (x−p  on I = (p−r, p+r).∑
n=0

∞

an )n (5.9.31)

f I.

(x) = n (x−pf ′ ∑∞
n=1 an )n−1 f = (x−p , x ∈ I∫ x

p
∑∞

n=0
an
n+1

)n+1

r

(x−p∑∞
n=0 an )n f(x) I p

r = 1/d,

d = .lim
¯ ¯¯̄¯̄¯

an
−−

√n (5.9.32)

r′ ∑n (x−p ,an )n−1
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However, lim  (see §3, Example (e)). It easily follows that

Hence .

The convergence radius of  is determined similarly. Thus (iii) is proved.

Next, let

Then the  are differentiable on  with  there. Also, by Theorems 6 and 7 of Chapter 4, §13, the series

converges uniformly on each closed subinterval  Thus the functions  satisfy all conditions of
Corollary 1, with  and the  satisfy Corollary 2. By Corollary 1, then,

is differentiable on  with

for all  Hence  is an exact antiderivative of  on  and (8) yields the second formula in (ii).

Quite similarly, replacing  and  by  and  one shows that  is differentiable on  and the first formula in (ii)
follows. This proves (i) as well.

Finally, to prove (iv), we apply (i)-(iii) to the consecutive derivatives of  and obtain

for each  and .

If  all terms vanish except the first term  i.e.,  Thus  We may rewrite it as

since  Assertion (iv) now follows since

Note 3. If  converges also for  or  so does the integrated series

since we may include such  in  However, the derived series  need not converge at such  (Why?) For
example (see §6, Problem 9), the expansion

=  with  = .r′ 1

d′
d′ lim

¯ ¯¯̄¯̄¯
nan
− −−

√n (5.9.33)

= 1n−−√n

= = 1 ⋅ = .d′ lim¯ ¯¯̄¯̄¯ nan− −−
√n lim¯ ¯¯̄¯̄¯ an−−

√n d2 (5.9.34)

= 1/ = 1/d = rr′ d′

∑ (x−p
an

n+1
)n+1

(x) = (x−p  and  (x) = (x−p ,n = 0, 1, 2, … .fn an )n Fn

an

n+1
)n+1 (5.9.35)

Fn I, =F ′
n fn

∑ =∑ (x−pF ′
n an )n (5.9.36)

J ⊆ I = (p−r, p+r). Fn

Q = ∅, fn

F =∑
n=1

∞

Fn (5.9.37)

I,

(x) = (x) = (x−p = f(x)F ′ ∑
n=1

∞

F ′
n ∑

n=1

∞

an )n (5.9.38)

x ∈ I. F f I,

Fn F fn f , f I,

f

(x) = n(n−1) ⋯ (n−k+1) (x−pf (k) ∑
n=k

∞

an )n−k (5.9.39)

x ∈ I k ∈ N

x = p, (n = k), k! .ak (p) = k! , k ∈ N .f (k) ak

= , n = 0, 1, 2, … ,an
(p)f (n)

n!
(5.9.40)

(p) = f(p) = .f (0) a0

f(x) = (x−p = (x−p , x ∈ I,  as required.  □∑
n=0

∞

an )n ∑
n=0

∞ (p)f (n)

n!
)n (5.9.41)

∑ (x−pan )n x = p−r x = p+r,

∑an
(x−p)n+1

n+1
(5.9.42)

x I. ∑n (x−pan )n−1 x.

ln(1 +x) = x− + −⋯
x2

2

x3

3
(5.9.43)

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/21245?pdf


5.9.6 https://math.libretexts.org/@go/page/21245

converges for  but the derived series

does not.

In this respect, there is the following useful rule for functions  (* ).

Let a function  be relatively continuous on  (or ,  If

and if  converges, then necessarily

Proof

The proof is sketched in Problems 4 and 5.

Thus in the above example,  defines a continuous function on  with

We gave a direct proof in §6, Problem 9. However, by Corollary 3, it suffices to prove this for  which is much easier. Then
the convergence of

yields the result for  as well.

This page titled 5.9: Convergence Theorems in Differentiation and Integration is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of
the LibreTexts platform; a detailed edit history is available upon request.

x = 1

1 −x+ −⋯x2 (5.9.44)

f : →E1 Em Cm

 Corollary 5.9.3

f : → ( )E1 Em ∗Cm [p, ]x0 [ , p])x0 ≠ p.x0

f(x) = (x−p  for p ≤ x <  (respectively,  < x ≤ p),∑
n=0

∞

an )n x0 x0 (5.9.45)

∑an( −p)x0
n

f ( ) = .x0 ∑
n=0

∞

an ( −p)x0
n (5.9.46)

f(x) = ln(1 +x) [0, 1],

f(x) = (−1  on [0, 1].∑
n=1

∞

)n−1 x
n

n
(5.9.47)

[0, 1),

∑
n=1

∞ (−1)n−1

n
(5.9.48)

x = 1
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5.9.E: Problems on Convergence in Differentiation and Integration

Complete all proof details in Theorems 1 and  Corollaries 1 and  and Note 

Show that assumptions (a) and (c) in Theorem 1 can be replaced by  (pointwise) on . (In this form, the theorem
applies to incomplete spaces  as well.) 

 implies  (uniformly) 

Show that Theorem 1 fails without assumption  even if  (uniformly) and if  is differentiable on  
[Hint: For a counterexample, try  on any nondegenerate  Verify that  (uniformly), yet (b) and
assertion (iii) fail.

Prove Abel's theorem (Chapter  Problem 15) for series 

 
with all  in  but with . 
[Hint: Split  into components.]

Prove Corollary 3. 
 we may put 

 
 This implies that  is relatively continuous at  (Why?) So is  by

assumption. Also  on  Show that 

 
as  from the left (right).]

In the following cases, find the Taylor series of  about 0 by integrating the series of  Use Theorem 3 and Corollary 3 to
find the convergence radius  and to investigate convergence at  and  Use  to find a formula for  
(a) ; 
(b) ; 
(c) .

 Exercise 5.9.E. 1

3, 2, 3.

 Exercise 5.9.E. 2

→ FFn I

E

 [Hint:  → F ( pointwise e),  together with formula ( 3) ,Fn → FFn  on I. ]

 Exercise 5.9.E. 3

(b), → FFn F I.

(x) = sinnx,Fn
1
n I. → 0Fn

 Exercise 5.9.E. 4

4, §13,

∑ (x−p ,an )n (5.9.E.1)

an (  or in  )Em ∗ Cm x, p ∈ E1

(x−pan )n

 Exercise 5.9.E. 5

 [Hint: By Abel's theorem (see Problem 4),

(x−p = F (x)∑
n=0

∞

an )n (5.9.E.2)

 uniformly on  [p, ]  (respectively,  [ , p]) .x0 x0 F .x0 f ,

f = F [p, ) (( , p]) .x0 x0

f ( ) = limf(x) = limF (x) = F ( )x0 x0 (5.9.E.3)

x → x0

 Exercise 5.9.E. 6

F .F ′

r −r r. (b) π.

F (x) = ln(1 +x)

F (x) = arctanx

F (x) = arcsinx
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Prove that 

 
[Hint: Use Theorem 3 and Corollary  Take derivatives of both sides.]

5.9.E: Problems on Convergence in Differentiation and Integration is shared under a CC BY 1.0 license and was authored, remixed, and/or
curated by LibreTexts.

 Exercise 5.9.E. 7

dt =  for x ∈ [−1, 1].∫
x

0

ln(1 − t)

t
∑
n=1

∞ xn

n2
(5.9.E.4)

3.
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5.10: Sufficient Condition of Integrability. Regulated Functions

This page is a draft and is under active development. 

In this section, we shall determine a large family of functions that do have antiderivatives. First, we give a general definition, valid
for any range space  (not necessarily  The domain space remains .

A function  is said to be regulated on an interval  with endpoints  iff the limits  and 
 other than  exist at each  However, at the endpoints  if in  we only require  and  to

exist.

(a) If  is relatively continuous and finite on  it is regulated.

(b) Every real monotone function is regulated (see Chapter 4, §5, Theorem 1).

(c) If  has bounded variation on  it is regulated (§7, Theorem 4).

(d) The characteristic function of a set  denoted  is defined by

For any interval  is regulated on .

(e) A function  is called a step function on  iff  can be represented as the union,  of a sequence of disjoint
intervals  such that  is constant and  on each . Note that some  may be singletons, 

If the number of the  is finite, we call  a simple step function.

When the range space  is  we can give the following convenient alternative definition. If, say,  on  then

where  is as in (d). Note that  always exists for disjoint  (Why?)

Each simple step function is regulated. (Why?)

Let the functions  be real or complex (or let  be vector valued and h scalar valued).

If they are regulated on  so are  and  so also is  if  is bounded away from 0 on  i.e.,  on

Proof

The proof, based on the usual limit properties, is left to the reader.

We shall need two lemmas. One is the famous Heine-Borel lemma.

If a closed interval  in  (or  is covered by open sets  i.e.,

(T , p) E). E1

 Definition 1

f : → (T , p)E1 I ⊆ ,E1 a < b, f ( )p−

f ( ) ,p+ ±∞, p ∈ I. a, b, I, f ( )a+ f ( )b−

 Examples

f I,

f : → ( )E1 En ∗Cn I,

B, ,CB

(x) = 1 if x ∈ B and  = 0 on  −B.CB CB (5.10.1)

J ⊆ ,E1 CJ E1

f I I I = ,⋃k Ik
Ik f ≠ ±∞ Ik Ik {p}.

Ik f

T E, f = ≠ ±∞ak ,Ik

f =  on I,∑
k

akCIk (5.10.2)

CIk (x)∑k akCIk .Ik

 Theorem 5.10.1

f , g,h f , g

I, f ±g, fh, |f |; f/h h I, (∃ε > 0)|h| ≥ ε

I.

 lemma  (Heine-Borel)5.10.1

A = [a, b] E1 )En (i ∈ I),Gi

A ⊆ ,⋃
i∈I

Gi (5.10.3)
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then  can be covered by a finite number of these .

Proof

The proof was sketched in Problem 10 of Chapter 4, §6.

Note 1. This fails for nonclosed intervals  For example, let

Then

for any finite  (Why?)

The lemma also fails for nonopen sets  For example, cover  by singletons  Then none of the  can be dropped!

If a function  is regulated on  then  can be uniformly approximated by simple step functions on 

That is, for any  there is a simple step function  with  on  hence

Proof

By assumption,  exists for each  and  exists for  all finite.

Thus, given  and any  there is )  depending on ) such that  whenever  and 
 and  whenever  and 

We choose such a  for every  Then the open globes  cover the closed interval  so by
Lemma 1,  is covered by a finite number of such globes, say,

We now define the step function  on  as follows.

If  we put

If  then

If  then

More generally, if  is in  but in none of the  we put

and

Then by construction,  on each  hence on 

A Gi

A.

A = (0, 1) ⊆  and  =( , 1) .E1 Gn

1

n
(5.10.4)

A = ( verify! ),  but not A ⊆⋃
n=1

∞

Gn ⋃
n=1

m

Gn (5.10.5)

m.

.Gi A {x}, x ∈ A. {x}

 lemma 5.10.2

f : → TE1 I = [a, b], f I.

ε > 0, g, ρ(f , g) ≤ ε I;

ρ(f(x), g(x)) ≤ ε.sup
x∈I

(5.10.6)

f ( )p− p ∈ (a, b], f ( )p+ p ∈ [a, b),

ε > 0 p ∈ I, (δGp (δ p ρ(f(x), r) < ε r = f ( )p−

x ∈ (p−δ, p), ρ(f(x), s) < ε s = f ( )p+ x ∈ (p, p+δ); x ∈ I

(δ)Gp p ∈ I. = (δ)Gp Gp I = [a, b],

I

I ⊆ ( ) , a ∈ , a ≤ < < ⋯ < ≤ b.⋃
k=1

n

Gpk δk Gp1
p1 p2 pn (5.10.7)

g I

x = ,pk

g(x) = f ( ) , k = 1, 2, … ,  n.pk (5.10.8)

x ∈ [a, ) ,p1

g(x) = f ( ) .p−
1

(5.10.9)

x ∈ ( , + ) ,p1 p1 δ1

g(x) = f ( ) .p+
1 (5.10.10)

x ( )G¬pk δk ( ) , i < k,Gpi δi

g(x) = f ( )  if x <p−
k

pk (5.10.11)

g(x) = f ( )  if x > .p+
k

pk (5.10.12)

ρ(f , g) < ε ,Gpk I. □
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*Note 2. If  is complete, we can say more:  is regulated on  iff  is uniformly approximated by simple step functions
on . (See Problem 2.)

If  is regulated on an interval  and if  is complete, then  exists on  exact at every continuity point of
 in .

In particular, all continuous maps  have exact primitives.

Proof

In view of Problem 14 of §5, it suffices to consider closed intervals.

Thus let  in  Suppose first that  is the characteristic function  of a subinterval  with
endpoints  and   so  on  and  on  We then define  on  on 
and  on  (see Figure 25). Thus  is continuous (why?), and  on  (why?). Hence 
on  i.e., characteristic functions are integrable.

Then, however, so is any simple step function

by repeated use of Corollary 1 in §5.

Finally, let  be any regulated function on . Then by Lemma 2, for any  there is a simple step function  such
that

As  this implies that  (uniformly) on  (see Chapter 4, §12, Theorem 1). Also, by what was proved above,
the step functions  have antiderivatives, hence so has  (Theorem 2 in §9); ; i.e.,  exists on  as claimed.
Moreover,  is exact at continuity points of  in  (Problem 10 in §5). 

In view of the sufficient condition expressed in Theorem 2, we can now replace the assumption "  exists" in our previous
theorems by "  is regulated" (provided  is complete). For example, let us now review Problems 7 and 8 in §5.

T f I = [a, b] f

I

 Theorem 5.10.2

f : → EE1 I ⊆ E1 E ∫ f I,

f I 0

f : → ( )E1 En ∗Cn

I = [a, b], a < b, .E1 f CJ J ⊆ I

c d (a ≤ c ≤ d ≤ b), f = 1 J f = 0 I −J. F (x) = x J,F = c [a, c],

F = d [d, b] F = fF ′ I −{a, b, c, d} F = ∫ f

I;

f = ,∑
k=1

m

akCIk (5.10.13)

f I = ,εn
1
n

gn

| (x) −f(x)| ≤ , n = 1, 2, … .sup
x∈I

gn
1

n
(5.10.14)

→ 0,1
n

→ fgn I

gn f F = ∫ f I,

∫ f f I 0
□

∫ f

f E
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Let  (  complete) and  be regulated on  with  on  Then the following are true:

(i) There is a finite  (called the "g-weighted mean of  on ") such that .

(ii) If  too, is real and has the Darboux property on  then  for some 

Proof

Indeed, as  and  are regulated, so is  by Theorem 1. Hence by Theorem 2,  and  exist on  The rest follows as
in Problems 7 and 8 of §5. 

Suppose  and  are real,  is monotone with  on  and  is regulated on  Then

Proof

To fix ideas, let  i.e.,  on .

The formula  means that  is relatively continuous (hence regulated) on  and differentiable on  (
countable). As  is regulated,

does exist on  so  has similar properties, with .

By Theorems 1 and 2,  exists on  (Why?) Hence by Corollary 5 in §5, so does  and we have

Now  has the Darboux property on  (being relatively continuous), and  Also,  and  exist on  Thus by
Problems 7 and 8 in §5,

Combining all, we obtain the required result (1) since

We conclude with an application to infinite series. Given  we define

if these integrals and limits exist.

We say that  and  converge iff they exist and are finite.

 Theorem  (weighted law of the mean)5.10.3

f : → EE1 E g : →E1 E1 I = [a, b], g ≥ 0 I.

c ∈ E f I gf = c g∫ b

a
∫ b

a

f , I, c = f(q) q ∈ I.

f g gf ∫ f ∫ gf I.

□

 Theorem  (second law of the mean)5.10.4

f g f f = ∫ f ′ I, g I; I = [a, b].

fg = f(a) g+f(b) g for some q ∈ I.∫
b

a

∫
q

a

∫
b

q

(5.10.15)

f ↑; ≥ 0f ′ I

f = ∫ f ′ f I I −Q Q

g

g = G(x)∫
x

a

(5.10.16)

I, G G(a) = g = 0∫ a

a

∫ f = ∫ fgG′ I. ∫ G ,f ′

fg = f = f(x)G − G = f(b)G(b) − G .∫
b

a

∫
b

a

G′ (x)|
b
a ∫

b

a

f ′ ∫
b

a

f ′ (5.10.17)

G I ≥ 0.f ′ ∫ G ∫ Gf ′ I.

G = G(q) = G(q)f , q ∈ I.∫
b

a

f ′ ∫
b

a

f ′ (x)|ba (5.10.18)

∫ fg = f(b)G(b) − G∫
b

a

f ′

= f(b)G(b) −f(b)G(q) +f(a)G(q)

= f(b) g+f(a) g. □∫
b

q

∫
q

a

f : → E,E1

f = f  and  f = f∫
∞

a

lim
x→+∞

∫
x

a

∫
a

−∞

lim
x→−∞

∫
a

x

(5.10.19)

f∫ ∞

a
f∫ a

−∞
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If  is nonnegative and nonincreasing on  then

Proof

As  is regulated, so  exists on  We fix some natural  and define

By Theorem 3(iii) in §5,  on . Thus by monotonicity,

exists in  so does  Since

where  is finite by definition, we have

Similarly,

Thus we may replace " " by " ."

Let

and define two step functions,  and  constant on each  by

Since  we have  on all  hence on  Therefore,

Also,

since  (constant) on  and so

Similarly,

 Theorem  (integral test of convergence)5.10.5

f : →E1 E1 I = [a, +∞),

f  converges iff  f(n) does.∫
∞

a

∑
n=1

∞

(5.10.20)

f ↓, f ∫ f I = [a, +∞). k ≥ a

F (x) = f  for x ∈ I.∫
x

k

(5.10.21)

F ↑ I

F (x) = f = flim
x→+∞

lim
x→+∞

∫
x

k

∫
∞

k

(5.10.22)

;E∗ f .∫ k

a

f = f + f ,∫
x

a

∫
k

a

∫
x

k

(5.10.23)

f∫ k

a

f < +∞ iff  f < +∞.∫
∞

a

∫
∞

k

(5.10.24)

f(n) < +∞  iff  f(n) < +∞.∑
n=1

∞

∑
n=k

∞

(5.10.25)

a k

= [n,n+1), n = k, k+1, … ,In (5.10.26)

g h, ,In

h = f(n) and g = f(n+1) on  ,n ≥ k.In (5.10.27)

f ↓, g ≤ f ≤ h ,In J = [k, +∞).

g ≤ f ≤ h for x ∈ J.∫
x

k

∫
x

k

∫
x

k

(5.10.28)

h = h = f(n),∫
m

k

∑
n=k

m−1

∫
n+1

n

∑
n=k

m−1

(5.10.29)

h = f(n) [n,n+1),

h(x)dx = f(n) 1dx = f(n) ⋅ = f(n)(n+1 −n) = f(n).∫
n+1

n

∫
n+1

n

x|
n+1
n (5.10.30)

g = f(n+1) = f(n).∫
m

k

∑
n=k

m−1

∑
n=k+1

m

(5.10.31)
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Thus we obtain

or, letting ,

Hence  is finite iff  is, and all is proved. 

(f) Consider the hyperharmonic series

Let

If  then  so  as  Hence  diverges.

If  then

so  converges or diverges according as  or  and the same applies to the series 

(g) Even nonregulated functions may be integrable. Such is Dirichlet's function (Example (c) in Chapter 4, §1). Explain, using
the countability of the rationals.

This page titled 5.10: Sufficient Condition of Integrability. Regulated Functions is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of
the LibreTexts platform; a detailed edit history is available upon request.

f(n) = g ≤ f ≤ h = f(n),∑
n=k+1

m

∫
m

k

∫
m

k

∫
m

k

∑
n=k

m−1

(5.10.32)

m → ∞

f(n) ≤ f ≤ f(n).∑
n=k+1

∞

∫
∞

k

∑
n=k

∞

(5.10.33)

f∫ ∞
k f(n)∑∞

n=1 □

 Examples (continued)

∑ (Problem 2 of Chapter 4, §13).
1

np
(5.10.34)

f(x) = , x ≥ 1.
1

xp
(5.10.35)

p = 1, f(x) = 1/x, f = lnx → +∞∫ x

1
x → +∞. ∑ 1/n

p ≠ 1,

f = f = ,∫
∞

1

lim
x→+∞

∫
x

1

lim
x→+∞

x1−p

1 −p

∣

∣
∣
x

1

(5.10.36)

f∫ ∞

1
p > 1 p < 1, ∑ 1/ .np
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5.10.E: Problems on Regulated Functions

Complete all details in the proof of Theorems .

Explain Examples .

Prove Note  More generally, assuming  to be complete, prove that if 

 
and if the  are regulated on  so is . 
[Hint: Fix  Use Theorem 2 of Chapter  with 

 
Then show that 

 

Given  define  and  as in Problem 12 of Chapter  Using the hint given there, show that 
and  are regulated if  and  are.

Show that the function  need not be regulated even if  and  are. 
[Hint: Let 

 
Proceed.]

 Given  regulated on  put 

 
call it the  at . 
(i) Prove that  is discontinuous at  iff  i.e., iff 

 Exercise 5.10.E. 1

1 −3

 Exercise 5.10.E. 1′

(a) −(g)

 Exercise 5.10.E. 2∗

2. T

→ f( uniformly ) on I = [a, b]gn (5.10.E.1)

gn I, f

p ∈ (a, b]. 4, §11

X = [a, p], Y = N ∪ {+∞}, q = +∞,  and F (x, n) = (x).gn (5.10.E.2)

f ( ) = (x) exists; p− lim
x→p−

lim
n→∞

gn (5.10.E.3)

 similarly for f ( ) . ]p+

 Exercise 5.10.E. 3

f , g : → ,E1 E1 f ∨ g f ∧ g 4, §8. f ∨ g

f ∧ g f g

 Exercise 5.10.E. 4

g ∘ f g f

f(x) = x ⋅ sin , g(x) = ,  and f(0) = g(0) = 0 with I = [0, 1].
1

x

x

|x|
(5.10.E.4)

 Exercise 5.10.E. 5

⇒ f : → (T , ρ),E1 I,

j(p) = max{ρ (f(p), f ( )) , ρ (f(p), f ( )) , ρ (f ( ) , f ( ))} ;p− p+ p− p+ (5.10.E.5)

jump p

f p ∈ I 0 j(p) > 0,
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(ii) For a fixed  prove that a closed subinterval  contains at most finitely many  with . 
[Hint: Otherwise, there is a sequence of distinct points  hence a subsequence  (Why?) Use
Theorem 1 of Chapter  §2, 

 Show that if  is regulated on  then it has at most countably many discontinuities in  all are of the
"jump" type (Problem 5). 
[Hint: By Problem 5, any closed subinterval  contains, for each  at most finitely many discontinuities  with 

 Thus for  obtain 

Prove that if  is complete, all maps  with  on  are regulated on  
[Hint: Use Corollary 1, Chapter 4, §2, to show that  and  exist. 
Say, 

 
but  is not Cauchy. Then find a subsequence,  and  such that 

 
Deduce a contradiction to  

Prove that if  is regulated on  then  (the closure  is compact in  whenever  is a
compact subset of  
[Hint: Given  in , find  such that  (use  Then
"imitate" the proof of Theorem 1 in Chap  suitably. Distinguish the cases: 
(i) all but finitely many  are ; 
(ii) infinitely many  exceed  or 
(iii) infinitely many  equal .]

5.10.E: Problems on Regulated Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

(∃n ∈ N) j(p) > .
1

n
(5.10.E.6)

n ∈ N , J ⊆ I x j(x) > 1/n

∈ J, j( ) > ,xm xm
1
n

→ p ∈ J.xmk

4,  to show that f ( ) or f ( ) fails to exist. ]p− p+

 Exercise 5.10.E. 6

⇒ f : → (T , ρ)E1 I, I;

J ⊆ I n, x

j(x) > 1/n. n = 1, 2, … ,  countably many such x. ]

 Exercise 5.10.E. 7

E f : → E,E1 [I] < +∞Vf I = [a, b], I.

f ( )p− f ( )p+

→ p with  < p ( , p ∈ I) ,xn xn xn (5.10.E.7)

{f ( )}xn { } ↑,xnk
ε > 0

|f ( ) −f ( )| ≥ ε, k = 1, 3, 5, …xnk+1 xnk (5.10.E.8)

[I] < +∞.Vf

 Provide a similar argument for the case  > p. ]xn

 Exercise 5.10.E. 8

f : → (T , ρ)E1 I, f [B]
¯ ¯¯̄¯̄ ¯̄¯

 of f [B]) (T , ρ) B

I.

{ }zm f [B]
¯ ¯¯̄¯̄ ¯̄¯

{ } ⊆ f [B]ym ρ ( , ) → 0zm ym  Theorem 3 of Chapter 3, §16).

 ter 4, §8

xm < p

xm p;

xm p
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5.11: Integral Definitions of Some Functions

This page is a draft and is under active development. 

By Theorem 2 in §10,  exists on  whenever the function  is regulated on  and  is complete. Hence whenever
such an  is given, we can define a new function  by setting

on I for some  This is a convenient method of obtaining new continuous functions, differentiable on  (  countable).
We shall now apply it to obtain new definitions of some functions previously defined in a rather strenuous step-by-step manner.

I. Logarithmic and Exponential Functions. From our former definitions, we proved that

Now we want to treat this as a definition of logarithms. We start by setting

and .

Then  is continuous on  and  so it has an exact primitive on  and  separately (not on ). Thus we
can now define the log function on  by

By the very definition of an exact primitive, the log function is continuous and differentiable on ; its derivative on  is
. Thus we again have the symbolic formula

If  we can consider  Then the chain rule (Theorem 3 of §1) yields

Hence

Other properties of logarithms easily follow from (1). We summarize them now.

(i) .

(ii)  whenever .

(iii)  and .

(iv) The range of log is all of .

(v) For any positive ,

∫ f I f : → EE1 I, E

f F

F = f∫
x

a

(5.11.1)

a ∈ I. I −Q Q

lnx = dt, x > 0.∫
x

1

1

t
(5.11.2)

f(t) = , t ∈ , t ≠ 0,
1

t
E1 (5.11.3)

f(0) = 0

f I = (0, +∞) J = (−∞, 0), I J E1

I

dt = log x (also written  lnx) for x > 0.∫
x

1

1

t
(5.11.4)

I = (0, +∞) I

f

(log x = , x > 0.)′ 1

x
(5.11.5)

x < 0, log(−x).

(log(−x) = .  (Verify!))′ 1

x
(5.11.6)

(log |x| =  for x ≠ 0.)′ 1

x
(5.11.7)

 Theorem 5.11.1

log 1 = dt = 0∫ 1
1

1
t

log x < log y 0 < x < y

log x = +∞limx→+∞ log x = −∞limx→0+

E1

x, y ∈ E1

log(xy) = log x+log y and  log( ) = log x−log y.
x

y
(5.11.8)
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(vi) .

(vii)  where .

Proof

(ii) By (2),  on  so  is increasing on .

(iii) By Theorem 5 in §10,

since

Hence, substituting  we obtain

However, by Theorem 2 in §5 (substituting ),

Thus

as claimed. (We also proved that )

(iv) Assertion (iv) now follows by the Darboux property (as in Chapter 4, §9, Example (b)).

(v) With  fixed, we substitute  in

and obtain

Replacing  by  here, we have

Thus (v) is proved, and (vi) follows by induction over .

(vii) By continuity,

where the last equality follows by (vi). Now, L'Hôpital's rule yields

log = r ⋅ log a, a > 0, r ∈ Nar

log e = 1, e = limn→∞ (1 + )1
n

n

(log x > 0)′ I = (0, +∞), log x I

log x = dt = +∞lim
x→+∞

∫
∞

1

1

t
(5.11.9)

= +∞ (Chapter 4, §13, Example (b)).∑
n=1

∞ 1

n
(5.11.10)

y = 1/x,

log y = log .lim
y→0+

lim
x→+∞

1

x
(5.11.11)

s = 1/t

log = dt = − ds = −log x.
1

x
∫

1/x

1

1

t
∫

x

1

1

s
(5.11.12)

log y = log = − log x = −∞lim
y→0+

lim
x→+∞

1

x
lim

x→+∞
(5.11.13)

log = −log x.1
x

x, y t = xs

dt = log xy∫
xy

1

1

t
(5.11.14)

log xy = dt = ds∫
xy

1

1

t
∫

y

1/x

1

s

= ds+ ds∫
1

1/x

1

s
∫

y

1

1

s

= −log +log y
1

x
= log x+log y.

y 1/y

log = log x+log = log x−log y.
x

y

1

y
(5.11.15)

r

log e = log x = log = ,lim
x→e

lim
n→∞

(1 + )
1

n

n

lim
n→∞

log(1 +1/n)

1/n
(5.11.16)
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Letting  run over  we get (vii). 

Note 1. Actually, (vi) holds for any  with  as in Chapter 2, §§11-12. One uses the techniques from that section to prove it
first for rational  and then it follows for all real  by continuity. However, we prefer not to use this now.

Next, we define the exponential function ("exp") to be the inverse of the log function. This inverse function exists; it is continuous
(even differentiable) and strictly increasing on its domain (by Theorem 3 of Chapter 4, §9 and Theorem 3 of Chapter 5, §2) since
the log function has these properties. From  we get, as in 2,

The domain of the exponential is the range of its inverse, i.e.,  (cf. Theorem 1(iv)). Thus  is defined for all  The
range of exp is the domain of log, i.e.,  Hence exp  for all  Also, by definition,

Indeed, by Theorem 1(vi) and (vii), log  Hence (6) follows. If the definitions and rules of Chapter 2, §§11-12 are
used, this proof even works for any  by Note 1. Thus our new definition of exp agrees with the old one.

Our next step is to give a new definition of  for any  We set

In case , (8) becomes Theorem 1(vi). Thus for natural  our new definition of  is consistent with the previous one. We
also obtain, for ,

The proof is by taking logarithms. For example,

Thus  Similar arguments can be given for the rest of (9) and other laws stated in Chapter 2, §§11-12.

We can now define the exponential to the base  and its inverse, log  as before (see the example in Chapter 4, §5 and
Example (b) in Chapter 4, §9). The differentiability of the former is now immediate from (7), and the rest follows as before.

II. Trigonometric Functions. These shall now be defined in a precise analytic manner (not based on geometry).

We start with an integral definition of what is usually called the principal value of the arcsine function,

We shall denote it by  and set

 on .) Thus by definition,  on .

Note that  exists and is exact on  since  is continuous on  Thus

and so  is strictly increasing on . Also, .

= = 1.lim
x→0

log(1 +x)

x
lim
x→0

1

1 +x
(5.11.17)

x → 0,1
n □

r ∈ ,E1 ar

r, r

(log x = 1/x)′

(expx = expx (cf. §2, Example (B)).)′ (5.11.18)

E1 expx x ∈ .E1

(0, +∞). x > 0 x ∈ .E1

exp(log x)

exp0

expr

= x for x > 0

= 1 (cf. Theorem 1(i)),  and 

=  for r ∈ N .er

= r ⋅ log e = r.er

r

,ar a, r ∈ (a > 0).E1

ar

log ar
= exp(r ⋅ log a) or 

= r ⋅ log a (r ∈ ) .E1

r ∈ N r, ar

a, b > 0

(ab = ; = ; = ; (r, s ∈ ) .)r arbr ars ( )ar s ar+s aras E1 (5.11.19)

log(ab)r = r log ab = r(log a+log b) = r ⋅ log a+r ⋅ log b

= log +log = log( ).ar br arbr

(ab = .)r arbr

a(a > 0) ,a

arcsinx = dt.∫
x

0

1

1 − t2
− −−−−

√
(5.11.20)

F (x)

f(x) =  on I = (−1, 1).
1

1 −x2
− −−−−

√
(5.11.21)

(F = f = 0 −IE1 F = ∫ f I

∫ f I f I.

(x) = f(x) = > 0 for x ∈ I,F ′ 1

1 −x2
− −−−−

√
(5.11.22)

F I F (0) = f = 0∫ 0
0
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We also define the number  by setting

Then we obtain the following theorem.

 has the limits

Thus  becomes relatively continuous on  if one sets

i.e.,

Proof

We have

By substituting  in the last integral and setting, for brevity,   we obtain

Now as  we have  and hence  (for  is continuous at 0). Thus

Similarly, one gets 

The function  as redefined in Theorem 2 will be denoted by  It is a primitive of  on the closed interval  (exact on  Thus 
  and we may now write

Note 2. In classical analysis, the last integrals are regarded as so-called improper integrals, i.e., limits of integrals rather than
integrals proper. In our theory, this is unnecessary since  is a genuine primitive of  on 

For each integer  (negatives included), we now define  by

 is called the  th branch of the arcsine. Figure 26 shows the graphs of  and  ( that of  is dotted). We now obtain the
following theorem.

π

= 2 arcsin = 2F (c) = 2 f , c = .
π

2

1

2

−−
√ ∫

c

0

1

2

−−
√ (5.11.23)

 Theorem 5.11.2

F

F ( ) =  and F (− ) = − .1− π

2
1+ π

2
(5.11.24)

F = [−1, 1]I¯̄̄

F (1) =  and F (−1) = − ,
π

2

π

2
(5.11.25)

arcsin1 =  and  arcsin(−1) = − .
π

2

π

2
(5.11.26)

F (x) = f = f + f , c = .∫
x

0
∫

c

0
∫

x

c

1

2

−−
√ (5.11.27)

s = 1 − t2
− −−−−

√ y = ,1 −x2
− −−−−

√

f = dt = ds = F (c) −F (y). (Verify!)∫
x

c

∫
x

c

1

1 − t2
− −−−−

√
∫

c

y

1

1 −s2
− −−−−

√
(5.11.28)

x → ,1− y = → 0,1 −x2
− −−−−

√ F (y) → F (0) = 0 F

F ( ) = F (x) = ( f + f) = f +F (c) = 2 f = .1− lim
x→1−

lim
y→0

∫
c

0
∫

c

y

∫
c

0
∫

c

0

π

2
(5.11.29)

F (− ) = −π/2. □1+

F .F0 f I
¯̄̄

I).
(x) = f ,F0 ∫

x

0 −1 ≤ x ≤ 1,

= f  and π = f + f = f .
π

2
∫

1

0
∫

0

−1
∫

1

0
∫

1

−1
(5.11.30)

F0 f .I
¯̄̄

n : →Fn E1 E1

(x)Fn

Fn

= nπ+(−1 (x) for x ∈ = [−1, 1])nF0 I
¯̄̄

= 0  on  − .I
¯̄̄

Fn n F0 F1 F1
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(i) Each  is differentiable on  and relatively continuous on .

(ii)  is increasing on  if  is even, and decreasing if  is odd.

(iii)  on .

(iv) .

Proof

The proof is obvious from (12) and the properties of  Assertion (iv) ensures that the graphs of the  add up to one
curve. By (ii), each  is one to one (strictly monotone) on  Thus it has a strictly monotone inverse on the interval 

 , i.e., on the  -image of . For simplicity, we consider only

as shown on the  -axis in Figure 26. On these, we define for 

and

 Theorem 5.11.3

Fn I = (−1, 1) = [−1, 1]I
¯̄̄

Fn I¯̄̄ n n

(x) =F ′
n

(−1)
n

1−x2√
I

(−1) = (−1) = nπ−(−1 ; (1) = (1) = nπ+(−1Fn Fn−1 )n π

2
Fn Fn−1 )n π

2

.F0 Fn

Fn .I
¯̄̄

=Jn
¯ ¯¯̄¯ Fn [[−1, 1]] Fn I¯̄̄

= [− , ]  and  = [ , ] ,J0
¯ ¯¯̄¯ π

2

π

2
J1

π

2

3π

2
(5.11.31)

Y x ∈ J0
¯ ¯¯̄¯

sinx = (x)F −1
0 (5.11.32)

cosx = ,1 − xsin2− −−−−−−−
√ (5.11.33)
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and for 

and

On the rest of  we define  and  periodically by setting

Note that by Theorem 3(iv),

Thus (13) and (14) both yield  for the common endpoint  of  and  so the two formulas are consistent.
We also have

in agreement with (15). Thus the sine and cosine functions (briefly,  and ) are well defined on .

The sine and cosine functions (  and ) are differentiable, hence continuous, on all of  with derivatives  and 
 that is,

Proof

It suffices to consider the intervals  and  for by (15), all properties of  and  repeat themselves, with period  on
the rest of .

By (13),

where  is differentiable on  Thus Theorem 3 of §2 shows that  is differentiable on  and
that

i.e.,  and  However, by Theorem 3(iii),

Hence,

This proves the theorem for interior points of  as far as  is concerned.

As

we can use the chain rule (Theorem 3 in §1) to obtain

x ∈ J1
¯ ¯¯̄¯

sinx = (x)F −1
1 (5.11.34)

cosx = − .1 − xsin2− −−−−−−−
√ (5.11.35)

,E1 sinx cosx

sin(x+2nπ) = sinx and  cos(x+2nπ) = cosx, n = 0, ±1, ±2, … . (5.11.36)

( )= ( )= 1.F −1
0

π

2
F −1

1

π

2
(5.11.37)

sinπ/2 = 1 π/2 J0
¯ ¯¯̄¯ ,J1

¯ ¯¯̄¯

sin(− )= sin( ) = −1,
π

2

3π

2
(5.11.38)

s c E1

 Theorem 5.11.4

s c ,E1 = cs′

= −s;c′

(sinx = cosx and (cosx = −sinx.)′ )′ (5.11.39)

J0
¯ ¯¯̄¯

,J1
¯ ¯¯̄¯

s c 2π,
E1

s =  on  = [− , ] ,F −1
0 J0

¯ ¯¯̄¯ π

2

π

2
(5.11.40)

F0 I = (−1, 1). s = (−π/2, π/2)J0

(q) =  whenever p ∈ I and q = (p);s′ 1

(p)F ′
0

F0 (5.11.41)

q ∈ J p = s(q).

(p) = .F ′
0

1

1 −p2− −−−−
√

(5.11.42)

(q) = = cosq = c(q), q ∈ J.s′ 1 − qsin2
− −−−−−−−

√ (5.11.43)

J0
¯ ¯¯̄¯ s

c = =  on   (by (13)),1 −s2− −−−−
√ (1 − )s2

1

2 J0 (5.11.44)
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on noting that  on  Similarly, using (14), one proves that  and  on  (interior of .

Next, let  be an endpoint, say,  We take the left derivative

By L'Hôpital's rule, we get

since  on  However,  is left continuous at  (why?); hence so is  (Why?) Therefore,

Similarly, one shows that  Hence  and  as before. 

The other trigonometric functions reduce to  and  by their defining formulas

so we shall not dwell on them in detail. The various trigonometric laws easily follow from our present definitions; for hints, see the
problems below.

This page titled 5.11: Integral Definitions of Some Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

= (−2s) = −sc′ 1

2
(1 − )s2 −

1
2 s′ (5.11.45)

= c =s′ (1 − )s2
1
2 .J0 = cs′ = −sc′ J1 )J1

¯ ¯¯̄¯

q q = π/2.

(q) = , x ∈ .s′
− lim

x→q−

s(x) −s(q)

x−q
J0 (5.11.46)

(q) = = c(x)s′
− lim

x→q−

(x)s′

1
lim
x→q−

(5.11.47)

= cs′ .J0 s = F −1
0 q c = .1 −s2

− −−−−
√

(q) = c(x) = c(q), as required.s′
− lim

x→q−
(5.11.48)

(q) = c(q).s′
+ (q) = c(q)s′ (q) = −s(q)c′ □

s c

tanx = , cotx = , secx = ,  and  cscx = ,
sinx

cosx

cosx

sinx

1

cosx

1

sinx
(5.11.49)
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5.11.E: Problems on Exponential and Trigonometric Functions

Verify formula .

.

Prove formulas  of Chapter  from our new definitions.

Complete the missing details in the proofs of Theorems .

Prove that 
(i) ; 
(ii) ; 
(iii) ; 
(iv) ; 
(v) ; 
(vi)  and  for .

Prove that 
(i)  and 
(ii)  for . 
[Hint: For (i), let  Show that  hence  is constant, say, 

Prove the following for  
(i)  hence . 
(ii)  hence . 
[Hint for  Fix  and let  Define  by

 

With  as in the text, show that the sine increases on  if  is even and decreases if  is odd. How about the cosine? Find
the endpoints of .

 Exercise 5.11.E. 1

(2)

 Exercise 5.11.E. 2

 Prove Note 1,  as suggested (using Chapter 2, §§11 −12)

 Exercise 5.11.E. 3

(1) 2, §§11 −12

 Exercise 5.11.E. 4

2 −4

 Exercise 5.11.E. 5

sin0 = sin(nπ) = 0

cos 0 = cos(2nπ) = 1

sin = 1π

2

sin(− ) = −1π

2

cos(± ) = 0π

2

| sinx| ≤ 1 | cos x| ≤ 1 x ∈ E1

 Exercise 5.11.E. 6

sin(−x) = −sinx

cos(−x) = cos x x ∈ E1

h(x) = sinx +sin(−x). = 0;h′ h

h = q on  .  Substitute x = 0 to find q.  For (ii), use (13) −(15). ]E1

 Exercise 5.11.E. 7

x, y ∈ :E1

sin(x +y) = sinx cos y +cos x siny; sin(x + ) = cos xπ
2

cos(x +y) = cos x cos y −sinx siny; cos(x + ) = −sinxπ
2

(i) : x, y p = x +y. h : →E1 E1

h(t) = sin t cos(p − t) +cos t sin(p − t), t ∈ .E1 (5.11.E.1)

 Proceed as in Problem 6.  Then let t = x. ]

 Exercise 5.11.E. 8

Jn
¯ ¯¯̄¯

Jn
¯ ¯¯̄¯

n n

Jn
¯ ¯¯̄¯
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6.1: Directional and Partial Derivatives
In Chapter 5 we considered functions  of one real variable.

Now we take up functions  where both  and  are normed spaces.

The scalar field of both is always assumed the same:  or  (the complex field). The case  is excluded here; thus all is
assumed finite.

We mostly use arrowed letters  for vectors in the domain space  and nonarrowed letters for those in  and for
scalars.

As before, we adopt the convention that  is defined on all of  with  if not defined otherwise.

Note that, if  one can express any point  as

with  and  a unit vector. For if  set

and if  set  and any  will do. We often use the notation

First of all, we generalize Definition 1 in Chapter 5, §1.

Given  and  we define the directional derivative of  along  (or  -directed derivative of 
at  by

if this limit exists in  (finite).

We also define the  -directed derived function,

as follows. For any ,

Thus  is always defined, but the name derivative is used only if the limit (1) exists (finite). If it exists for each  in a set 
 we call  (in classical notation  the  -directed derivative of  on .

Note that, as  tends to  over the line  Thus  can be treated as a relative limit over that line. Observe
that it depends on both the direction and the length of  Indeed, we have the following result.

Given  and a scalar  we have

Moreover,  is a genuine derivative iff  is.

Proof

f : → EE1

f : → EE ′ E ′ E

E1 C E = E∗

, , … , , ,p ⃗  q ⃗  x⃗  y ⃗  z ⃗  ,E ′ E

f ,E ′ f( ) = 0x⃗ 

∈ ,p ⃗  E ′ ∈x⃗  E ′

= + t ,x⃗  p ⃗  u⃗  (6.1.1)

t ∈ E1 u⃗  ≠ ,x⃗  p ⃗ 

t = | − | and  = ( − );x⃗  p ⃗  u⃗ 
1

t
x⃗  p ⃗  (6.1.2)

= ,x⃗  p ⃗  t = 0, u⃗ 

= Δ = − = t (t ∈ , , ∈ ) .t ⃗  x⃗  x⃗  p ⃗  u⃗  E1 t ⃗  u⃗  E ′ (6.1.3)

 Definition 1

f : → EE ′ , ∈ ( ≠ ),p ⃗  u⃗  E ′ u⃗  0
→

f u⃗  u⃗  f)

p ⃗ 

f( ) = [f( + t ) −f( )],Du ⃗  p ⃗  lim
t→0

1

t
p ⃗  u⃗  p ⃗  (6.1.4)

E

u⃗ 

f : → E,Du ⃗  E ′ (6.1.5)

∈p ⃗  E ′

={D f( )u ⃗  p ⃗ 
[f( + t ) −f( )]limt→0

1
t p ⃗  u⃗  p ⃗ 

0

 if this limit exists, 

 otherwise. 
(6.1.6)

fDu ⃗  p ⃗ 

B ⊆ ,E ′ fDu ⃗  ∂f/∂ )u⃗  u⃗  f B

t → 0, x⃗  p ⃗  = + t .x⃗  p ⃗  u⃗  f( )Du ⃗  p ⃗ 

.u⃗ 

 Corollary 6.1.1

f : → E, ≠ ,E ′ u⃗  0
→

s ≠ 0,

f = s f .Dsu ⃗  Du ⃗  (6.1.7)

f( )Dsu ⃗  p ⃗  f( )Du ⃗  p ⃗ 
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Set  in (1) to get

In particular, taking  we have

Thus all reduces to the case  where  is a unit vector. This device, called normalization, is often used, but actually it
does not simplify matters.

If  then  is a function of  scalar variables  and  has the  basic unit vectors  This
example leads us to the following definition.

If in formula (1),  and  for a fixed  we call  the partially derived function for  with respect
to  denoted

and the limit (1) is called the partial derivative of  at  with respect to  denoted

If it exists for all  we call  the partial derivative (briefly, partial) of  on  with respect to .

In any case, the derived functions  are always defined on all of 

If  we often write  for  and

Note 1. If  scalars are also "vectors," and  coincides with  as defined in Chapter 5, §1 (except where ).
Explain!

Note 2. As we have observed, the  -directed derivative (1) is obtained by keeping  on the line 

If  the line is parallel to the th axis; so all coordinates of  except  remain fixed  and  behaves like
a function of one variable,  Thus we can compute  by the usual rules of differentiation, treating all  as constants
and  as the only variable.

For example, let  Then

Note 3. More generally, given  and  set

Then  so

t = sθ

s f( ) = [f( +θs ) −f( )] = f( ). □Du ⃗  p ⃗  lim
θ→0

1

θ
p ⃗  u⃗  p ⃗  Dsu ⃗  p ⃗  (6.1.8)

s = 1/| |,u⃗ 

|s | = = 1 and  f = f .u⃗ 
| |u⃗ 

| |u⃗ 
Du ⃗ 

1

s
Dsu ⃗  (6.1.9)

f ,Dv ⃗  = sv ⃗  u⃗ 

= ( ) ,E ′ En C n f n (k = 1, … , n)xk E ′ n .e ⃗ k

 Definition 2

= ( )E ′ En C n =u⃗  e ⃗ k k ≤ n, fDu ⃗  f ,

,xk

f  or  ,Dk

∂f

∂xk

(6.1.10)

f ,p ⃗  ,xk

f( ),  or  f( ),  or  .Dk p ⃗ 
∂

∂xk

p ⃗ 
∂f

∂xk

∣

∣
∣

=x ⃗  p ⃗ 
(6.1.11)

∈ B,p ⃗  fDk f B, xk

f(k = 1, … , n)Dk ( ) .En C n

= ( ) ,E ′ E3 C 3 x, y, z , , ,x1 x2 x3

, ,  for  f (k = 1, 2, 3).
∂f

∂x

∂f

∂y

∂f

∂z
Dk (6.1.12)

= ,E ′ E1 fD1 f ′ = ±∞f ′

u⃗  x⃗  = + t .x⃗  p ⃗  u⃗ 

= ,u⃗  e ⃗ k k ,x⃗  ,xk ( = , i ≠ k) ,xi pi f

.xk fDk (i ≠ k)xi

xk

f(x, y) = y.x2

= f(x, y) = 2xy and  = f(x, y) = .
∂f

∂x
D1

∂f

∂y
D2 x2 (6.1.13)

p ⃗  ≠ ,u⃗  0
→

h(t) = f( + t ), t ∈ .p ⃗  u⃗  E1 (6.1.14)

h(0) = f( );p ⃗ 
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if the limit exists. Thus all reduces to a function  of one real variable.

For functions  the existence of a finite derivative ("differentiability") at  implies continuity at  (Theorem 1 of

Chapter 5, §1). But in the general case,  this may fail even if  exists for all .

(a) Define  by

Fix a unit vector  in  Let  To find  use the  of Note 3 :

and  if  Hence

and  if  Thus  exists for all  Yet  is discontinuous at  (see Problem 9 in Chapter 4, §3).

(b) Let

Then  on the -axis; so .

Yet  is discontinuous at  (even relatively so) over any line   For on that line,  if 
so  but .

Thus continuity at  fails. (But see Theorem 1 below!)

Hence, if differentiability is to imply continuity, it must be defined in a stronger manner. We do it in §3. For now, we prove
only some theorems on partial and directional derivatives, based on those of Chapter 5.

If  has a -directed derivative at  then  is relatively continuous at  over the line

Proof

Set .

By Note 3, our assumption implies that  (a function on ) is differentiable at 

By Theorem 1 in Chapter 5, §1, then,  is continuous at  so

f( )Du ⃗  p ⃗  = [f( + t ) −f( )]lim
t→0

1

t
p ⃗  u⃗  p ⃗ 

= lim
t→0

h(t) −h(0)

t −0
= (0)h′

h

f : → E,E1 p p

f : → E,E ′ f( )Du ⃗  p ⃗  ≠u⃗  0
→

 Examples

f : →E2 E1

f(x, y) = , f(0, 0) = 0.
yx2

+x4 y2
(6.1.15)

= ( , )u⃗  u1 u2 .E2 = (0, 0).p ⃗  f(p),Du ⃗  h

h(t) = f( + t ) = f(t ) = f (t , t ) =  if  ≠ 0,p ⃗  u⃗  u⃗  u1 u2

tu2
1u2

+t2u4
1 u2

2

u2 (6.1.16)

h = 0 = 0.u2

f( ) = (0) =  if  ≠ 0,Du ⃗  p ⃗  h′
u2

1

u2
u2 (6.1.17)

(0) = 0h′ = 0.u2 ( )Du ⃗  0
→

.u⃗  f 0
→

f(x, y) ={
x +y

1

 if xy = 0,

 otherwise.
(6.1.18)

f(x, y) = x x f(0, 0) = 1D1

f 0
→

y = ax (a ≠ 0). f(x, y) = 1 (x, y) ≠ (0, 0);

f(x, y) → 1 f(0, 0) = 0 +0 = 0

0
→

 Theorem 6.1.1

f : → EE ′ u⃗  ∈ ,p ⃗  E ′ f p ⃗ 

= + t ( ≠ ∈ ) .x⃗  p ⃗  u⃗  0
→

u⃗  E ′ (6.1.19)

h(t) = f( + t ), t ∈p ⃗  u⃗  E1

h E1 0.

h 0;

h(t) = h(0) = f( ),lim
t→0

p ⃗  (6.1.20)
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i.e.,

But this means that  as  over the line  for, on that line, 

Thus, indeed,  is relatively continuous at  as stated. 

Note that we actually used the substitution  This is admissible since the dependence between  and  is one-to-tone
(Corollary 2(iii) of Chapter 4, §2). Why?

Let .

If  is relatively continuous on the segment  and has a -directed derivative on  (  countable),
then

Proof

Set again  and .

Then  and  is continuous on  (Why?)

As  is relatively continuous on  so is  on the interval  (cf. Chapter 4, §8, Example
(1)).

Now fix  If  our assumptions imply the existence of

This can fail for at most a countable set  of points  (those for which 

Thus  is differentiable on  and so, by Corollary 1 in Chapter 5, §4,

Now as  and  formula (2) follows. 

If in Theorem 2,  and if  has a -directed derivative at least on the open line segment  then

for some .

Proof

The proof is as in Theorem 2, based on Corollary 3 in Chapter 5, §2 (instead of Corollary 1 in Chapter 5, §4).

Theorems 2 and 3 are often used in "normalized" form, as follows.

f( + t ) = f( ).lim
t→0

p ⃗  u⃗  p ⃗  (6.1.21)

f( ) → f( )x⃗  p ⃗  →x⃗  p ⃗  = + t ,x⃗  p ⃗  u⃗  = + t .x⃗  p ⃗  u⃗ 

f ,p ⃗  □

= + t .x⃗  p ⃗  u⃗  x t

 Theorem 6.1.2

∋ = − , ≠E ′ u⃗  q ⃗  p ⃗  u⃗  0
→

f : → EE ′ I = L[ , ]p ⃗  q ⃗  u⃗  I −Q Q

|f( ) −f( )| ≤ sup| f( )| , ∈ I −Q.q ⃗  p ⃗  Du ⃗  x⃗  x⃗  (6.1.22)

h(t) = f( + t )p ⃗  u⃗  g(t) = + tp ⃗  u⃗ 

h = f ∘ g, g .E1

f I = L[ , ],p ⃗  q ⃗  h = f ∘ g J = [0, 1] ⊂ E1

∈ J.t0 = + ∈ I −Q,x⃗ 0 p ⃗  t0u⃗ 

f ( )Du ⃗  x⃗ 0 = [f ( + t ) −f ( )]lim
t→0

1

t
x⃗ 0 u⃗  x⃗ 0

= [f ( + + t ) −f ( + )]lim
t→0

1

t
p ⃗  t0u⃗  u⃗  p ⃗  t0u⃗ 

= [h ( + t) −h ( )]lim
t→0

1

t
t0 t0

= ( ) . (Explain!)h′ t0

Q′ ∈ Jt0 ∈ Q).x⃗ 0

h J − ;Q′

|h(1) −h(0)| ≤ | (t)| = | f( )| .sup
t∈J−Q′

h′ sup
∈I−Qx ⃗ 

Du ⃗  x⃗  (6.1.23)

h(1) = f( + ) = f( )p ⃗  u⃗  q ⃗  h( ) = f( ),0
→

p ⃗  □

 Theorem 6.1.3

E = E1 f u⃗  L( , ),p ⃗  q ⃗ 

f( ) −f( ) = f ( )q ⃗  p ⃗  Du ⃗  x⃗ 0 (6.1.24)

∈ L( , )x⃗ 0 p ⃗  q ⃗ 
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If in Theorems 2 and 3, we set

then formulas (2) and (3) can be written as

and

for some .

For by Corollary 1,

so (2') and (3') follow.

This page titled 6.1: Directional and Partial Derivatives is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

 Corollary 6.1.2

r = | | = | − | ≠ 0 and  = ,u⃗  q ⃗  p ⃗  v ⃗ 
1

r
u⃗  (6.1.25)

|f( ) −f( )| ≤ | − | sup | f( )| , ∈ I −Q,q ⃗  p ⃗  q ⃗  p ⃗  Dv ⃗  x⃗  x⃗  (6.1.26)

f( ) −f( ) = | − | f ( )q ⃗  p ⃗  q ⃗  p ⃗ Dv ⃗  x⃗ 0 (6.1.27)

∈ L( , )x⃗ 0 p ⃗  q ⃗ 

f = r f = | − | f ;Du ⃗  Dv ⃗  q ⃗  p ⃗ Dv ⃗  (6.1.28)
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6.1.E: Problems on Directional and Partial Derivatives

Complete all missing details in the proof of Theorems 1 to 3 and Corollaries 1 and 2.

Complete all details in Examples (a) and (b). Find  and  also for  Do Example (b) in two ways: (i) use
Note 3; (ii) use Definition 2 only.

In Examples (a) and (b) describe . Compute it for \(\vec{u =(1,1)=\vec{p}.\) 
In (b), show that  has no directional derivatives  except if  or  Give two proofs: (i) use Theorem 1; (ii) use
definitions only.

Prove that if  has a zero partial derivative,  on a convex set  then  does not depend on 
for  (Use Theorems 1 and 2.)

Describe  and  on the various parts of  and discuss the relative continuity of  over lines through  given that 
 equals: 

 
(Set  wherever the formula makes no sense.)

 Prove that if  has a local maximum or minimum at  then  for every vector  in  
[Hint: Use Note 3, then Corollary 1 in Chapter 5, §2.

State and prove the Finite Increments Law (Theorem 1 of Chapter 5, §4) for directional derivatives. 
[Hint: Imitate Theorem 2 using two auxiliary functions,  and .]

State and prove Theorems 4 and 5 of Chapter 5, §1, for directional derivatives.

6.1.E: Problems on Directional and Partial Derivatives is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 6.1.E. 1

 Exercise 6.1.E. 2

f( )D1 p ⃗  f( )D2 p ⃗  ≠ 0.p ⃗ 

 Exercise 6.1.E. 3

f : →Du ⃗  E2 E1

f f( )Du ⃗  p ⃗  ∥u⃗  e ⃗ 1 ∥ .u⃗  e ⃗ 2

 Exercise 6.1.E. 4

f : ( ) → EEn C n f = 0,Dk A, f( )x⃗  ,xk

∈ A.x⃗ 

 Exercise 6.1.E. 5

fD1 fD2 ,E2 f ,0
→

f(x, y)

 (i)  ;xy

+x2 y2

 (iii)  +x sin ;
xy

|x|
1
y

 (v)  sin(y cos x);

 (ii) the integral part of x +y;

 (iv) xy ;
−x2 y2

+x2 y2

 (vi)  .xy

(6.1.E.1)

f = 0

 Exercise 6.1.E. 6

⇒ f : →E ′ E1 ∈ ,p ⃗  E ′ f( ) = 0Du ⃗  p ⃗  ≠u⃗  0
→

.E ′

 Exercise 6.1.E. 7

h k

 Exercise 6.1.E. 8
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6.2: Linear Maps and Functionals. Matrices
For an adequate definition of differentiability, we need the notion of a linear map. Below,  and  denote normed spaces
over the same scalar field,  or 

A function  is a linear map if and only if for all  and scalars 

equivalently, iff for all such  and 

If  such a map is also called a linear operator.

If the range space  is the scalar field of  (i.e.,  or  the linear  is also called a (real or complex) linear functional on 

Note 1. Induction extends formula (1) to any "linear combinations":

for all  and scalars .

Briefly: A linear map  preserves linear combinations.

Note 2. Taking  in (1), we obtain  if  is linear.

(a) Let  Fix a vector  in  and set

(inner product; see Chapter 3, §§1-3 and §9).

Then

so  is linear. Note that if  then by definition,

If, however,  then

where  is the conjugate of the complex number .

By Theorem 3 in Chapter 4, §3,  is continuous (a polynomial!).

Moreover,  is a scalar (in  or  Thus the range of  lies in the scalar field of  so  is a linear functional on

, ,E ′ E ′′ E

E1 C.

 Definition 1

f : → EE ′ , ∈x⃗  y ⃗  E ′ a, b

f(a +b ) = af( ) +bf( );x⃗  y ⃗  x⃗  y ⃗  (6.2.1)

, ,x⃗  y ⃗  a

f( + ) = f(x) +f(y) and f(a ) = af( ). (Verify!)x⃗  y ⃗  x⃗  x⃗  (6.2.2)

E = ,E ′

E ,E ′ E1 C, ) f

.E ′

f ( ) = f ( )∑
i=1

m

aix⃗ i ∑
i=1

m

ai x⃗ i (6.2.3)

∈x⃗ i E ′ ai

f

a = b = 0 f( ) = 00
→

f

 Examples

= ( ) .E ′ En C n = ( , … , )v ⃗  v1 vn E ′

(∀ ∈ ) f( ) = ⋅x⃗  E ′ x⃗  x⃗  v ⃗  (6.2.4)

f(a +b )x⃗  y ⃗  = (a ) ⋅ +(b ) ⋅x⃗  v ⃗  y ⃗  v ⃗ 
= a( ⋅ ) +b( ⋅ )x⃗  v ⃗  y ⃗  v ⃗ 
= af( ) +bf( );x⃗  y ⃗ 

f = ,E ′ En

f( ) = ⋅ = = .x⃗  x⃗  v ⃗  ∑
k=1

n

xkvk ∑
k=1

n

vkxk (6.2.5)

= ,E ′ C n

f( ) = ⋅ = = ,x⃗  x⃗  v ⃗  ∑
k=1

n

xk v̄̄̄k ∑
k=1

n

v̄̄̄kxk (6.2.6)

v̄̄̄k vk

f

f( ) = ⋅x⃗  x⃗  v ⃗  E1 C). f ;E ′ f

.E ′
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(b) Let  Let  be the set of all functions  that are of class  (Chapter 5, §6) on , hence bounded
there (Theorem 2 of Chapter 4, §8).

As in Example (C) in Chapter 3, §10,  is a normed linear space, with norm

Here each function  is treated as a single "point" in  The 
distance between two such points,  and  equals  by definition.

Now define a map  on  by setting  (derivative of  on ). As every  is of class  so is 

Thus  and so  is a linear operator. (Its linearity follows from Theorem 4 in Chapter 5, §1.)

(c) Let again  Let  be the set of all functions  that are bounded and have antiderivatives (Chapter 5, §5)
on  With norm  as in Example (b),  is a normed linear space.

Now define  by

with  as in Chapter 5, §5. (Recall that  is an element of  if  ) By Corollary 1 in Chapter 5, §5,  is a linear
map of  into . (Why?)

(d) The zero map  on  is always linear. (Why?)

A linear map  is continuous (even uniformly so) on all of  iff it is continuous at  equivalently, iff there is a
real  such that

(We call this property linear boundedness.)

Proof

Assume that  is continuous at  Then, given  there is  such that

whenever .

Now, for any  we surely have

Hence

or, by linearity,

i.e.,

I = [0, 1]. E ′ u : I → E CD∞ I

E ′

∥u∥ = |u(x)|.sup
x∈I

(6.2.7)

u ∈ E ′ .E ′

u v, ∥u −v∥,

D E ′ D(u) = u′ u I u ∈ E ′ C ,D∞ .u′

D(u) = ∈ ,u′ E ′ D : →E ′ E ′

I = [0, 1]. E ′ u : I → E

I. ∥u∥ E ′

ϕ : → EE ′

ϕ(u) = u,∫
1

0
(6.2.8)

∫ u u∫ 1
0 E u : I → E. ϕ

E ′ E

f = 0 E ′

 Theorem 6.2.1

f : → EE ′ E ′ ;0
→

c > 0

(∀ ∈ ) |f( )| ≤ c| |.x⃗  E ′ x⃗  x⃗  (6.2.9)

f .0
→

ε > 0, δ > 0

|f( ) −f( )| = |f( )| ≤ εx⃗  0
→

x⃗  (6.2.10)

| − | = | | < δx⃗  0
→

x⃗ 

≠ ,x⃗  0
→

= < δ.
∣

∣
∣

δx⃗ 

| |x⃗ 

∣

∣
∣

δ

2
(6.2.11)

(∀ ≠ ) f ( ) ≤ ε,x⃗  0
→ ∣

∣
∣

δx⃗ 

2| |x⃗ 

∣

∣
∣ (6.2.12)

|f( )| ≤ ε,
δ

2| |x⃗ 
x⃗  (6.2.13)
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By Note 2, this also holds if .

Thus, taking  we obtain

Now assume (3). Then

or, by linearity,

Hence  is uniformly continuous (given  take  This, in turn, implies continuity at  so all conditions are
equivalent, as claimed. 

A linear map need not be continuous. But, for  and  we have the following result.

(i) Any linear map on  or  is uniformly continuous.

(ii) Every linear functional on  has the form

for some unique vector  dependent on  only.

Proof

Suppose  is linear; so  preserves linear combinations.

But every  is such a combination,

Thus, by Note 1,

Here the function values  are fixed vectors in the range space  say,

so that

Thus  is a polynomial in  real variables  hence continuous (even uniformly so, by Theorem 1).

In particular, if  (i.e.,  is a linear functional) then all  in (5) are real numbers; so they form a vector

and (5) can be written as

|f( )| ≤ | |.x⃗ 
2ε

δ
x⃗  (6.2.14)

=x⃗  0
→

c = 2ε/δ,

(∀ ∈ ) f( ) ≤ c| | (linear boundedness).x⃗  E ′ x⃗  x⃗  (6.2.15)

(∀ , ∈ ) |f( − )| ≤ c| − |;x⃗  y ⃗  E ′ x⃗  y ⃗  x⃗  y ⃗  (6.2.16)

(∀ , ∈ ) |f( ) −f( )| ≤ c| − |.x⃗  y ⃗  E ′ x⃗  y ⃗  x⃗  y ⃗  (6.2.17)

f ε > 0, δ = ε/c). ;0
→

□

En ,C n

 Theorem 6.2.2

En C n

( )En C n

f( ) = ⋅ (dot product)x⃗  x⃗  v ⃗  (6.2.18)

∈ ( ) ,v ⃗  En C n f

f : → EEn f

∈x⃗  En

= (Theorem 2 in Chapter 3, §§1-3).x⃗  ∑
k=1

n

xke ⃗ k (6.2.19)

f( ) = f ( ) = f ( ) .x⃗  ∑
k=1

n

xke ⃗ k ∑
k=1

n

xk e ⃗ k (6.2.20)

f ( )e ⃗ k E,

f ( ) = ∈ E,e ⃗ k vk (6.2.21)

f( ) = f ( ) = , ∈ E.x⃗  ∑
k=1

n

xk e ⃗ k ∑
k=1

n

xkvk vk (6.2.22)

f n ,xk

E = E1 f vk

= ( , … , )  in  ,v ⃗  v1 vk En (6.2.23)

f( ) = ⋅ .x⃗  x⃗  v ⃗  (6.2.24)
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The vector  is unique. For suppose there are two vectors,  and  such that

Then

By Problem 10 of Chapter 3, §§1-3, this yields  or  This completes the proof for 

It is analogous for  only in (ii) the  are complex and one has to replace them by their conjugates  when forming the
vector  to obtain . Thus all is proved. 

Note 3. Formula (5) shows that a linear map  is uniquely determined by the  function values .

If further  the vectors  are  -tuples of scalars,

We often write such vectors vertically, as the  "columns" in an array of  "rows" and  "columns":

Formally, (6) is a double sequence of  terms, called an  matrix. We denote it by  where for ,

Thus linear maps  (or  correspond one-to-one to their matrices 

The easy proof of Corollaries 1 to 3 below is left to the reader.

If  are linear, so is

for any scalars .

If further  and  with  and , then

A map  is linear iff

where .

Hint: For the "if," use Corollary 1. For the "only if," use formula (5) above.

If  and  are linear, so is the composite 

Our next theorem deals with the matrix of the composite linear map 

v ⃗  u⃗  ,v ⃗ 

(∀ ∈ ) f( ) = ⋅ = ⋅ .x⃗  En x⃗  x⃗  v ⃗  x⃗  u⃗  (6.2.25)

(∀ ∈ ) ⋅ ( − ) = 0.x⃗  En x⃗  v ⃗  u⃗  (6.2.26)

− = ,v ⃗  u⃗  0
→

= .v ⃗  u⃗  E = .En

;C n vk v̄̄̄k

v ⃗  f( ) = ⋅x⃗  x⃗  v ⃗  □

f : ( ) → EEn C n n = f ( )vk e ⃗ k

E = ( ) ,Em C m vk m

= ( , … , ) .vk v1k vmk (6.2.27)

n m n

.

⎛

⎝

⎜⎜⎜⎜⎜

v11

v21

⋮
vm1

v12

v22

⋮
vm2

…
…

⋱
…

v1n

v2n

⋮
vmn

⎞

⎠

⎟⎟⎟⎟⎟
(6.2.28)

mn m ×n [f ] = ( ) ,vik k = 1, 2, … , n

f ( ) = = ( , … , ) .e ⃗ k vk v1k vmk (6.2.29)

f : →En Em f : → )C n C m [f ].

 Corollary 6.2.1

f , g : → EE ′

h = af +bg (6.2.30)

a, b

= ( )E ′ En C n E = ( ) ,Em C m [f ] = ( )vik [g] = ( )wik

[h] = (a +b ) .vik wik (6.2.31)

 Corollary 6.2.2

f : ( ) → EEn C n

f( ) = ,x⃗  ∑
k=1

n

vkxk (6.2.32)

= f ( )vk e ⃗ k

 Corollary 6.2.3

f : →E ′ E ′′ g : → EE ′′ h = g ∘ f .

g ∘ f
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Let  and  be linear, with

If  and  then

where

Proof

Denote the basic unit vectors in  by

those in  by

and those in  by

Then for ,

and for ,

Also,

Thus

But the representation in terms of the  is unique (Theorem 2 in Chapter 3, §§1-3), so, equating coefficients, we get (7). 

Note 4. Observe that  is obtained, so to say, by "dot-multiplying" the th row of  (an  matrix) by the th column of 
(an  matrix).

It is natural to set

or

 Theorem 6.2.3

f : →E ′ E ′′ g : → EE ′′

= ( ) , = ( ) ,  and E = ( ) .E ′ En C n E ′′ Em C m Er C r (6.2.33)

[f ] = ( )vik [g] = ( ) ,wji

[h] = [g ∘ f ] = ( ) ,zjk (6.2.34)

= , j = 1, 2, … , r, k = 1, 2, … , n.zjk ∑
i=1

m

wjivik (6.2.35)

E ′

, … , ,e′
1 e′

n (6.2.36)

E ′′

, … , ,e′′
1 e′′

m (6.2.37)

E

, … , .e1 er (6.2.38)

k = 1, 2, … , n

f ( ) = =  and h ( ) = ,e′
k vk ∑

i=1

m

vike′′
i e′

k ∑
j=1

r

zjkej (6.2.39)

i = 1, … m

g( ) = .e′′
i ∑

j=1

r

wjiej (6.2.40)

h ( ) = g(f ( )) = g( ) = g( ) = ( ) .e′
k e′

k ∑
i=1

m

vike′′
i ∑

i=1

m

vik e′′
i ∑

i=1

m

vik ∑
j=1

r

wjiej (6.2.41)

h ( ) = = ( ) .e′
k ∑

j=1

r

zjkej ∑
j=1

r

∑
i=1

m

wjivik ej (6.2.42)

ej

□

zjk j [g] r ×m k [f ]
m ×n

[g][f ] = [g ∘ f ], (6.2.43)

( ) ( ) = ( ) ,wji vik zjk (6.2.44)
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with  as in (7).

Caution. Matrix multiplication, so defined, is not commutative.

The set of all continuous linear maps  (for fixed  and ) is denoted 

If  we write  instead.

For each  in  we define its norm by

Note that  by Theorem 1.

 is a normed linear space under the norm defined above and under the usual operations on functions, as in Corollary
1.

Proof

Corollary 1 easily implies that  is a vector space. We now show that  is a genuine norm.

The triangle law,

follows exactly as in Example (C) of Chapter 3, §10. (Verify!)

Also, by Problem 5 in Chapter 2, §§8-9,  Hence  for any scalar 

As noted above, .

It remains to show that  iff  is the zero map. If

then  when  Hence, if ,

As  we have  for all .

Thus  implies  and the converse is clear. Thus all is proved. 

Note 5. A similar proof, via  and properties of lub, shows that

and

It also follows that  is the least real  such that

Verify. (See Problem 3'.)

zjk

 Definition 2

f : → EE ′ E ′ E L( , E).E ′

E = ,E ′ L(E)

f L ( , E) ,E ′

∥f∥ = |f( )|.sup
| |≤1x ⃗ 

x⃗  (6.2.45)

∥f∥ < +∞,

 Theorem 6.2.4

L( , E)E ′

L( , E)E ′ ∥ ⋅ ∥

∥f +g∥ ≤ ∥f∥ +∥g∥, (6.2.46)

sup |af( )| = |a| sup |f( )|.x⃗  x⃗  ∥af∥ = |a|∥f∥ a.

0 ≤ ∥f∥ < +∞

∥f∥ = 0 f

∥f∥ = |f( )| = 0,sup
| |≤1x ⃗ 

x⃗  (6.2.47)

|f( )| = 0x⃗  | | ≤ 1.x⃗  ≠x⃗  0
→

f( ) = f( ) = 0.
x⃗ 

| |x⃗ 
1

| |x⃗ 
x⃗  (6.2.48)

f( ) = 0,0
→

f( ) = 0x⃗  ∈x⃗  E ′

∥f∥ = 0 f = 0, □

f ( )x ⃗ 

| |x ⃗ 

∥f∥ = sup
≠0x ⃗ 

∣

∣
∣
f( )x⃗ 

| |x⃗ 

∣

∣
∣ (6.2.49)

(∀ ∈ ) |f( )| ≤ ∥f∥| |.x⃗  E ′ x⃗  x⃗  (6.2.50)

∥f∥ c

(∀ ∈ ) |f( )| ≤ c| |.x⃗  E ′ x⃗  x⃗  (6.2.51)
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As in any normed space, we define distances in  by

making it a metric space; so we may speak of convergence, limits, etc. in it.

If  and  then

Proof

By Note 5,

Hence

and so

This page titled 6.2: Linear Maps and Functionals. Matrices is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

L( , E)E ′

ρ(f , g) = ∥f −g∥, (6.2.52)

 Corollary 6.2.4

f ∈ L( , )E ′ E ′′ g ∈ L( , E),E ′′

∥g ∘ f∥ ≤ ∥g∥∥f∥. (6.2.53)

(∀ ∈ ) |g(f( ))| ≤ ∥g∥|f( )| ≤ ∥g∥∥f∥| |.x⃗  E ′ x⃗  x⃗  x⃗  (6.2.54)

(∀ ≠ ) ≤ ∥g∥∥f∥,x⃗  0
→ ∣

∣
∣

(g ∘ f)( )x⃗ 

| |x⃗ 

∣

∣
∣ (6.2.55)

∥g∥∥f∥ ≥ = ∥g ∘ f∥. □sup
≠x ⃗  0̄̄̄

|(g ∘ f)( )|x⃗ 

| |x⃗ 
(6.2.56)
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6.2.E: Problems on Linear Maps and Matrices

Verify Note 1 and the equivalence of the two statements in Definition 1.

In Examples (b) and (c) show that 

 
i.e.,  in  
[Hint: Use Theorem 1 in Chapter 4, §2.] 
Hence deduce the following. 
(i) If  is complete, then the map  in Example (c) is continuous. 
[Hint: Use Theorem 2 of Chapter 5, §9, and Theorem 1 in Chapter 4, §12.] 
(ii) The map  of Example (b}) is not continuous. 
[Hint: Use Problem 3 in Chapter 5, §9.]

Prove Corollaries 1 to 3.

Show that 

 
[Hint: From linearity of  deduce that  if  Hence one may disregard vectors of length  when
computing sup  Why?]

Find the matrices  and the defining formulas for the linear maps 
 if 

(i)  
(ii)  
(iii)  
(iv) 

In Problem 4, use Note 4 to find the product matrices  and  Hence obtain the defining formulas for 
 and 

 Exercise 6.2.E. 1

 Exercise 6.2.E. 2

→ f(uniformly) on I iff  ∥ −f∥ → 0,fn fn (6.2.E.1)

→ ffn .E ′

E ϕ

D

 Exercise 6.2.E. 3

 Exercise 6.2.E. 3′

∥f∥ = |f( )| = |f( )| = .sup
| |≤1x ⃗ 

x⃗  sup
| |=1x ⃗ 

x⃗  sup
≠x ⃗  0

→

|f( )|x⃗ 

| |x⃗ 
(6.2.E.2)

f |f( )| ≥ |f(cx)|x⃗  |c| < 1. < 1
|f( )|.x⃗ 

 Exercise 6.2.E. 4

[f ], [g], [h], [k],
f : → , g : → , h : → , k : →E2 E1 E3 E4 E4 E2 E1 E3

f ( ) = 3, f ( ) = −2;e ⃗ 1 e ⃗ 2
g ( ) = (1, 0, −2, 4), g ( ) = (0, 2, −1, 1), g ( ) = (0, 1, 0, −1);e ⃗ 1 e ⃗ 2 e ⃗ 3
h ( ) = (2, 2), h ( ) = (0, −2), h ( ) = (1, 0), h ( ) = (−1, 1);e ⃗ 1 e ⃗ 2 e ⃗ 3 e ⃗ 4
k(1) = (0, 1, −1).

 Exercise 6.2.E. 5

[k][f ], [g][k], [f ][h], [h][g].
k ∘ f , g ∘ k, f ∘ h, h ∘ g.
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For  matrices (with  and  fixed) define addition and multiplication by scalars as follows: 

 
Show that these matrices form a vector space over  (or ).

With matrix addition as in Problem 6, and multiplication as in Note 4, show that all  matrices form a noncommutative
ring with unity, i.e., satisfy the field axioms (Chapter 2, §§1-4) except the commutativity of multiplication and existence of
multiplicative inverses (give counterex-amplest!). 
Which is the "unity" matrix?

Let  be linear. Prove the following statements. 

(i) The derivative  exists and equals  for every  
(ii)  is relatively continuous on any line in  (use Theorem 1 in §1); 
(iii)  carries any such line into a line in 

Let  be linear. Prove that if some  has a -directed derivative at  so has  and 
. 

[Hint: Use Problem 8.]

A set  in a vector space  is said to be linear (or a linear subspace of ) iff  for any  and any
scalars  Prove the following. 
(i) Any such  is itself a vector space. 
(ii) If  is a linear map and  is linear in  (respectively, in ), so is  in  (respectively, so is  in ).

A set  in a vector space  is called the span of a set  iff  consists of all linear combinations of vectors
from . We then also say that  spans . 
Prove the following: 
(i)  is the smallest linear subspace of  that contains . 
(ii) If  is linear and  then  in .

A set  in a vector space  is called a basis iff each  has a unique representation as 

 
for some scalars  If so, the number  of the vectors in  is called the dimension of  and  is said to be - dimensional.

 Exercise 6.2.E. 6

m ×n m n

a[f ] +b[g] = [af +bg] if f , g ∈ L ( , ) ( or L ( , )) .En Em C n C m (6.2.E.3)

E1 C

 Exercise 6.2.E. 7

n ×n

 Exercise 6.2.E. 8

f : → EE ′

f( )Du ⃗  p ⃗  f( )u⃗  , ∈ ( ≠ );p ⃗  u⃗  E ′ u⃗  0
→

f E ′

f E.

 Exercise 6.2.E. 9

g : → EE ′′ f : →E ′ E ′′ u⃗  ∈ ,p ⃗  E ′ h = g ∘ f ,
h( ) = g ( f( ))Du ⃗  p ⃗  Du ⃗  p ⃗ 

 Exercise 6.2.E. 10

A V (A ⊆ V ) V a +b ∈ Ax⃗  y ⃗  , ∈ Ax⃗  y ⃗ 

a, b.
A

f : → EE ′ A E ′ E f [A] E [A]f −1 E ′

 Exercise 6.2.E. 11

A V B ⊆ A(A = sp(B)) A

B B A

A = sp(B) V B

f : V → E A = sp(B), f [A] = sp(f [B]) E

 Exercise 6.2.E. 12

B = { , , … , }x⃗ 1 x⃗ 2 x⃗ n V ∈ Vv ⃗ 

=v ⃗  ∑
i=1

n

aix⃗ i (6.2.E.4)

.ai n B V , V n
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Examples of such spaces are  and  (the  form a basis!). 
(i) Show that  is a basis iff it spans  (see Problem 11) and its elements  are linearly independent, i.e., 

 
(ii) If  is finite-dimensional, all linear maps on  are uniformly continuous. (See also Problems 3 and 4 of §6.)

Prove that if  is continuous and  

 
then  is linear; so, by Corollary 2,  where . 
[Hint: Show that  first for  (note:  terms); then for rational 
then for  and  Any  is a limit of rationals; so use continuity and Theorem 1 in Chapter 4, §2.]

6.2.E: Problems on Linear Maps and Matrices is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

En C n e ⃗ k
B V x⃗ i

=  iff all   vanish.∑
i=1

n

aix⃗ i 0
→

ai (6.2.E.5)

E ′ E ′

 Exercise 6.2.E. 13

f : → EE1 (∀x, y ∈ )E1

f(x +y) = f(x) +f(y), (6.2.E.6)

f f(x) = vx v = f(1)
f(ax) = af(x); a = 1, 2, … nx = x +x +⋯ +x, n a = m/n;

a = 0 a = −1. a ∈ E1
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6.3: Differentiable Functions
As we know, a function  is differentiable at  iff, with  and ,

Setting  and  we may write this equation as

or

Now define a map  by .

Then  is linear and continuous, i.e.,  so by Corollary 2 in §2, we may express  as follows: there is a map 
 such that

We adopt this as a definition in the general case,  as well.

A function  where  and  are normed spaces over the same scalar field) is said to be differentiable at a point 
 iff there is a map

such that

that is,

As we show below,  is unique (for a fixed  if it exists.

We call  the differential of  at  briefly denoted  As it depends on  we also write  for  and  for 
.

Some authors write  for  and call it the derivative at  but we shall not do this (see Preface). Following M. Spivak,
however, we shall use  for its matrix, as follows.

If  and  and  is differentiable at  we set

and call it the Jacobian matrix of  at .

Note 1. In Chapter 5, §6, we did not define  as a mapping. However, if  the function value

f : → E (on  )E1 E1 p ∈ E1 Δf = f(x) −f(p) Δx = x−p

(p) =  exists  ( finite ).f ′ lim
x→p

Δf

Δx
(6.3.1)

Δx = x−p = t, Δf = f(p+ t) −f(p), (p) = v,f ′

−v = 0,lim
t→0

∣

∣
∣
Δf

t

∣

∣
∣ (6.3.2)

|f(p+ t) −f(p) −vt| = 0lim
t→0

1

|t|
(6.3.3)

ϕ : → EE1 ϕ(t) = tv, v= (p) ∈ Ef ′

ϕ ϕ ∈ L ( ,E) ;E1 (1)

ϕ ∈ L ( ,E)E1

|Δf −ϕ(t)| = 0.lim
t→0

1

|t|
(6.3.4)

f : → E,E ′

 Definition: Differentiable at a Point

f : → EE ′ E ′ E

∈p ⃗  E ′

ϕ ∈ L ( ,E)E ′ (6.3.5)

|Δf −ϕ( )| = 0;lim
→t ⃗  0

→

1

| |t ⃗ 
t ⃗  (6.3.6)

[f( + ) −f( ) −ϕ( )] = 0.lim
→t ⃗  0

→

1

| |t ⃗ 
p ⃗  t ⃗  p ⃗  t ⃗  (6.3.7)

ϕ ),p ⃗ 

ϕ f ,p ⃗  df . ,p ⃗  df( ; )p ⃗  t ⃗  df( )t ⃗  df( ; ⋅)p ⃗ 

df

( )f ′ p ⃗  df( ; ⋅)p ⃗  ,p ⃗ 

" [ ( )] "f ′ p ⃗ 

 Definition: Jacobian matrix

= ( )E ′ En Cn E = ( ) ,Em Cm f : → EE ′ ,p ⃗ 

[ ( )] = [df( ; ⋅)]f ′ p ⃗  p ⃗  (6.3.8)

f p ⃗ 

df = ,E ′ E1

df(p; t) = vt = (p)Δxf ′ (6.3.9)
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is as in Chapter 5, §6.

Also,  is a  matrix with single term  (Why?) This motivated Definition 2.

(uniqueness of  If  is differentiable at  then the map  described in Definition 1 is unique (dependent on 
and  only).

Proof

Suppose there is another linear map  such that

Let  By Corollary 1 in §2,  is linear.

Also, by the triangle law,

Hence, dividing by ,

By  and  the right side expressions tend to 0 as  Thus

This remains valid also if  over any line through  so that  remains constant, say  where  is an
arbitrary (but fixed) unit vector.

Then

is constant; so it can tend to  only if it equals  so  for any unit vector 

Since any  can be written as  linearity yields

Thus  on  and so  after all, proving the uniqueness of 

If  is differentiable at  then

(i)  is continuous at ;

(ii) for any  has the -directed derivative

Proof

By assumption, formula  holds for .

[ (p)]f ′ 1 ×1 (p).f ′

 Theorem 6.3.1

df). f : → EE ′ ,p ⃗  ϕ f

p ⃗ 

g : → EE ′

[f( + ) −f( ) −g( )] = [Δf −g( )] = 0.lim
→t ⃗  0

→

1

| |t ⃗ 
p ⃗  t ⃗  p ⃗  t ⃗  lim

→t ⃗  0
→

1

| |t ⃗ 
t ⃗  (6.3.10)

h = ϕ−g. h

|h( )| = |ϕ( ) −g( )| ≤ |Δf −ϕ( )| +|Δf −g( )|.t ⃗  t ⃗  t ⃗  t ⃗  t ⃗  (6.3.11)

| |t ⃗ 

h( ) = |h( )| ≤ |Δf −ϕ( )| + |Δf −g( )|.
∣

∣

∣
∣

t ⃗ 

| |t ⃗ 

∣

∣

∣
∣

1

| |t ⃗ 
t ⃗  1

| |t ⃗ 
t ⃗  1

| |t ⃗ 
t ⃗  (6.3.12)

(3) (2), → .t ⃗  0
→

h( ) = 0.lim
→t ⃗  0

→

t ⃗ 

| |t ⃗ 
(6.3.13)

→t ⃗  0
→

,0
→

/| |t ⃗  t ⃗  /| | = ,t ⃗  t ⃗  u⃗  u⃗ 

h( ) = h( )
t ⃗ 

| |t ⃗ 
u⃗  (6.3.14)

0 0, h( ) = 0u⃗  .u⃗ 

∈x⃗  E ′ = | | ,x⃗  x⃗ u⃗ 

h( ) = | |h( ) = 0.x⃗  x⃗  u⃗  (6.3.15)

h = ϕ−g = 0 ,E ′ ϕ = g ϕ. □

 Theorem 6.3.2

f ,p ⃗ 

f p ⃗ 

≠ ,u⃗  0
→

u⃗ 

f( ) = df( ; ).Du ⃗  p ⃗  p ⃗  u⃗  (6.3.16)

(2) ϕ = df( ; ⋅)p ⃗ 
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Thus, given  there is  such that, setting  we have

or, by the triangle law,

Now, by Definition  is linear and continuous; so

Thus, making  in  with  fixed, we get

As  is just another notation for  this proves assertion (i).

Next, fix any  in  and substitute  for  in .

In other words,  is a real variable,  so that  satisfies .

Multiplying by  we use the linearity of  to get

As  is arbitrary, we have

But this is simply  by Definition 1 in §1.

Thus  proving 

Note 2. If  Theorem 2(iii) shows that if  is differentiable at  it has the  partials

But the converse fails: the existence of the  does not even imply continuity, let alone differentiability (see §1). Moreover,
we have the following result.

If  and if  is differentiable at  then

where .

Proof

By definition,  is a linear map for a fixed .

If  or  we may use formula (3) of §2, replacing  and  by  and  and get

ε > 0, δ > 0 Δf = f( + ) −f( )p ⃗  t ⃗  p ⃗ 

|Δf −ϕ( )| < ε whenever 0 < | | < δ;
1

| |t ⃗ 
t ⃗  t ⃗  (6.3.17)

|Δf | ≤ |Δf −ϕ( )| +|ϕ( )| ≤ ε| | + |ϕ( )|, 0 < | | < δ.t ⃗  t ⃗  t ⃗  t ⃗  t ⃗  (6.3.18)

1,ϕ

|ϕ( )| = |ϕ( )| = 0.lim
→t ⃗  0

→
t ⃗  0

→
(6.3.19)

→t ⃗  0
→

(5), ε

|Δf | = 0.lim
→t ⃗  0

→
(6.3.20)

t ⃗  Δ = − ,x⃗  x⃗  p ⃗ 

≠u⃗  0
→

,E ′ tu⃗  t ⃗  (4)

t 0 < t < δ/| |,u⃗  = tt ⃗  u⃗  0 < | | < δt ⃗ 

| |,u⃗  ϕ

ε| | > − = −ϕ( ) = −ϕ( ) .u⃗ 
∣

∣
∣
Δf

t

ϕ(t )u⃗ 

t

∣

∣
∣

∣

∣
∣
Δf

t
u⃗ 

∣

∣
∣

∣

∣
∣
f( + t ) −f( )p ⃗  u⃗  p ⃗ 

t
u⃗ 

∣

∣
∣ (6.3.21)

ε

ϕ( ) = [f( + t ) −f( )].u⃗  lim
t→0

1

t
p ⃗  u⃗  p ⃗  (6.3.22)

f( ),Du ⃗  p ⃗ 

f( ) = ϕ( ) = df( ; ),Du ⃗  p ⃗  u⃗  p ⃗  u⃗  (ii). □

= ( ),E ′ En Cn f ,p ⃗  n

f( ) = df ( ; ) , k = 1, … ,n.Dk p ⃗  p ⃗  e ⃗ k (6.3.23)

f( )Dk p ⃗ 

 Corollary 6.3.1

= ( )E ′ En Cn f : → EE ′ ,p ⃗ 

df( ; ) = f( ) = f( ),p ⃗  t ⃗  ∑
k=1

n

tkDk p ⃗  ∑
k=1

n

tk
∂

∂xk
p ⃗  (6.3.24)

= ( , … , )t ⃗  t1 tn

ϕ = df( ; ⋅)p ⃗  p ⃗ 

=E ′ En ,Cn f x⃗  ϕ ,t ⃗ 

ϕ( ) = df( ; ) = df ( ; ) = f( )t ⃗  p ⃗  t ⃗  ∑
k=1

n

tk p ⃗  e ⃗ k ∑
k=1

n

tkDk p ⃗  (6.3.25)
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by Note 2. 

Note 3. In classical notation, one writes  or  for  in (6). Thus, omitting  and  formula (6) is often written as

In particular, if  we write  for  This yields

(a familiar calculus formula).

Note 4. If the range space  in Corollary 1 is  then the  form an -tuple of scalars, i.e., a vector in 

In case  we denote it by

In case  we replace the  by their conjugates  and set

The vector  is called the gradient of  ("grad ") at .

From (6) we obtain

(dot product of  by  provided  (or  is differentiable at .

This leads us to the following result.

A function  (or ) is differentiable at  iff

for some .

In this case, necessarily  and .

Proof

If  is differentiable at  we may set  and 

Then by (7),

so by Definition 1, (8) results.

Conversely, if some  satisfies (8), set  Then (8) implies (2), and  is linear and continuous.

Thus by definition,  is differentiable at  so (7) holds.

Also,  is a linear functional on  By Theorem 2(ii) in §2, the  in  is unique, as is 

Thus by (7),  necessarily. 

□

Δxk dxk tk p ⃗  ,t ⃗ 

df = d + d +⋯ + d .
∂f

∂x1
x1

∂f

∂x2
x2

∂f

∂xn
xn (6.3.26)

n = 3, x, y, z , , .x1 x2 x3

df = dx+ dy+ dz
∂f

∂x

∂f

∂y

∂f

∂z
(6.3.27)

E (C),E1 f( )Dk p ⃗  n ( ).En Cn

f : → ,En E1

∇f( ) = ( f( ), … , f( )) = f( ).p ⃗  D1 p ⃗  Dn p ⃗  ∑
k=1

n

e ⃗ kDk p ⃗  (6.3.28)

f : → C,Cn f( )Dk p ⃗  f( )Dk p ⃗ 
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄

∇f( ) = .p ⃗  ∑
k=1

n

e ⃗ k f( )Dk p ⃗ 
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄

(6.3.29)

∇f( )p ⃗  f f p ⃗ 

df( ; ) = f( ) = ⋅ ∇f( )p ⃗  t ⃗  ∑
k=1

n

tkDk p ⃗  t ⃗  p ⃗  (6.3.30)

t ⃗  ∇f( )),p ⃗  f : →En E1 f : → C)Cn p ⃗ 

 Corollary 6.3.2

f : →En E1 f : → CCn p ⃗ 

|f( + ) −f( ) − ⋅ | = 0lim
→t ⃗  0¯̄̄

1

| |t ⃗ 
p ⃗  t ⃗  p ⃗  t ⃗  v ⃗  (6.3.31)

∈ ( )v ⃗  En Cn

= ∇f( )v ⃗  p ⃗  ⋅ = df( ; ), ∈ ( )t ⃗  v ⃗  p ⃗  t ⃗  t ⃗  En Cn

f ,p ⃗  ϕ = df( ; ⋅)p ⃗  = ∇f( )v ⃗  p ⃗ 

ϕ( ) = df( ; ) = ⋅ ;t ⃗  p ⃗  t ⃗  t ⃗  v ⃗  (6.3.32)

v ⃗  ϕ( ) = ⋅ .t ⃗  t ⃗  v ⃗  ϕ

f ;p ⃗ 

ϕ ( ).En Cn v ⃗  ϕ( ) = ⋅t ⃗  t ⃗  v ⃗  ϕ.

= ∇f( )v ⃗  p ⃗  □
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If  (real) is relatively continuous on a closed segment  and differentiable on  then

for some .

Proof

Let

By (7) and Theorem 2(ii),

for  Thus by formula (3') of Corollary 2 in §1,

for some 

As we know, the mere existence of partials does not imply differentiability. But the existence of continuous partials does. Indeed,
we have the following theorem.

Let .

If  has the partial derivatives  on all of an open set  and if the  are continuous at
some  then  is differentiable at .

Proof

With  as above, let

Then  is continuous (a polynomial!) and linear (Corollary 2 in §2).

Thus by Definition 1, it remains to show that

that is;

To do this, fix  As  is open and the  are continuous at  there is a  such that  and
simultaneously (explain this!)

Hence for any set 

 Corollary  (law of the mean)6.3.3

f : →En E1 L[ , ], ≠ ,p ⃗  q ⃗  p ⃗  q ⃗  L( , ),p ⃗  q ⃗ 

f( ) −f( ) = ( − ) ⋅ ∇f( )q ⃗  p ⃗  q ⃗  p ⃗  x⃗ 0 (6.3.33)

∈ L( , )x⃗ 0 p ⃗  q ⃗ 

r = | − |, = ( − ),  and r = ( − ).q ⃗  p ⃗  v ⃗ 
1

r
q ⃗  p ⃗  v ⃗  q ⃗  p ⃗  (6.3.34)

f( ) = df( ; ) = ⋅ ∇f( )Dv ⃗  x⃗  x⃗  v ⃗  v ⃗  x⃗  (6.3.35)

∈ L( , ).x⃗  p ⃗  q ⃗ 

f( ) −f( ) = r f ( ) = r ⋅ ∇f( ) = ( − ) ⋅ ∇f( )q ⃗  p ⃗  Dv ⃗  x⃗ 0 v ⃗  x⃗ 0 q ⃗  p ⃗  x⃗ 0 (6.3.36)

∈ L( , ). □x⃗ 0 p ⃗  q ⃗ 

 Theorem 6.3.3

= ( )E ′ En Cn

f : → EE ′ f(k = 1, … ,n)Dk A ⊆ ,E ′ fDk

∈ A,p ⃗  f p ⃗ 

p ⃗ 

ϕ( ) = f( ) with  = ∈ .t ⃗  ∑
k=1

n

tkDk p ⃗  t ⃗  ∑
k=1

n

tke ⃗ k E ′ (6.3.37)

ϕ

|Δf −ϕ( )| = 0;lim
→ | |t ⃗  0

→
t ⃗ 

t ⃗  (6.3.38)

f( + ) −f( ) − f( ) = 0.lim
∈t ⃗  0

→

1

| |t ⃗ 

∣

∣
∣ p ⃗  t ⃗  p ⃗  ∑

k=1

n

tkDk p ⃗ 
∣

∣
∣ (6.3.39)

ε > 0. A fDk ∈ Ap ⃗  δ > 0 (δ) ⊆ AGp ⃗ 

(∀ ∈ (δ)) | f( ) − f( )| < , k = 1, … ,n.x⃗  Gp ⃗  Dk x⃗  Dk p ⃗ 
ε

n
(6.3.40)

I ⊆ (δ)Gp ⃗ 
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Now fix any  and let ,

Then

 and all  lie in  for

as required.

As  is convex (Chapter 4, §9), the segments  all lie in  and by assumption,  has all
partials there.

Hence by Theorem 1 in §1,  is relatively continuous on all .

All this also applies to the functions  defined by

(Why?) Here

(Why?)

Thus by Corollary 2 in §1, and (11) above,

since

by construction.

Combine with (12), recalling that the th coordinates  for  and  differ by  so we obtain

Also,

Thus,

| f( ) − f( )| ≤ . (Why?)sup
∈Ix ⃗ 

Dk x⃗  Dk p ⃗ 
ε

n
(6.3.41)

∈ , 0 < | | < δ,t ⃗  E ′ t ⃗  =p ⃗ 0 p ⃗ 

= + , k = 1, … ,n.p ⃗ 
k p ⃗  ∑

i=1

k

tiei (6.3.42)

= + = + ,p ⃗ n p ⃗  ∑
i=1

n

tie ⃗ i p ⃗  t ⃗  (6.3.43)

| − | = | | ,p ⃗ 
k p ⃗ 

k−1 tk p ⃗ 
k (δ),Gp ⃗ 

| − | = = ≤ = | | < δ,p ⃗ k p ⃗ 
∣

∣

∣
∣∑
i=1

k

tiei
∣

∣

∣
∣ ∑

i=1

k

| |ti
2

− −−−−−

⎷


 ∑

i=1

n

| |ti
2

− −−−−−

√ t ⃗  (6.3.44)

(δ)Gp = L [ , ]Ik p ⃗ k−1 p ⃗ k (δ) ⊆ A;Gp ⃗  f

f Ik

,gk

(∀ ∈ ) ( ) = f( ) − f( ), k = 1, … ,n.x⃗  E ′ gk x⃗  x⃗  xkDk p ⃗  (6.3.45)

( ) = f( ) − f( ).Dkgk x⃗  Dk x⃗  Dk p ⃗  (6.3.46)

| ( ) − ( )|gk p ⃗ k gk p ⃗ k−1 ≤ | − | | f( ) − f( )|p ⃗ k p ⃗ k−1 sup
x∈Ik

Dk x⃗  Dk p ⃗ 

≤ | | ≤ | |,
ε

n
tk

ε

n
t ⃗ 

| − | = | | ≤ | |,p ⃗ 
k p ⃗ 

k−1 tke ⃗ k t ⃗  (6.3.47)

k ,xk p ⃗ k p ⃗ k−1 ;tk

| ( ) − ( )|gk p ⃗ 
k gk p ⃗ 

k−1 = |f ( ) −f ( ) − f( )|p ⃗ 
k p ⃗ 

k−1 tkDk p ⃗ 

≤ | |.
ε

n
t ⃗ 

[f ( ) −f ( )]∑
k=1

n

p ⃗ k p ⃗ k−1 = f ( ) −f ( )p ⃗ n p ⃗ 0

= f( + ) −f( ) = Δf(see above).p ⃗  t ⃗  p ⃗ 
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As  is arbitrary, (10) follows, and all is proved. 

If  (or  is differentiable at  with  then  is an  matrix,

Proof

By definition,  is the matrix of the linear map   Here

by Corollary 1.

As  we can compute  componentwise by Theorem 5 of Chapter 5, §1, and Note 2 in §1 to get

where the  are the basic vectors in  (Recall that the  are the basic vectors in 

Thus

Also,

The uniqueness of the decomposition (Theorem 2 in Chapter 3, §§1-3) now yields

If here  then  while  for  Thus we obtain

Hence,

where

But by Note 3 of §2,  (written vertically) is the th column of the  matrix  Thus formula
(14) results indeed. 

In conclusion, let us stress again that while  is a constant, for a fixed  is a mapping

Δf − f( )
∣

∣
∣ ∑

k=1

n

tkDk p ⃗ 
∣

∣
∣ = [f ( ) −f ( ) − f( )]

∣

∣
∣∑
k=1

n

p ⃗ 
k p ⃗ 

k−1 tkDk p ⃗ 
∣

∣
∣

≤ n ⋅ | | = ε| |.
ε

n
t ⃗  t ⃗ 

ε □

 Theorem 6.3.4

f : →En Em f : → )Cn Cm ,p ⃗  f = ( , … , ) ,f1 fm [ ( )]f ′ p ⃗  m×n

[ ( )] = [ ( )] , i = 1, … ,m, k = 1, … ,n.f ′ p ⃗  Dkfi p ⃗  (6.3.48)

[ ( )]f ′ p ⃗  ϕ = df( ; ⋅),p ⃗  ϕ = ( , … , ) .ϕ1 ϕm

ϕ( ) = f( )t ⃗  ∑
k=1

n

tkDk p ⃗  (6.3.49)

f = ( , … , ) ,f1 fm f( )Dk p ⃗ 

f( )Dk p ⃗  = ( ( ), … , ( ))Dkf1 p ⃗  Dkfm p ⃗ 

= ( ), k = 1, 2, … ,n,∑
i=1

m

e′
iDkfi p ⃗ 

e′
i ( ) .Em Cm e ⃗ k ( ) . )En Cn

ϕ( ) = ( ).t ⃗  ∑
i=1

m

e′
iϕi t ⃗  (6.3.50)

ϕ( ) = ( ) = ( ).t ⃗  ∑
k=1

n

tk∑
i=1

m

e′
iDkfi p ⃗  ∑

i=1

m

e′
i∑
k=1

n

tkDkfi p ⃗  (6.3.51)

( ) = ( ), i = 1, … ,m, ∈ ( ) .ϕi t ⃗  ∑
k=1

n

tkDkfi p ⃗  t ⃗  En Cn (6.3.52)

= ,t ⃗  e ⃗ k = 1,tk = 0tj j≠ k.

( ) = ( ), i = 1, … ,m, k = 1, … ,n.ϕi e ⃗ k Dkfi p ⃗  (6.3.53)

ϕ ( ) = ( , , … , ) ,e ⃗ k v1k v2k vmk (6.3.54)

= ( ) = ( ).vik ϕi e ⃗ k Dkfi p ⃗  (6.3.55)

, … ,v1k vmk k m×n [ϕ] = [ ( )] .f ′ p ⃗ 

□

f( )Du ⃗  p ⃗  , df( ; ⋅)p ⃗  p ⃗ 
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especially "tailored" for .

The reader should carefully study at least the "arrowed" problems below.

This page titled 6.3: Differentiable Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The
Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

ϕ ∈ L ( ,E) ,E ′ (6.3.56)

p ⃗ 
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6.3.E: Problems on Differentiable Functions

Complete the missing details in the proofs of this section.

Verify Note 1. Describe  for  too. Give examples.

  is said to satisfy a Lipschitz condition  of order  at  iff 

 
Prove the following. 
(i) This implies continuity at  (but not conversely; see Problem 7 in Chapter 5, §1). 
(ii)  of order  implies differentiability at  with  on  
(iii) Differentiability at  implies  of order 1 (apply Theorem 1 in §2 to ). 
(iv) If  and  are differentiable at  then 

For the functions of Problem 5 in §1, find those  at which  is differentiable. Find 

 
[Hint: Use Theorem 3 and Corollary 1.]

 Prove the following statements. 
(i) If  is constant on an open globe  it is differentiable at each  and  on  
(ii) If the latter holds for each  (  countable), then  is constant on  (even on ) provided  is relatively
continuous there. 
[Hint: Given  use Theorem 2 in §1 to get .]

Do Problem 5 in case  is any open polygon-connected set in  (See Chapter 4, §9.)

 Prove the following. 
(i) If  are differentiable at  so is 

 Exercise 6.3.E. 1

 Exercise 6.3.E. 2

[ ( )]f ′ p ⃗  f : → ,E1 Em

 Exercise 6.3.E. 3

⇒ Amapf : → EE ′ (L) α > 0 p ⃗ 

(∃δ > 0)(∃K ∈ ) (∀ ∈ (δ)) |f( ) −f( )| ≤ K| − .E1 x⃗  G¬p ⃗  x⃗  p ⃗  x⃗  p ⃗ |α (6.3.E.1)

p ⃗ 

L > 1 ,p ⃗  df( ; ⋅) = 0p ⃗  .E ′

p ⃗  L ϕ = df

f g ,p ⃗ 

|Δf ||Δg| = 0.lim
→x ⃗  p ⃗ 

1

|Δ |x⃗ 
(6.3.E.2)

 Exercise 6.3.E. 4

p ⃗  f

∇f( ), df( ; ⋅),  and  [ ( )] .p ⃗  p ⃗  f ′ p ⃗  (6.3.E.3)

 Exercise 6.3.E. 5

⇒
f : → EE ′ G⊂ ,E ′ ∈ G,p ⃗  df( , ⋅) = 0p ⃗  .E ′

∈ G−Qp ⃗  Q f G G
¯ ¯¯̄

f

, ∈ G,p ⃗  q ⃗  f( ) = f( )p ⃗  q ⃗ 

 Exercise 6.3.E. 6

G .E ′

 Exercise 6.3.E. 7

⇒
f , g : → EE ′ ,p ⃗ 

h = af +bg, (6.3.E.4)
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for any scalars  (if  and  are scalar valued,  and  may be vectors; moreover, 

 
i.e., 

 
(ii) In case  or  deduce also that 

 Prove that if  are differentiable at  then so are 

 
(the latter, if  Moreover, with  and  show that 
(i)  and 
(ii) . 
If further  verify that 
(iii)  and 
(iv) . 
Prove (i) and (ii) for vector-valued  too. 
[Hints: (i) Set  with  and  as above. Verify that 

 
Use Problem 3(iv) and Definition 1. 
(ii) Let  Show that  Then apply (i) to ]

 Let  Prove that 
(i)  is linear iff all its  components  are; 
(ii)  is differentiable at  iff all  are, and then . Hence if  is complex, 

Prove the following statements. 
(i) If  then  is differentiable on  and ,  
(ii) Such is any first-degree monomial, hence any sum of such monomials.

Any rational function is differentiable in its domain. 
[Hint: Use Problems 10(i), 7, and 8. Proceed as in Theorem 3 in Chapter 4, §3.]

a, b f g a b

d(af +bg) = adf +bdg, (6.3.E.5)

dh( ; ) = adf( ; ) +bdg( ; ), ∈ .p ⃗  t ⃗  p ⃗  t ⃗  p ⃗  t ⃗  t ⃗  E ′ (6.3.E.6)

f , g : →Em E1 → C,Cm

∇h( ) = a∇f( ) +b∇g( ).p ⃗  p ⃗  p ⃗  (6.3.E.7)

 Exercise 6.3.E. 8

⇒ f , g : → (C)E ′ E1 ,p ⃗ 

h = gf  and k = .
g

f
(6.3.E.8)

f( ) ≠ 0).p ⃗  a = f( )p ⃗  b = g( ),p ⃗ 

dh = adg+bdf

dk = (adg−bdf)/a2

= ( ) ,E ′ En Cn

∇h( ) = a∇g( ) +b∇f( )p ⃗  p ⃗  p ⃗ 

∇k( ) = (a∇g( ) −b∇f( ))/p ⃗  p ⃗  p ⃗  a2

g,
ϕ = adg+bdf , a b

Δh−ϕ( ) = g( )(Δf −df( )) +f( )(Δg−dg( )) +(Δf)(Δg).t ⃗  p ⃗  t ⃗  p ⃗  t ⃗  (6.3.E.9)

F ( ) = 1/f( ).t ⃗  t ⃗  dF = −df/ .a2 gF .

 Exercise 6.3.E. 9

⇒ f : → ( ) , f = ( , … , ) .E ′ Em Cm f1 fm
f m fk
f p ⃗  fk df = (d , … , d )f1 fm f df = d + i ⋅ d .fre fim

 Exercise 6.3.E. 10

f ∈ L ( ,E)E ′ f ,E ′ df( ; ⋅) = fp ⃗  ∈ .p ⃗  E ′

 Exercise 6.3.E. 11
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Do Problem 8(i) in case  is only continuous at  and  Find 

Do Problem 8(i) for dot products  of functions  

Prove the following. 
(i) If  or  then  with  as in §2, Theorem 2(ii). 
(ii) If  is differentiable at  then 

 
Moreover, in case , 

 
and 

 
thus 

 
[Hints: Use the equality case in Theorem 4(c') of Chapter 3, §§1-3. Use formula (7), Corollary 2, and Theorem 2(ii).]

Show that Theorem 3 holds even if 
(i)  is discontinuous at  and 
(ii)  has partials on  only  countable,  provided  is continuous on  in each of the last  variables. 
[Hint: For  formula (13) still results by definition of  if a suitable  has been chosen.]

Show that Theorem 3 and Problem 15 apply also to any  where  is -dimensional with basis  (see
Problem 12 in §2) if we write  for . 
[Hints: Assume  (if not, replace  by  show that this yields another basis). Modify the proof so
that the  are still in  Caution: The standard norm of  does not apply here.]

Let  be differentiable at  For  set 

 Exercise 6.3.E. 12

g ,p ⃗  f( ) = 0.p ⃗  dh.

 Exercise 6.3.E. 13

h = f ⋅ g f , g : →E ′ Em ( ).Cm

 Exercise 6.3.E. 14

ϕ ∈ L ( , )En E1 ϕ ∈ L ( ,C) ,Cn ∥ϕ∥ = | |,v ⃗  v ⃗ 

f : → (f : → )En E1 Cn C 1 ,p ⃗ 

∥df( ; ⋅)∥ = |∇f( )|.p ⃗  p ⃗  (6.3.E.10)

f : →En E1

|∇f( )| ≥ f( ) if | | = 1p ⃗  Du ⃗  p ⃗  u⃗  (6.3.E.11)

|∇f( )| = f( ) when  =p ⃗  Du ⃗  p ⃗  u⃗ 
∇f( )p ⃗ 

|∇f( )|;p ⃗ 
(6.3.E.12)

|∇f( )| = f( ).p ⃗  max
| |=1u ⃗ 

Du ⃗  p ⃗  (6.3.E.13)

 Exercise 6.3.E. 15

fD1 ,p ⃗ 

f A−Q (Q ∉ Q),p ⃗  f A n−1
k = 1, f ,D1 δ

 Exercise 6.3.E. 16∗

f : → EE ′ E ′ n { , … , }u⃗ 1 u⃗ n
fDk fDu ⃗ k

| | = 1, 1 ≤ k ≤ nu⃗ k u⃗ k / | | ;u⃗ k u⃗ k
p ⃗ k (δ).Gp ⃗  En

 Exercise 6.3.E. 17

: →fk E1 E1 (k = 1, … ,n).pk = ( , … , ) ∈ ,x⃗  x1 xn En

F ( ) = ( )  and G( ) = ( ) .x⃗  ∑
k=1

n

fk xk x⃗  ∏
k=1

n

fk xk (6.3.E.14)
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Show that  and  are differentiable at  Express  and  in terms of the . 
[Hint: In order to use Problems 7 and 8, replace the  by suitable functions defined on  For  "imitate" Problem 6
in Chapter 5, §1.]

6.3.E: Problems on Differentiable Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

F G = ( , … , ) .p ⃗  p1 pn ∇F ( )p ⃗  ∇G( )p ⃗  ( )f ′
k pk

fk .En ∇G( ),p ⃗ 
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6.4: The Chain Rule. The Cauchy Invariant Rule
To generalize the chain rule (Chapter 5, §1), we consider the composite  of two functions,  and 

 with  and  as before.

If

are differentiable at  and  respectively, then

is differentiable at  and

Briefly: "The differential of the composite is the composite of differentials."

Proof

Let  and .

As  and  are linear continuous maps, so is  We must show that 

Here it is more convenient to write  or  for the " " of Definition 1 in §3. For brevity, we set (with 

Then what we have to prove (see Definition 1 in §3) reduces to

while the assumed existence of  and  can be expressed as

and

From (2) and (3), recalling that  and  we obtain

Using (4), with  and the linearity of  we rewrite (6) as

(Verify!) Thus the desired formula (5) will be proved if we show that

and

h = g∘ f f : →E ′ E ′′

g : → E,E ′′ , ,E ′ E ′′ E

 Theorem  (chain rule)6.4.1

f : →  and g : → EE ′ E ′′ E ′′ (6.4.1)

p ⃗  = f( ),q ⃗  p ⃗ 

h = g∘ f (6.4.2)

,p ⃗ 

dh( ; ⋅) = dg( ; ⋅) ∘ df( ; ⋅).p ⃗  q ⃗  p ⃗  (6.4.3)

U = df( ; ⋅),V = dg( ; ⋅),p ⃗  q ⃗  ϕ = V ∘U

U V ϕ. ϕ = dh( ; ⋅).p ⃗ 

Δx⃗  −x⃗  p ⃗  t ⃗  = f( ))q ⃗  p ⃗ 

w( )x⃗ 

u( )x⃗ 

v( )y ⃗ 

= Δh−ϕ(Δ ) = h( ) −h( ) −ϕ( − ), ∈ ,x⃗  x⃗  p ⃗  x⃗  p ⃗  x⃗  E ′

= Δf −U(Δ ) = f( ) −f( ) −U( − ), ∈ ,x⃗  x⃗  p ⃗  x⃗  p ⃗  x⃗  E ′

= Δg−V (Δ ) = g( ) −g( ) −V ( − ), ∈ .y ⃗  y ⃗  q ⃗  y ⃗  q ⃗  y ⃗  E ′′

= 0,lim
→x ⃗  p ⃗ 

w( )x⃗ 

| − |x⃗  p ⃗ 
(6.4.4)

df( ; ⋅) = Up ⃗  dg( ; ⋅) = Vq ⃗ 

= 0,lim
→x ⃗  p ⃗ 

u( )x⃗ 

| − |x⃗  p ⃗ 
(6.4.5)

= 0, = f( ).lim
→ȳ̄̄ q ⃗ 

v( )y ⃗ 

| − |y ⃗  q ⃗ 
q ⃗  p ⃗  (6.4.6)

h = g∘ f ϕ = V ∘U,

w( )x⃗  = g(f( )) −g( ) −V (U( − ))x⃗  q ⃗  x⃗  p ⃗ 

= g(f( )) −g( ) −V (f( ) −f( ) −u( )).x⃗  q ⃗  x⃗  p ⃗  x⃗ 

= f( ),y ⃗  x⃗  V ,

w( )x⃗  = g(f( )) −g( ) −V (f( ) −f( )) −V (u( ))x⃗  q ⃗  x⃗  p ⃗  x⃗ 

= v(f( )) +V (u( )).x⃗  x⃗ 

= 0lim
→x ⃗  p ⃗ 

V (u( ))x⃗ 

| − |x⃗  p ⃗ 
(6.4.7)
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Now, as  is linear and continuous, formula (5') yields (6'). Indeed,

by Corollary 2 in Chapter 4, §2. (Why?)

Similarly, (5") implies (6") by substituting  since

by Problem 3(iii) in §3. (Explain!) Thus all is proved. 

Note 1 (Cauchy invariant rule). Under the same assumptions, we also have

if .

For with  and  as above,

Thus if

we have

proving (7).

Note 2. If

then by Theorem 3 of §2 and Definition 2 in §3, we can write (1) in matrix form,

resembling Theorem 3 in Chapter 5, §1 (with  and  interchanged). Moreover, we have the following theorem.

With all as in Theorem 1, let

and

Then

or, in classical notation,

= 0.lim
→x ⃗  p ⃗ 

v(f( ))x⃗ 

| − |x⃗  p ⃗ 
(6.4.8)

V

= V ( ) = V (0) = 0lim
→x ⃗  p ⃗ 

V (u( ))x⃗ 

| − |x⃗  p ⃗ 
lim
→x ⃗  p ⃗ 

u( )x⃗ 

| − |x⃗  p ⃗ 
(6.4.9)

= f( ),y ⃗  x⃗ 

|f( ) −f( )| ≤ K| − |x⃗  p ⃗  x⃗  p ⃗  (6.4.10)

□

dh( ; ) = dg( ; )p ⃗  t ⃗  q ⃗  s ⃗  (6.4.11)

= df( ; ), ∈s ⃗  p ⃗  t ⃗  t ⃗  E ′

U V

dh( ; ⋅) = ϕ = V ∘U.p ⃗  (6.4.12)

= df( ; ) = U( ),s ⃗  p ⃗  t ⃗  t ⃗  (6.4.13)

dh( ; ) = ϕ( ) = V (U( )) = V ( ) = dg( ; ),p ⃗  t ⃗  t ⃗  t ⃗  s ⃗  q ⃗  s ⃗  (6.4.14)

= ( ) , = ( ) ,  and E = ( )E ′ En Cn E ′′ Em Cm Er C r (6.4.15)

[ ( )] = [ ( )] [ ( )] ,h′ p ⃗  g′ q ⃗  f ′ p ⃗  (6.4.16)

f g

 Theorem 6.4.2

= ( ) , = ( ) ,E ′ En Cn E ′′ Em Cm (6.4.17)

f = ( , … , ) .f1 fm (6.4.18)

h( ) = g( ) ( );Dk p ⃗  ∑
i=1

m

Di q ⃗ Dkfi p ⃗  (6.4.19)

h( ) = g( ) ⋅ ( ), k = 1, 2, … ,n.
∂

∂xk
p ⃗  ∑

i=1

m ∂

∂yi
q ⃗ 

∂

∂xk
fi p ⃗  (6.4.20)
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Proof

Fix any basic vector  in  and set

As  is differentiable at  so are its components  (Problem 9 in §3), and

by Theorem 2(ii) in §3. Using also Corollary 1 in §3, we get

But as  formula (7) yields

by Theorem 2(ii) in §3. Thus the result follows. 

Note 3. Theorem 2 is often called the chain rule for functions of several variables. It yields Theorem 3 in Chapter 5, §1, if 
.

In classical calculus one often speaks of derivatives and differentials of variables  rather than those of
mappings. Thus Theorem 2 is stated as follows.

Let  be differentiable. If, in turn, each

is differentiable for  then  is also differentiable as a composite function of the  variables  and ("simplifying"
formula (8)) we have

It is understood that the partials

while the  are at  where  This "variable" notation is convenient in computations, but may
cause ambiguities (see the next example).

Let  where  depends on  and 

Set  and  so

By (8'),

Here

e ⃗ k E ′

= df ( ; ) , = ( , … , ) ∈ .s ⃗  p ⃗  e ⃗ k s ⃗  s1 sm E ′′ (6.4.21)

f ,p ⃗  fi

= d ( ; ) = ( )si fi p ⃗  e ⃗ k Dkfi p ⃗  (6.4.22)

dg( ; ) = g( ) = ( ) g( ).q ⃗  s ⃗  ∑
i=1

m

siDi q ⃗  ∑
i=1

m

Dkfi p ⃗ Di q ⃗  (6.4.23)

= df ( ; ) ,s ⃗  p ⃗  e ⃗ k

dg( ; ) = dh ( ; ) = h( )q ⃗  s ⃗  p ⃗  e ⃗ k Dk p ⃗  (6.4.24)

□

m = n = 1

y = f ( , … , )x1 xn

u = g ( , … , )y1 ym

= ( , … , )yi fi x1 xn (6.4.25)

i = 1, … ,m, u n ,xk

= , k = 1, 2, … ,n.
∂u

∂xk
∑
i=1

m ∂u

∂yi

∂yi
∂xk

(6.4.26)

 and   are taken at some  ∈ ,
∂u

∂xk

∂yi
∂xk

p ⃗  E ′ (6.4.27)

∂u/∂yi = f( ),q ⃗  p ⃗  f = ( , … , ) .f1 fm

 Example

u = g(x, y, z), z x y :

z = (x, y).f3 (6.4.28)

(x, y) = x, (x, y) = y, f = ( , , ) ,f1 f2 f1 f2 f3 h = g∘ f ;

h(x, y) = g(x, y, z). (6.4.29)

= + + .
∂u

∂x

∂u

∂x

∂x

∂x

∂u

∂y

∂y

∂x

∂u

∂z

∂z

∂x
(6.4.30)

= = 1 and  = 0,
∂x

∂x

∂f1

∂x

∂y

∂x
(6.4.31)
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for  does not depend on  Thus we obtain

(Question: Is )

The trouble with (9) is that the variable  "poses" as both  and  On the left, it is  on the right, it is 

To avoid this, our method is to differentiate well-defined mappings, not "variables." Thus in (9), we have the maps

with  as indicated. Then if  Theorem 2 states (9) unambiguously as

where  and

(Why?) In classical notation,

(avoiding the "paradox" of (9)).

Nonetheless, with due caution, one may use the "variable" notation where convenient. The reader should practice both (see the
Problems).

Note 4. The Cauchy rule (7), in "variable" notation, turns into

where  and .

Indeed, by Corollary 1 in §3,

Now, in (7),

so by Problem 9 in §3,

Rewriting all in the "variable" notation, we obtain (10).

The "advantage" of (10) is that  has the same form, independently of whether  is treated as a function of the  or of the 
(hence the name "invariant" rule). However, one must remember the meaning of  and  which are quite different.

The "invariance" also fails completely for differentials of higher order (§5).

The advantages of the "variable" notation vanish unless one is able to "translate" it into precise formulas.

This page titled 6.4: The Chain Rule. The Cauchy Invariant Rule is shared under a CC BY 3.0 license and was authored, remixed, and/or curated
by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

f2 x.

= + .
∂u

∂x

∂u

∂x

∂u

∂z

∂z

∂x
(6.4.32)

(∂u/∂z)(∂z/∂x) = 0?

u g h. h; g.

g : → E and f : → ,E3 E2 E3 (6.4.33)

, ,f1 f2 f3 h = g∘ f ,

h( ) = g( ) + g( ) ⋅ f( ),D1 p ⃗  D1 q ⃗  D3 q ⃗  D1 p ⃗  (6.4.34)

∈p ⃗  E2

= f( ) = ( , , ( )) .q ⃗  p ⃗  p1 p2 f3 p ⃗  (6.4.35)

= +
∂h

∂x

∂g

∂x

∂g

∂z

∂f3

∂x
(6.4.36)

du = d = d ,∑
i=1

m
∂u

∂yi
yi ∑

k=1

n
∂u

∂xk
xk (6.4.37)

d =xk tk d = d ( ; )yi fi p ⃗  t ⃗ 

dh( ; ) = h( ) ⋅  and dg( ; ) = g( ) ⋅ .p ⃗  t ⃗  ∑
k=1

n

Dk p ⃗  tk q ⃗  s ⃗  ∑
i=1

m

Di q ⃗  si (6.4.38)

= ( , … , ) = df( ; );s ⃗  s1 sm p ⃗  t ⃗  (6.4.39)

d ( ; ) = , i = 1, … ,m.fi p ⃗  t ⃗  si (6.4.40)

du u xk yi
dxk d ,yi
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6.4.E: Further Problems on Differentiable Functions

For  prove Theorem 2 directly. 
[Hint: Find 

 
from Theorem 4 of §3, and Theorem 3 of §2. Verify that 

 
where the  are the basic unit vectors in  Proceed.]

Let  and 

 
Assuming differentiability, verify (using "variables") that 

 
by computing derivatives from (8'). Then do all in the mapping notation for 

For the specific functions  and  of Problems 4 and 5 of §2, set up and solve problems analogous to Problem 2, using 

For the functions of Problem 5 in §1, find the formulas for  At which  does  exist in each given case?
Describe it for a chosen .

From Theorem 2, with  find 

Use Theorem 1 for a new solution of Problem 7 in §3 with  
[Hint: Define  on  and  on  by 

 Exercise 6.4.E. 1

E = ( )Er C r

( ), j= 1,… , r,Dkhj p ⃗  (6.4.E.1)

h( ) = ( ) and  g( ) = ( ),Dk p ⃗  ∑
j=1

r

ejDkhj p ⃗  Di q ⃗  ∑
j=1

r

ejDigj q ⃗  (6.4.E.2)

ej .Er

 Exercise 6.4.E. 2

g(x, y, z) = u, x = (r, θ), y = (r, θ), z= (r, θ),f1 f2 f3

f = ( , , ) : → .f1 f2 f3 E2 E3 (6.4.E.3)

du = dx+ dy+ dz= dr+ dθ
∂u

∂x

∂u

∂y

∂u

∂z

∂u

∂r

∂u

∂θ
(6.4.E.4)

H = g∘ f , dH( ; ).p ⃗  t ⃗ 

 Exercise 6.4.E. 3

f , g,h, k

(a) k ∘ f ; (b) g∘ k; (c) f ∘ h; (d) h ∘ g. (6.4.E.5)

 Exercise 6.4.E. 4

df( ; ).p ⃗  t ⃗  p ⃗  df( ; ⋅)p ⃗ 

p ⃗ 

 Exercise 6.4.E. 5

E = (C),E1

∇h( ) = g( )∇ ( ).p ⃗  ∑
k=1

n

Dk q ⃗  fk p ⃗  (6.4.E.6)

 Exercise 6.4.E. 6

E = (C).E1

F E ′ G ( )E2 C 2

F ( ) = (f( ), g( )) and G( ) = a +b .x⃗  x⃗  x⃗  y ⃗  y1 y2 (6.4.E.7)
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Then  (Why?) Use Problems 9 and 10(ii) of §3. Do all in "variable" notation, too.]

Use Theorem 1 for a new proof of the "only if " in Problem 9 in §3. 
[Hint: Set  where  (the th "projection map") is a monomial. Verify!]

Do Problem 8(I) in §3 for the case  with 

 
(Simplify!) Then do the general case as in Problem 6 above, with 

Use Theorem 2 for a new proof of Theorem 4 in Chapter 5, §1. (Proceed as in Problems 6 and 8, with  so that 
). Do it in the "variable" notation, too.

Under proper differentiability assumptions, use formula (8') to express the partials of  if 
(i) ; 
(ii) ; 
(iii) . 
Then redo all in the "mapping" terminology, too.

Let the map  be differentiable on  Find  if 
 and 

(i) ; 
(ii) .

(Euler's theorem.) A map  (or ) is called homogeneous of degree  on  iff 

 
when  Prove the following statements. 
(i) If so, and  is differentiable at  (an open globe), then 

 

*(ii) Conversely, if the latter holds for all  and if  then  is homogeneous of degree  on  

(iii) What if  
[Hints: (i) Let  Find  (iii) Take  if  if 

h = af +bg=G∘F .

 Exercise 6.4.E. 7

= g∘ f ,fi g( ) =x⃗  xi i

 Exercise 6.4.E. 8

= ( ) ,E ′ E2 C 2

f( ) =  and g( ) = .x⃗  x1 x⃗  x2 (6.4.E.8)

G( ) = .y ⃗  y1y2 (6.4.E.9)

 Exercise 6.4.E. 9

= ,E ′ E1

h =D1 h′

 Exercise 6.4.E. 10

u

u = g(x, y), x = f(r)h(θ), y = r+h(θ)+θf(r)

u = g(r, θ), r= f(x+f(y)), θ= f(xf(y))

u = g ( , , )xy yz zx+y

 Exercise 6.4.E. 11

g : →E1 E1 .E1 |∇h( )|p ⃗ 

h = g∘ f

f( ) = , ∈x⃗  ∑n

k=1 xk x⃗  En

f( ) = | , ∈x⃗  x⃗ |2 x⃗  En

 Exercise 6.4.E. 12

f : →En E1 →CCn m G

(∀t ∈ (C)) f(t ) = f( )E1 x⃗  tm x⃗  (6.4.E.10)

, t ∈G.x⃗  x⃗ 

f ∈Gp ⃗ 

⋅ ∇f( ) =mf( ).p ⃗  p ⃗  p ⃗  (6.4.E.11)

∈Gp ⃗  ∉G,0
→

f m G.

∈G?0
→

g(t) = f(t ).p ⃗  (1).g′ f(x, y) = x2y2 x ≤ 0, f = 0 x > 0,G= (1). ]G0
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Try Problem 12 for  replacing  by .

With all as in Theorem 1, prove the following. 

(i) If  and  then . 

(ii) If  and  are nonzero in  and  for some scalars  then 

 

(iii) If  is differentiable on a globe  and  in  then 

 
[Hints: Use Theorem 2(ii) from §3 and Note 1.]

Use Theorem 2 to find the partially derived functions of  if 
(i) ; 
(ii) . 
(Set  wherever undefined.)

6.4.E: Further Problems on Differentiable Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 6.4.E. 13

f : →E,E ′ ⋅ ∇f( )p ⃗  p ⃗  df( ; )p ⃗  p ⃗ 

 Exercise 6.4.E. 14

=E ′ E1 = (p) ≠ ,s ⃗  f ′ 0
→

(p) = g( )h′ Ds ⃗  q ⃗ 

u⃗  v ⃗  E ′ a +b ≠u⃗  v ⃗  0
→

a, b,

f( ) = a f( )+b f( ).Da +bu ⃗  v ⃗  p ⃗  Du ⃗  p ⃗  Dv ⃗  p ⃗  (6.4.E.12)

f ,Gp ⃗  ≠u⃗  0
→

,E ′

f( ) = ( ).Du ⃗  p ⃗  lim
→x ⃗  u ⃗ 

Dx ⃗  p ⃗  (6.4.E.13)

 Exercise 6.4.E. 15

f ,

f(x, y, z) = (sin(xy/z))x

f(x, y) = | tan(y/x)|logx
f = 0
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6.5: Repeated Differentiation. Taylor’s Theorem

In §1 we defined -directed derived functions,  for any  and any  in 

Thus given a sequence  we can first form  then  (the -directed derived function of 
then the -directed derived function of  and so on. We call all functions so formed the higher-order directional
derived functions of 

If at each step the limit postulated in Definition 1 of §1 exists for all  in a set  we call them the higher-order directional
derivatives of  (on ).

If all  are basic unit vectors in  we say "partial' instead of "directional."

We also define  and

and call  a directional derived function of order  (Some authors denote it by 

If all  equal  we write  instead.

For partially derived functions, we simplify this notation, writing  for  and omitting the " " in  (except in classical
notation):

We also set  for any vector .

(A) Define  by

Then

whence  if  and also

Thus  always, and so  Similarly,

if  and  Thus  and so

The previous example shows that we may well have  or more generally,  However, we obtain
the following theorem.

u⃗  fDu ⃗  f : → EE ′ ≠u⃗  0
→

.E ′

{ } ⊆ −{ },u⃗ i E ′ 0
→

f ,Du ⃗ 1 ( f)Du ⃗ 2 Du ⃗ 1 u⃗ 2 f),Du ⃗ 1

u⃗ 3 ( f) ,Du ⃗ 2
Du ⃗ 1

f .

p ⃗  B ⊆ ,E ′

f B

u⃗ i ( ) ,En Cn

f = fD1
u ⃗  Du ⃗ 

f = ( f) , k = 2, 3, … ,Dk

…u ⃗ 1u ⃗ 2 u ⃗ k
Du ⃗ k

Dk−1
…u ⃗ 1 ū̄̄2 u ⃗ k−1

(6.5.1)

fDk

…u ⃗ 1u ⃗ 2 u ⃗ k
k. f . )D …u ⃗ ku ⃗ k−1 u ⃗ 1

u⃗ i ,u⃗  fDk
u ⃗ 

12 … …e ⃗ 1e ⃗ 2 k Dk

f = f = , f = f = ,  etc.D12 D2
e ⃗ 1e ⃗ 2

f∂2

∂ ∂x1 x2
D11 D2

e ⃗ 1e ⃗ 1

f∂2

∂x2
1

(6.5.2)

f = fD0
u ⃗ 

u⃗ 

 Example

f : →E2 E1

f(0, 0) = 0, f(x, y) = .
xy ( − )x2 y2

+x2 y2
(6.5.3)

= f(x, y) = ,
∂f

∂x
D1

y ( +4 − )x4 x2y2 y4

( + )x2 y2 2
(6.5.4)

f(0, y) = −yD1 y ≠ 0;

f(0, 0) = = 0. (Verify!)D1 lim
x→0

f(x, 0) −f(0, 0)

x
(6.5.5)

f(0, y) = −yD1 f(0, y) = −1; f(0, 0) = −1D12 D12

f(x, y) =D2

x ( −4 − )x4 x2y2 y4

( + )x2 y2 2
(6.5.6)

x ≠ 0 f(0, 0) = 0.D2 (∀x) f(x, 0) = xD2

f(x, 0) = 1 and  f(0, 0) = 1 ≠ f(0, 0) = −1.D21 D21 D12 (6.5.7)

f ≠ f ,D12 D21 f ≠ f .D2
u ⃗ v ⃗  D2

v ⃗ u ⃗ 
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Given nonzero vectors  and  in  suppose  has the derivatives

on an open set .

If  is continuous at some  then the derivative  also exists and equals .

Proof

By Corollary 1 in §1, all reduces to the case  (Why?)

Given  fix  so small that  and simultaneously

(by the continuity of  at .

Now  define  by

Let

If  the point  is in  since

Thus by assumption, the derivative  exists. Also,

But the last limit is  by definition. Thus, setting

we get

We see that  is differentiable on  and by (2),

for all  Hence by Corollary 1 of Chapter 5, §4,

But by definition,

and

 Theorem 6.5.1

u⃗  v ⃗  ,E ′ f : → EE ′

f , f ,  and  fDu ⃗  Dv ⃗  D2
u ⃗ v ⃗  (6.5.8)

A ⊆ E ′

fD2
u ⃗ v ⃗  ∈ A,p ⃗  f( )D2

v ⃗ u ⃗  p ⃗  f( )D2
u ⃗ v ⃗  p ⃗ 

| | = 1 = | |.u⃗  v ⃗ 

ε > 0, δ > 0 G= (δ) ⊆ AGp ⃗ 

f( ) − f( ) ≤ εsup
∈Gx ⃗ 

∣∣D
2
u ⃗ v ⃗  x⃗  D2

u ⃗ v ⃗  p ⃗  ∣∣ (6.5.9)

fD2
u ⃗ v ⃗ 

)p ⃗ 

(∀s, t ∈ )E1 : → EHt E1

(s) = f( + t +s ).Ht Du ⃗  p ⃗  u⃗  v ⃗  (6.5.10)

I =(− , ) .
δ

2

δ

2
(6.5.11)

s, t ∈ I, = + t +sx⃗  p ⃗  u⃗  v ⃗  (δ) ⊆ A,Gp ⃗ 

| − | = |t +s | < + = δ.x⃗  p ⃗  u⃗  v ⃗ 
δ

2

δ

2
(6.5.12)

f( )D2
u ⃗ v ⃗ 

p ⃗ 

(s)H ′
t = [ (s+Δs) − (s)]lim

Δs→0

1

Δs
Ht Ht

= [ f( +Δs ⋅ ) − f( )] .lim
Δs→0

1

Δs
Du ⃗  x⃗  v ⃗  Du ⃗  x⃗ 

f( ),D2
u ⃗ v ⃗  x⃗ 

(s) = (s) −s f( ),ht Ht D2
u ⃗ v ⃗  p ⃗  (6.5.13)

(s)h′
t = (s) − f( )H ′

t D2
u ⃗ v ⃗ 

p ⃗ 

= f( ) − f( ).D2
u ⃗ v ⃗ 

x⃗  D2
u ⃗ v ⃗ 

p ⃗ 

ht I,

| (s)| ≤ f( ) − f( ) ≤ εsup
s∈I

h′
t sup

∈Gx ⃗ 

∣∣D
2
u ⃗ v ⃗ 

x⃗  D2
u ⃗ v ⃗ 

p ⃗  ∣∣ (6.5.14)

t ∈ I.

| (s) − (0) ≤| s (σ)| ≤ |s|ε.ht ht
∣

∣
∣sup
σ∈I

∣

∣
∣h′

t (6.5.15)

(s) = f( + t +s ) −s f( )ht Du ⃗  p ⃗  u⃗  v ⃗  D2
u ⃗ v ⃗  p ⃗  (6.5.16)
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Thus

for all .

Next, set

and

As before, one finds that  is differentiable on  and that

for  (Verify!)

Hence by (3),

Again, by Corollary 1 of Chapter 5, §4,

or by the definition of  (assuming  and dividing by ,

(Verify!) Making  (with  fixed), we get, by the definition of ,

whenever .

As  is arbitrary, we have

But by definition, this limit is the derivative  Thus all is proved.

Note 1. By induction, the theorem extends to derivatives of order  Thus the derivative  is independent of the order
in which the  follow each other if it exists and is continuous on an open set  along with appropriate derivatives of order 

.

If  this applies to partials as a special case.

For  and  only, we also formulate the following definition.

Let  We say that  is  times differentiable at  iff  and all its partials of order  are
differentiable at .

If this holds for all  in a set  we say that  is  times differentiable on .

(0) = f( + t ).ht Du ⃗  p ⃗  u⃗  (6.5.17)

f( + t +s ) − f( + t ) −s f( ) ≤ |s|ε∣∣Du ⃗  p ⃗  u⃗  v ⃗  Du ⃗  p ⃗  u⃗  D2
u ⃗ v ⃗  p ⃗  ∣∣ (6.5.18)

s, t ∈ I

(t) = f( + t +s ) −f( + t )Gs p ⃗  u⃗  v ⃗  p ⃗  u⃗  (6.5.19)

(t) = (t) −st ⋅ f( ).gs Gs D2
u ⃗ v ⃗  p ⃗  (6.5.20)

(∀s ∈ I)gs I

(t) = f( + t +s ) − f( + t ) −s f( )g′
s Du ⃗  p ⃗  u⃗  v ⃗  Du ⃗  p ⃗  u⃗  D2

u ⃗ v ⃗  p ⃗  (6.5.21)

s, t ∈ I.

| (t)| ≤ |s|ε.sup
t∈I

g′
s (6.5.22)

| (t) − (0)| ≤ |st|ε,gs gs (6.5.23)

gs s, t ∈ I −{0} st)

[f( + t +s ) −f( + t )] − f( ) − [f( +s ) −f( )] ≤ ε.
∣
∣
∣

1

st
p ⃗  u⃗  v ⃗  p ⃗  u⃗  D2

u ⃗ v ⃗  p ⃗ 
1

st
p ⃗  v ⃗  p ⃗ 

∣
∣
∣ (6.5.24)

s → 0 t fDv ⃗ 

f( + t ) − f( ) − f( ) ≤ ε
∣
∣
∣
1

t
Dv ⃗  p ⃗  u⃗ 

1

t
Dv ⃗  p ⃗  D2

u ⃗ v ⃗  p ⃗ 
∣
∣
∣ (6.5.25)

0 < |t| < δ/2

ε

f( ) = [ f( + t ) − f( )] .D2
u ⃗ v ⃗ 

p ⃗  lim
t→0

1

t
Dv p ⃗  u⃗  Dv ⃗  p ⃗  (6.5.26)

f( ).D2
v ⃗ u ⃗ 

p ⃗  □

> 2. fD …u ⃗ 1u ⃗ 2 u ⃗ k

u⃗ i A ⊆ ,E ′

< k

= ( ) ,E ′ En Cn

En Cn

 Definition 1

= ( ) .E ′ En Cn f : → EE ′ m ∈p ⃗  E ′ f < m

p ⃗ 

p ⃗  B ⊆ ,E ′ f m B
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If, in addition, all partials of order  are continuous at  (on  we say that  is of class  or continuously differentiable
 times there, and write  at  (on 

Finally, if this holds for all natural  we write  at  (on  respectively).

Given the space  the function  and a point  we define the mappings

from  to  by setting for every 

We call  the  differential (or differential of order  of  at . By our conventions, it is always defined on 
 as are the partially derived functions involved.

If  is differentiable at  (but not otherwise), then  by Corollary 1 in §3;  is linear and
continuous (why?) but need not satisfy Definition 1 in §3.

In classical notation, we write  for  e.g.,

Note 2. Classical analysis tends to define differentials as above in terms of partials. Formula (4) for  is often written
symbolically:

Indeed, raising the bracketed expression to the th "power" as in algebra (removing brackets, without collecting "similar" terms)
and then "multiplying" by  we obtain sums that agree with (4). (Of course, this is not genuine multiplication but only a
convenient memorizing device.)

(B) Define  by

Take any  Then

m p ⃗  B), f C ,Dm

m f ∈ CDm p ⃗  B).

m, f ∈ CD∞ p ⃗  B,

 Definition 2

= ( ) ,E ′ En Cn f : → E,E ′ ∈ ,p ⃗  E ′

f( ; ⋅), m = 1, 2, … ,dm p ⃗  (6.5.27)

E ′ E = ( , … , )t ⃗  t1 tn

f( ; )d1 p ⃗  t ⃗ 

f( ; )d2 p ⃗  t ⃗ 

f( ; )d3 p ⃗  t ⃗ 

= f( ) ⋅ ,∑
i=1

n

Di p ⃗  ti

= f( ) ⋅ ,∑
j=1

n

∑
i=1

n

Dij p ⃗  titj

= f( ) ⋅ , and so on. ∑
k=1

n

∑
j=1

n

∑
i=1

n

Dijk p ⃗  titjtk

f( ; ⋅)dm p ⃗  mth m) f p ⃗ 

( )En Cn

f p ⃗  f( ; ) = df( ; )d1 p ⃗  t ⃗  p ⃗  t ⃗  f( ; ⋅)d1 p ⃗ 

dxi ;ti

f = d d .d2 ∑
j=1

n

∑
i=1

n f∂2

∂ ∂xi xj
xi xj (6.5.28)

fdm

f = f , m = 1, 2, …dm ( d + d +⋯ + d )
∂

∂x1
x1

∂

∂x2
x2

∂

∂xn
xn

m

(6.5.29)

m

f ,

 Example

f : →E2 E1

f(x, y) = x siny. (6.5.30)

= (x, y) ∈ .p ⃗  E2

f(x, y) = siny and  f(x, y) = x cosy;D1 D2 (6.5.31)

f(x, y) = f(x, y) = cosy,D12 D21 (6.5.32)

f(x, y) = 0,  and  f(x, y) = −x siny;D11 D22 (6.5.33)

f(x, y) = f(x, y) = f(x, y) = f(x, y) = 0,D111 D112 D121 D211 (6.5.34)

f(x, y) = f(x, y) = f(x, y) = −siny,  andD221 D212 D122 (6.5.35)

f(x, y) = −x cosy;  etc.D222 (6.5.36)
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As is easily seen,  has continuous partials of all orders; so  on all of  Also,

In classical notation,

and so on. (Verify!)

We can now extend Taylor's theorem (Theorem 1 in Chapter 5, §6) to the case 

Let  in .

If  is  times differentiable on the line segment

then

with

and

Proof

Define  and  by  and .

As  we may consider the components of ,

Clearly,  is differentiable, .

By assumption, so is  on  Thus, by the chain rule,  is differentiable on the interval 
for, by definition,

By Theorem 2 in §4,

(Explain!)

f f ∈ CD∞ .E2

df( ; )p ⃗  t ⃗  = f( ) + f( )t1D1 p ⃗  t2D2 p ⃗ 

= siny+ x cosy.t1 t2

df

fd2

fd3

= f = dx+ dyd1 ∂f

∂x

∂f

∂y

= sinydx+x cosydy;

= d +2 dxdy+ d
f∂2

∂x2
x2 f∂2

∂x∂y

f∂2

∂y2
y2

= 2 cosydxdy−x sinyd ;y2

= −3 sinydxd −x cosyd ;y2 y3

= ( ) .E ′ En Cn

 Theorem  (Taylor)6.5.2

= − ≠u⃗  x⃗  p ⃗  0
→

= ( )E ′ En Cn

f : → EE ′ m+1

I = L[ , ] ⊂p ⃗  x⃗  E ′ (6.5.37)

f( ) −f( ) = f( ; ) + ,x⃗  p ⃗  ∑
i=1

m 1

i!
di p ⃗  u⃗  Rm (6.5.38)

| | ≤ , ∈ ,Rm

Km

(m+1)!
Km E1 (6.5.39)

0 ≤ ≤ f( ; ) .Km sup
∈Is ⃗ 

∣∣d
m+1 s ⃗  u⃗  ∣∣ (6.5.40)

g : →E1 E ′ h : → EE1 g(t) = + tp ⃗  u⃗  h = f ∘ g

= ( ) ,E ′ En Cn g

(t) = + t , k ≤ n.gk pk uk (6.5.41)

gk (t) =g′
k uk

f I = L[ , ].p ⃗  x⃗  h = f ∘ g J = [0, 1] ⊂ ;E1

+ t ∈ L[ , ] iff t ∈ [0, 1].p ⃗  u⃗  p ⃗  x⃗  (6.5.42)

(t) = f( + t ) ⋅ = df( + t ; ), t ∈ J.h′ ∑
k=1

n

Dk p ⃗  u⃗  uk p ⃗  u⃗  u⃗  (6.5.43)
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By assumption (and Definition 1), the  are differentiable on  Hence, by (7),  is differentiable on  Reapplying
Theorem 2 in §4, we obtain

By induction,  is  times differentiable on  and

The differentiability of  implies its continuity on .

Thus  satisfies Theorem 1 of Chapter 5, §6 (with  and  hence

By construction,

so

Thus using (8) also, we see that (9) implies (6), indeed.

Note 3. Formula (3') of Chapter 5, §6, combined with (8), also yields

If  in Theorem 2, then

for some .

Proof

Here the function  defined in the proof of Theorem 2 is real; so Theorem 1' and formula (3') of Chapter 5, §6 apply. This
yields (10). Explain!

If  is  times differentiable at  and if   then the derivative  exists and
equals .

This follows as in the proof of Theorem 2 (with  For by definition,

fDk I. h′ J.

(t)h′′ = f( + t ) ⋅∑
j=1

n

∑
k=1

n

Dkj p ⃗  u⃗  ukuj

= f( + t ; ), t ∈ J.d2 p ⃗  u⃗  u⃗ 

h m+1 J,

(t) = f( + t ; ), t ∈ J, i = 1, 2, … ,m+1.h(i) di p ⃗  u⃗  u⃗  (6.5.44)

(i ≤ m)h(i) J = [0, 1]

h x = 1, p = 0, Q = ∅);

h(1) −h(0)

| |Rm

Km

= + ,∑
i=1

m (0)h(i)

i!
Rm

≤ , ∈ ,
Km

(m+1)!
Km E1

≤ (t) .sup
t∈J

∣∣h
(m+1) ∣∣

h(t) = f(g(t)) = f( + t );p ⃗  u⃗  (6.5.45)

h(1) = f( + ) = f( ) and h(0) = f( ).p ⃗  u⃗  x⃗  p ⃗  (6.5.46)

□

Rm = (t) ⋅ (1 − t dt
1

m!
∫

1

0
h(m+1) )m

= f( + t ; ) ⋅ (1 − t dt.
1

m!
∫

1

0
dm+1 p ⃗  u⃗  u⃗  )m

 Corollary  (the Lagrange form of 6.5.1 )Rm

E = E1

= f( ; )Rm

1

(m+1)!
dm+1 s ⃗  u⃗  (6.5.47)

∈ L( , )s ⃗  p ⃗  x⃗ 

h

□

 Corollary 6.5.2

f : ( ) → EEn Cn m p ⃗  ≠u⃗  0
→

( , ∈ ( )) ,p ⃗  u⃗  En Cn f( )Dm

u ⃗  p ⃗ 

f( ; )dm p ⃗  u⃗ 

t = 0).
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by (7). Induction yields

by (8). (See Problem 3.

(C) Continuing Example (B), fix

thus replace  by  there. Instead, write  for  in Theorem 2. Then

so

and we obtain

and for all ,

Hence by (6) and Corollary 1 (with  noting that  we get

where for some ,

As  where  and  is between 1 and  so

Finally, since  and  we obtain

This bounds the maximum error that arises if we use (11) to express  as a second-degree polynomial in  and 
(See also Problem 4 and Note 4 below.)

f( )Du ⃗  p ⃗  = [f( +s ) −f( )]lim
s→0

1

s
p ⃗  u⃗  p ⃗ 

= lim [h(s) −h(0)]
1

s
= (0) = df( ; )h′ p ⃗  u⃗ 

f( ) = (0) = ( ; )Dm
u ⃗  p ⃗  h(m) dm p ⃗  u⃗  (6.5.48)

 Example

= (1, 0);p ⃗  (6.5.49)

(x, y) (1, 0) (x, y) x⃗ 

= − = (x−1, y);u⃗  x⃗  p ⃗  (6.5.50)

= x−1 = dx and  = y = dy,u1 u2 (6.5.51)

df( ; )p ⃗  u⃗ 

f( ; )d2 p ⃗  u⃗ 

= f(1, 0) ⋅ (x−1) + f(1, 0) ⋅ yD1 D2

= (sin0) ⋅ (x−1) +(1 ⋅ cos 0) ⋅ y

= y;

= f(1, 0) ⋅ (x−1 +2 f(1, 0) ⋅ (x−1)yD11 )2 D12

+ f(1, 0) ⋅D22 y2

= (0) ⋅ (x−1 +2(cos 0) ⋅ (x−1)y−(1 ⋅ sin0) ⋅)2 y2

= 2(x−1)y;

= ( , ) ∈ Is ⃗  s1 s2

f( ; ) =d3 s ⃗  u⃗ 

=

f ( , ) ⋅ (x−1 +3 f ( , ) ⋅ (x−1 yD111 s1 s2 )3 D112 s1 s2 )2

+3 f ( , ) ⋅ (x−1) + f ( , ) ⋅D122 s1 s2 y2 D222 s1 s2 y3

−3 sin ⋅ (x−1) − cos ⋅ .s2 y2 s1 s2 y3

m = 2), f( ) = f(1, 0) = 0,p ⃗ 

f(x, y) = x ⋅ siny

= y+(x−1)y+ ,R2

∈ Is ⃗ 

= f( ; ) = [−3 sin ⋅ (x−1) − cos ⋅ ] .R2
1

3!
d3 s ⃗  u⃗ 

1

6
s2 y2 s1 s2 y3 (6.5.52)

∈ L( , ),s ⃗  p ⃗  x⃗  = (1, 0)p ⃗  = (x, y),x⃗  s1 x;

| | ≤ max(|x|, 1) ≤ |x| +1.s1 (6.5.53)

|sin | ≤ 1s2 |cos | ≤ 1,s2

| | ≤ [3|x−1| +(|x| +1)|y|] .R2
1

6
y2 (6.5.54)

x siny (x−1) y.
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Note 4. Formula (6), briefly

generalizes formula (2) in Chapter 5, §6.

As in Chapter 5, §6, we set

and call  the  th Taylor polynomial for  about  treating it as a function of  variables  with .

When expanded as in Example (C), formula (6) expresses  in powers of

plus the remainder term .

If  on some  and if  as  we can express  as a convergent power series

We then say that  admits a Taylor series about  on .

This page titled 6.5: Repeated Differentiation. Taylor’s Theorem is shared under a CC BY 3.0 license and was authored, remixed, and/or curated
by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

Δf = + ,∑
i=1

m fdi

i!
R2 (6.5.55)

( ) = f( ) + f( ; − )Pm x⃗  p ⃗  ∑
i=1

m
1

i!
di p ⃗  x⃗  p ⃗  (6.5.56)

Pm m f ,p ⃗  n ,xk = ( , … , )x⃗  x1 xn

f( )x⃗ 

= − , k = 1, … ,n,uk xk pk (6.5.57)

Rm

f ∈ CD∞ Gp ⃗  → 0Rm m → ∞, f( )x⃗ 

f( ) = ( ) = f( ) + f( ; − ).x⃗  lim
m→∞

Pm x⃗  p ⃗  ∑
i=1

∞ 1

i!
di p ⃗  x⃗  p ⃗  (6.5.58)

f ,p ⃗  Gp ⃗ 
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6.5.E: Problems on Repeated Differentiation and Taylor Expansions

Complete all details in the proof of Theorem 1. What is the motivation for introducing the auxiliary functions  and  in this
particular way?

Is symbolic "multiplication" in Note 2 always commutative? (See Example (A).) Why was it possible to collect "similar" terms 

 
in Example (B)? Using (5), find the general formula for  Expand it!

Carry out the induction in Theorem 2 and Corollary 2. (Use a suitable notation for subscripts:  instead of .)

Do Example(C) with  (instead of ) and with . Show that  i.e.,  admits a Taylor series about 
 

Do it in the following two ways. 
(i) Use Theorem 2. 
(ii) Expand  as in Problem 6(a) in Chapter 5, §6, and then multiply termwise by  
Give an estimate for .

Use Theorem 2 to expand the following functions in powers of  and  exactly (choosing  so that ). 
(i) ; 
(ii) ; 
(iii) .

For the functions of Problem 15 in §4, give their Taylor expansions up to  with 

 
in case (i) and 

 
in (ii). Bound .

 Exercise 6.5.E. 1

ht gs

 Exercise 6.5.E. 2

dxdy and  dydx
f∂2

∂x∂y

f∂2

∂y∂x
(6.5.E.1)

f .d3

 Exercise 6.5.E. 3

…k1k2 jk…

 Exercise 6.5.E. 4

m = 3 m = 2 = (0, 0)p ⃗  → 0,Rm f

.p ⃗ 

siny x.
R3

 Exercise 6.5.E. 5

x−3 y+2 m = 0Rm

f(x, y) = 2x −3 +y −y2 y3 x2 x3

f(x, y) = − +2xy−1x4 x3y2

f(x, y) = y−ax −x5 y5 x3

 Exercise 6.5.E. 6

,R2

= (1, , 1)p ⃗ 
π

4
(6.5.E.2)

= (e, e)p ⃗ 
π

4
(6.5.E.3)

R2
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(Generalized Taylor theorem.) Let  in (  need not be  or ); let  Prove the following
statement: 
If  and the derived functions  are relatively continuous on  and have -directed derivatives on 

 (  countable), then formula (6) and Note 3 hold, with  replaced by . 
[Hint: Proceed as in Theorem 2 without using the chain rule or any partials or components. Instead of (8), prove that 

 on .]

(i) Modify Problem 7 by setting 

 
Thus expand  in powers of  
(ii) Deduce Theorem 2 from Problem 7, using Corollary 2.

Given  on an open set  and  prove that  

 

where the  are binomial coefficients, and in the th term, 

 
and 

 
Then restate formula (6) for . 
[Hint: Use induction, as in the binomial theorem.]

 Given  and  prove that  at  iff  is differentiable at  and 

 
with norm  as in Definition 2 in §2. (Does it apply?) 
[Hint: If  use Theorem 2 in §3. For the converse, verify that 

 
if  and  Take  to prove continuity of  at .]

 Exercise 6.5.E. 7

= − ≠u⃗  x⃗  p ⃗  0
→

E ′ E ′ En Cn I =L[ , ].p ⃗  x⃗ 

f : →EE ′ f(i ≤m)Di
u ⃗ 

I u⃗ 

I−Q Q f( ; )di p ⃗  u⃗  f( )Di
u ⃗ 

p ⃗ 

(t) = f( + t )h(i) Di
u ⃗ 

p ⃗  u⃗  J− , = [Q]Q′ Q′ g−1

 Exercise 6.5.E. 8

= .u⃗ 
−x⃗  p ⃗ 

| − |x⃗  p ⃗ 
(6.5.E.4)

f( )x⃗  | − |.x⃗  p ⃗ 

 Exercise 6.5.E. 9

f : ( )→E, f ∈ CE2 C 2 Dm A, ∈ A,s ⃗  (∀ ∈ ( ))u⃗  E2 C 2

f( ; ) = ( ) f( ), 1 ≤ i ≤m,di s ⃗  u⃗  ∑
j=0

i
i

j
uj1u

i−j
2 D …k1 ki s ⃗  (6.5.E.5)

( )
i

j
j

= =⋯ = =2k1 k2 kj (6.5.E.6)

=⋯ = = 1.kj+1 ki (6.5.E.7)

n= 2

 Exercise 6.5.E. 10

⇒ ∈ = ( )p ⃗  E ′ En Cn f : →E,E ′ f ∈ CD1 p ⃗  f p ⃗ 

(∀ε> 0)(∃δ > 0)(∀ ∈ (δ)) f( ; ⋅)− f( ; ⋅) < ε,x⃗  Gp ⃗ 
∥∥d1 p ⃗  d1 x⃗  ∥∥ (6.5.E.8)

∥
f ∈ C ,D1

ε≥ f( ; )− f( ; ) = [ f( )− f( )]∣∣d
1 p ⃗  t ⃗  d1 x⃗  t ⃗  ∣∣

∣

∣
∣∑
k=1

n

Dk p ⃗  Dk x⃗  tk
∣

∣
∣ (6.5.E.9)

∈ (δ)x⃗  Gp ⃗  | | ≤ 1.t ⃗  = ,t ⃗  e ⃗ k fDk p ⃗ 
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Prove the following. 
(i) If  is linear and  then 

 
(ii) If  is differentiable at  then 

 
(iii) Hence find a new converse proof in Problem 10 for . 
Consider  too.
[Hints: (i) By the Cauchy-Schwarz inequality,  (Why?) (ii) Use part (i) and Theorem 4 in §3.]

(i) Find  for the functions of Problem 10 in §4, in the "variable" and "mapping" notations. 
(ii) Do it also for 

 
and show that . 
(iii) Does the latter hold for 

Let  (passage to polars). 
Using "variables" and then the "mappings" notation, prove that if  is differentiable, then 
(i)  and 

(ii) . 

(iii) Assuming  express  and  as in (i).

Let  be of class  on  Verify (in "variable" notation, too) the following statements. 
(i)  if  (fixed) and 

 
(ii)  if 

 
(iii)  if 

 Exercise 6.5.E. 11

ϕ : →En Em [ϕ] = ( ) ,vik

∥ϕ ≤ .∥2 ∑
i,k

| |vik
2 (6.5.E.10)

f : →En Em ,p ⃗ 

∥df( ; ⋅) ≤ .p ⃗  ∥2 ∑
i,k

| ( )|Dkfi p ⃗ 
2 (6.5.E.11)

f : →En Em

f : → ,Cn Cm

|ϕ( ) ≤ | .x⃗  |2 x⃗ |2 ∑i,k | |vik
2

 Exercise 6.5.E. 12

ud2

u = f(x, y, z) = ( + + )x2 y2 z2
− 1

2 (6.5.E.12)

f + f + f = 0D11 D22 D33

u = arctan ?y
x

 Exercise 6.5.E. 13

u = g(x, y), x = r cosθ, y = r sinθ
g

= cosθ +sinθ∂u
∂r

∂u
∂x

∂u
∂y

|∇g(x, y) = +|2 ( )∂u
∂r

2
( )1

r
∂u
∂θ

2

g ∈ C ,D2 , ,u∂ 2

∂r∂θ
u∂ 2

∂r2
u∂ 2

∂θ2

 Exercise 6.5.E. 14

f , g : →E1 E1 CD2 .E1

h = hD11 a2D22 a ∈ E1

h(x, y) = f(ax+y)+g(y−ax). (6.5.E.13)

h(x, y)+2xy h(x, y)+ h(x, y) = 0x2D11 D12 y2D22

h(x, y) = xf ( )+g( ) .
y

x

y

x
(6.5.E.14)

h ⋅ h = h ⋅ hD1 D21 D2 D11

h(x, y) = g(f(x)+y) (6.5.E.15)
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Find  too.

Assume  and  Let  and  be twice differentiable at  and 
, respectively, and set . 

Show that  is twice differentiable at  and 

 
where  and  satisfies 

 
Thus the second differential is not invariant in the sense of Note 4 in §4. 
[Hint: Show that 

 
Proceed.]

Continuing Problem 15, prove the invariant rule: 

 
if  is a first-degree polynomial and  is  times differentiable at . 
[Hint: Here all higher-order partials of  vanish. Use induction.]

6.5.E: Problems on Repeated Differentiation and Taylor Expansions is shared under a CC BY 1.0 license and was authored, remixed, and/or
curated by LibreTexts.

h,D12

 Exercise 6.5.E. 15

= ( )E ′ En Cn = ( ) .E ′′ Em Cm f : →E ′ E ′′ g : →EE ′′ ∈p ⃗  E ′

= f( ) ∈q ⃗  p ⃗  E ′′ h = g∘ f
h ,p ⃗ 

h( ; ) = g( ; )+dg( ; ),d2 p ⃗  t ⃗  d2 q ⃗  s ⃗  q ⃗  v ⃗  (6.5.E.16)

∈ , = df( ; ),t ⃗  E ′ s ⃗  p ⃗  t ⃗  = ( ,… , ) ∈v ⃗  v1 vm E ′′

= ( ; ), i = 1,… ,m.vi d2fi p ⃗  t ⃗  (6.5.E.17)

h( ) = g( ) ( ) ( )+ g( ) ( ).Dkl p ⃗  ∑
j=1

m

∑
i=1

m

Dij q ⃗ Dkfi p ⃗ Dlfj p ⃗  ∑
i=1

m

Di q ⃗ Dklfi p ⃗  (6.5.E.18)

 Exercise 6.5.E. 16

h( ; ) = g( ; ),dr p ⃗  t ⃗  dr q ⃗  s ⃗  (6.5.E.19)

f g r q ⃗ 

f
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6.6: Determinants. Jacobians. Bijective Linear Operators
We assume the reader to be familiar with elements of linear algebra. Thus we only briefly recall some definitions and well-known
rules.

Given a linear operator  with matrix 

 
we define the determinant of  by 

 
where the sum is over all ordered -tuples  of distinct integers  and 

Recall (Problem 12 in §2) that a set  in a vector space  is a basis iff 
(i)  spans  i.e., each  has the form 

 
for some scalars  and 
(ii) this representation is unique. 
The latter is true iff the  are independent, i.e., 

 
If  has a basis of  vectors, we call  n-dimensional (e.g.,  and . 
Determinants and bases satisfy the following rules. 
(a) Multiplication rule. If  are linear, then 

 
(see §2, Theorem 3 and Note 4). 
(b) If  (identity map), then , where 

 
hence det  See also the Problems. 

 Definition

ϕ : → ( or ϕ : → ) ,En En Cn Cn

[ϕ] = ( ) , i, k= 1,… ,n,vik (6.6.1)

[ϕ]

det[ϕ] = det( )vik =

∣

∣

∣
∣
∣
∣
∣

v11

v21

⋮
vn1

v12

v22

⋮
vn2

…
…

⋱
…

v1n

v2n

⋮
vnn

∣

∣

∣
∣
∣
∣
∣

=∑(−1 …)λv1k1v2k2 vnkn

n ( ,… , )k1 kn (1 ≤ ≤ n) ,kj kj

λ ={
0

1

 if  ( − ) > 0 and ∏j<m km kj

 if  ( − ) < 0∏j<m km kj
(6.6.2)

B= { , ,… , }v ⃗ 1 v ⃗ 2 v ⃗ n E

B E, ∈ Ev ⃗ 

=v ⃗  ∑
i=1

n

aiv ⃗ i (6.6.3)

,ai

v ⃗ i

= ⟺ = 0, i = 1,… ,n.∑
i=1

n

aiv ⃗ i 0
→

ai (6.6.4)

E n E En )Cn

ϕ, g : → ( or  → )En En Cn Cn

det[g] ⋅ det[ϕ] = det([g][ϕ]) = det[g∘ϕ] (6.6.5)

ϕ( ) =x⃗  x⃗  [ϕ] = ( )vik

={vik
0
1

 if i ≠ k and 
 if i = k

(6.6.6)

[ϕ] = 1. ( Why ?)
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(c) An  -dimensional space  is spanned by a set of  vectors iff they are independent. If so, each basis consists of exactly 
vectors.

For any function  (or  we define the -induced Jacobian map  by
setting 

 
where  and . 
The determinant 

 
is called the Jacobian of  at . 
By our conventions, it is always defined, as are the functions .

Explicitly,  is the determinant of the right-side matrix in formula  in §3. Briefly,

By Definition 2 and Note 2 in §5,

If  is differentiable at ,

Note 1. More generally, given any functions  we can define a map  by

briefly .

We then call  a functional determinant.

If  then  is a function of  variables, since . If all  are continuous or differentiable at some
 so is  for by  is a finite sum of functions of the form

and each of these is continuous or differentiable if the  are (see Problems 7 and 8 in §3).

Note 2. Hence the Jacobian map  is continuous or differentiable at  if all the partially derived functions  are.

If, in addition,  then  on some globe about  (Apply Problem 7 in Chapter 4, §2, to 

In classical notation, one writes

for  Here .

The remarks made in §4 apply to this "variable" notation too. The chain rule easily yields the following corollary.

If  and  (or  are differentiable at  and  respectively, and if

n E n n

 Definition

f : →En En f : → ),Cn Cn f : → ( : →C)Jf En E1 Jf Cn

( ) = det( ),Jf x⃗  vik (6.6.7)

= ( ), ∈ ( ) ,vik Dkfi x⃗  x⃗  En Cn f = ( ,… , )f1 fn

( ) = det( ( ))Jf p ⃗  Dkfi p ⃗  (6.6.8)

f p ⃗ 
Dkfi

( )Jf p ⃗  (14)

= det( ).Jf Dkfi (6.6.9)

( ) = det[ f( ; ⋅)].Jf p ⃗  d1 p ⃗  (6.6.10)

f p ⃗ 

( ) = det[ ( )].Jf p ⃗  f ′ p ⃗  (6.6.11)

: → (C),vik E ′ E1 f : → (C)E ′ E1

f( ) = det( ( ));x⃗  vik x⃗  (6.6.12)

f =det( ), i, k= 1,… ,nvik

f

= ( )E ′ En Cn f n = ( , ,… , )x⃗  x1 x2 xn vik
∈ ,p ⃗  E ′ f ; (1), f

(−1 … ,)λvik1 vik2 vikn (6.6.13)

viki

Jf p ⃗  (i, k≤ n)Dkfi

( ) ≠ 0,Jf p ⃗  ≠ 0Jf .p ⃗  | | . )Jf

 or 
∂ ( ,… , )f1 fn

∂ ( ,… , )x1 xn

∂ ( ,… , )y1 yn

∂ ( ,… , )x1 xn
(6.6.14)

( ).Jf x⃗  ( ,… , ) = f ( ,… , )y1 yn x1 xn

 Corollary 6.6.1

f : →En En g : →En En f , g : → )Cn Cn p ⃗  = f( ),q ⃗  p ⃗ 

h = g∘ f , (6.6.15)
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then

where

or, setting

we have

where

Proof

By Note 2 in §4,

Thus by rule (a) above,

i.e.,

Also, if  Definition 2 yields .

This proves (i), hence (ii) also. 

In practice, Jacobians mostly occur when a change of variables is made. For instance, in  we may pass from Cartesian
coordinates  to another system  such that

We then set  and obtain ,

Let  and .

Then using the "variable" notation, we obtain  as

Thus here  for all  is independent of .

We now concentrate on one-to-one (invertible) functions.

( ) = ( ) ⋅ ( ) = det( ),Jh p ⃗  Jg q ⃗  Jf p ⃗  zik (6.6.16)

= ( ), i, k= 1,… ,n;zik Dkhi p ⃗  (6.6.17)

( ,… , )u1 un

( ,… , )y1 yn

= g ( ,… , )  and y1 yn

= f ( ,… , )  ("variables"),x1 xn

= ⋅ = det( ),
∂ ( ,… , )u1 un

∂ ( ,… , )x1 xn

∂ ( ,… , )u1 un

∂ ( ,… , )y1 yn

∂ ( ,… , )y1 yn

∂ ( ,… , )x1 xn
zik (6.6.18)

= , i, k= 1,… ,n.zik
∂ui
∂xk

(6.6.19)

[ ( )] = [ ( )] ⋅ [ ( )] .h′ p ⃗  g′ q ⃗  f ′ p ⃗  (6.6.20)

det[ ( )] = det[ ( )] ⋅ det[ ( )],h′ p ⃗  g′ q ⃗  f ′ p ⃗  (6.6.21)

( ) = ( ) ⋅ ( ).Jh p ⃗  Jg q ⃗  Jf p ⃗  (6.6.22)

[ ( )] = ( ) ,h′ p ⃗  zik = ( )zik Dkhi p ⃗ 

□

,E2

(x, y) (u, v)

x = (u, v) and y = (u, v).f1 f2 (6.6.23)

f = ( , )f1 f2 f : →E2 E2

=det( ), k, i = 1, 2.Jf Dkfi (6.6.24)

 Example (passage to polar coordinates)

x = (r, θ) = r cosθf1 y = (r, θ) = r sinθf2

(r, θ)Jf

=
∂(x, y)
∂(r, θ)

∣

∣

∣
∣

∂x
∂r
∂y
∂r

∂x
∂θ
∂y
∂θ

∣

∣

∣
∣ =

∣
∣
∣
cosθ
sinθ

−r sinθ
r cosθ

∣
∣
∣

= r θ+r θ= r.cos2 sin2

(r, θ) = rJf r, θ ∈ ;E1 Jf θ
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For a linear map  the following are equivalent:

(i)  is one-to-one;

(ii) the column vectors  of the matrix  are independent;

(iii)  is onto ;

(iv) .

Proof

Assume (i) and let

To deduce (ii), we must show that all  vanish.

Now, by Note 3 in §2,  so by linearity,

implies

As  is one-to-one, it can vanish at  only. Thus

Hence by Theorem 2 in Chapter 3, §§1-3,  and (ii) follows.

Next, assume (ii); so, by rule (c) above,  is a basis.

Thus each  has the form

where

Hence (ii) implies both (iii) and (i). (Why?)

Now assume (iii). Then each  has the form  where

by Theorem 2 in Chapter 3, §§1-3. Hence again

so the  span all of  By rule (c) above, this implies (ii), hence (i), too. Thus (i), (ii), and (iii) are equivalent.

 Theorem 6.6.1

ϕ : → (orϕ : → ) ,En En Cn Cn

ϕ

,… ,v ⃗ 1 v ⃗ n [ϕ]

ϕ ( )En Cn

det[ϕ] ≠ 0

= .∑
k=1

n

ckv ⃗ k 0
→

(6.6.25)

ck

= ϕ ( ) ;v ⃗ k e ⃗ k

=∑
k=1

n

ckv ⃗ k 0
→

(6.6.26)

ϕ( ) = .∑
k=1

n

cke ⃗ k 0
→

(6.6.27)

ϕ 0
→

= .∑
k=1

n

cke ⃗ k 0
→

(6.6.28)

= 0, k= 1,… ,n,ck

{ ,… , }v ⃗ 1 v ⃗ n

∈ ( )y ⃗  En Cn

= = ϕ ( ) = ϕ( ) = ϕ( ),y ⃗  ∑
k=1

n

akv ⃗ k ∑
k=1

n

ak e ⃗ k ∑
k=1

n

ake ⃗ k x⃗  (6.6.29)

=  (uniquely).x⃗  ∑
k=1

n

ake ⃗ k (6.6.30)

∈ ( )y ⃗  En Cn = ϕ( ),y ⃗  x⃗ 

= ,x⃗  ∑
k=1

n

xke ⃗ k (6.6.31)

= ϕ ( ) = ;y ⃗  ∑
k=1

n

xk e ⃗ k ∑
k=1

n

xkv ⃗ k (6.6.32)

v ⃗ k ( ) .En Cn
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Also, by rules (a) and (b), we have

if  is one-to-one (for  is the identity map). Hence  if (i) holds.

For the converse, suppose  is not one-to-one. Then by (ii), the  are not independent. Thus one of them is a linear
combination of the others, say,

But by linear algebra (Problem 13(iii)),  does not change if  is replaced by

Thus  (one column turning to  This completes the proof. 

Note 3. Maps that are both onto and one-to-one are called bijective. Such is  in Theorem 1. This means that the equation

has a unique solution

for each  Componentwise, by Theorem 1, the equations

have a unique solution for the  iff .

If  is bijective, with  and  complete, then 

Proof for 

The notation  means that  is linear and continuous.

As  is bijective,  is linear (Problem 12).

If  it is continuous, too (Theorem 2 in §2).

Thus 

Note. The case  suffices for an undergraduate course. (The beginner is advised to omit the "starred" §8.) Corollary 2
and Theorem 2 below, however, are valid in the general case. So is Theorem 1 in §7.

Let  and  be as in Corollary 2. Set

Then any map  with  is one-to-one, and  is uniformly continuous.

Proof

Proof. By Corollary 2,  so  is defined and  (for  is not the zero map, being one-to-one).

det[ϕ] ⋅ det[ ] =det[ϕ ∘ ] = 1ϕ−1 ϕ−1 (6.6.33)

ϕ ϕ ∘ϕ−1 det[ϕ] ≠ 0

ϕ v ⃗ k

= .v ⃗ 1 ∑
k=2

n

akv ⃗ k (6.6.34)

det[ϕ] v ⃗ 1

− = .v ⃗ 1 ∑
k=2

n

akv ⃗ k 0
→

(6.6.35)

det[ϕ] = 0 ).0
→

□

ϕ

ϕ( ) =x⃗  y ⃗  (6.6.36)

= ( )x⃗  ϕ−1 y ⃗  (6.6.37)

.y ⃗ 

= , i = 1,… ,n,∑
k=1

n

xkvik yi (6.6.38)

xk det( ) ≠ 0vik

 Corollary 6.6.2

ϕ ∈ L ( ,E)E ′ E ′ E ∈ L (E, ) .ϕ−1 E ′

E = ( )E
n

C
n

ϕ ∈ L ( ,E)E ′ ϕ : →EE ′

ϕ : E →ϕ−1 E ′

E = ( ) ,En Cn

∈ L (E, ) . □ϕ−1 E ′

E = ( )En Cn

 Theorem 6.6.2

E,E ′ ϕ

= .∥∥ϕ−1∥∥
1
ε

(6.6.39)

θ ∈ L ( ,E)E ′ ∥θ−ϕ∥ < ε θ−1

∈ L (E, ) ,ϕ−1 E ′ ∥∥ϕ−1∥∥ > 0 ϕ−1
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Thus we may set

Clearly  if  Also,

by Note 5 in §2, Hence

i.e.,

for all  and .

Now suppose  and .

Obviously,  and by Note 5 in §2,

Thus for every ,

by (2). Therefore, given  in  and setting  we obtain

(since .

We see that  implies  so  is one-to-one, indeed.

Also, setting  and  in (3), we get

that is,

for all  in the range of  (domain of .

Thus  is linearly bounded (by Theorem 1 in §2), hence uniformly continuous, as claimed.

If  in Theorem 2 above, then for given  and  there always is  such that

In other words, the transformation  is continuous on  

Proof

First, since  is bijective by Theorem 1(iii), so .

As before, set .

ε= , = .
1

∥ ∥ϕ−1
∥∥ϕ−1∥∥

1
ε

(6.6.40)

= ( )x⃗  ϕ−1 y ⃗  = ϕ( ).y ⃗  x⃗ 

( ) ≤ | |∣∣ϕ−1 y ⃗  ∣∣
1
ε
y ⃗  (6.6.41)

| | ≥ ε ( ) ,y ⃗  ∣∣ϕ−1 y ⃗  ∣∣ (6.6.42)

|ϕ( )| ≥ ε| |x⃗  x⃗  (6.6.43)

∈x⃗  E ′ ∈ Ey ⃗ 

ϕ ∈ L ( ,E)E ′ ∥θ−ϕ∥ = σ < ε

θ= ϕ−(ϕ−θ),

|(ϕ−θ)( )| ≤ ∥ϕ−θ∥| | = σ| |.x⃗  x⃗  x⃗  (6.6.44)

∈x⃗  E ′

|θ( )|x⃗  ≥ |ϕ( )| −|(ϕ−θ)( )|x⃗  x⃗ 
≥ |ϕ( )| −σ| |x⃗  x⃗ 
≥ (ε−σ)| |x⃗ 

≠p ⃗  r ⃗  E ′ = − ≠ ,x⃗  p ⃗  r ⃗  0
→

|θ( )−θ( )| = |θ( − )| = |θ( )| ≥ (ε−σ)| | > 0p ⃗  r ⃗  p ⃗  r ⃗  x⃗  x⃗  (6.6.45)

σ < ε)

≠p ⃗  r ⃗  θ( ) ≠ θ( );p ⃗  r ⃗  θ

θ( ) =x⃗  z ⃗  = ( )x⃗  θ−1 z ⃗ 

| | ≥ (ε−σ) ( ) ;z ⃗  ∣∣θ−1 z ⃗  ∣∣ (6.6.46)

( ) ≤ (ε−σ | |∣∣θ−1 z ⃗  ∣∣ )−1 z ⃗  (6.6.47)

z ⃗  θ )θ−1

θ−1
□

 Corollary 6.6.3

=E = ( )E ′ En Cn ϕ δ > 0, > 0δ ′

∥θ−ϕ∥ <  implies  − < δ.δ ′ ∥∥θ−1 ϕ−1∥∥ (6.6.48)

ϕ→ ϕ−1 L(E),E = ( ) .En Cn

=E = ( ) , θE ′ En Cn ∈ L(E)θ−1

∥θ−ϕ∥ = σ < ε
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By Note 5 in §2, formula (5) above implies that

Also,

(see Problem 11).

Hence by Corollary 4 in §2, recalling that  we get

This page titled 6.6: Determinants. Jacobians. Bijective Linear Operators is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

≤ .∥∥θ−1∥∥
1

ε−σ
(6.6.49)

∘ (θ−ϕ) ∘ = −ϕ−1 θ−1 ϕ−1 θ−1 (6.6.50)

= 1/ε,∥∥ϕ−1∥∥

− ≤ ⋅ ∥θ−ϕ∥ ⋅ ≤ → 0 as σ →0. □∥∥θ−1 ϕ−1∥∥ ∥∥ϕ−1∥∥ ∥∥θ−1∥∥
σ

ε(ε−σ)
(6.6.51)
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6.6.E: Problems on Bijective Linear Maps and Jacobians

(i) Can a functional determinant  (see Note 1) be continuous or differentiable even if the functions  are not? 
(ii) Must a Jacobian map  be continuous or differentiable if  is? 
Give proofs or counterexamples.

 Prove rule (b) on determinants. More generally, show that if  on an open set  then  on .

Let  (or ), . 
Suppose each  depends on  only, i.e., 

 
regardless of the other coordinates  Prove that . 
[Hint: Show that  if .]

In Corollary 1, show that 

 
if  also has the property specified in Problem 3. Then do all in "variables," with  instead of .

Let  in Note 1. Prove that if all the  are differentiable at  then  is the sum of  determinants, each arising
from det  by replacing the terms of one column by their derivatives. 
[Hint: Use Problem 6 in Chapter 5, §1.]

Do Problem 5 for partials of  with  and for directionals  in any normed space  (First, prove
formulas analogous to Problem 6 in Chapter 5, §1; use Note 3 in §1.) Finally, do it for the differential, 

In Note 1 of §4, express the matrices in terms of partials (see Theorem 4 in §3). Invent a "variable" notation for such matrices,
imitating Jacobians (Corollary 3).

(i) Show that 

 Exercise 6.6.E. 1

f =det( )vik vik
Jf f

 Exercise 6.6.E. 2

⇒ f( ) =x⃗  x⃗  A⊆ ( ) ,En Cn = 1Jf A

 Exercise 6.6.E. 3

f : →En En →Cn Cn f = ( ,… , )f1 fn
fk xk

( ) = ( ) if  = ,fk x⃗  fk y ⃗  xk yk (6.6.E.1)

, .xi yi =Jf ∏n
k=1 Dkfk

= 0Dkfi i ≠ k

 Exercise 6.6.E. 4

( ) = ( ) ⋅ ( )Jh p ⃗  ∏
k=1

n

Dkfk p ⃗  Jg q ⃗  (6.6.E.2)

f = ( )yk yk xk fk

 Exercise 6.6.E. 5

=E ′ E1 vik p, (p)f ′ n

( ) ,vik

 Exercise 6.6.E. 6

f , = ( ) ,E ′ En Cn f ,Du ⃗  .E ′

df( ; ⋅).p ⃗ 

 Exercise 6.6.E. 7

 Exercise 6.6.E. 8
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if 

 
(This transformation is passage to polars in  see Figure 27, where  and  
(ii) What if  and  remains unchanged (passage to cylindric coordinates)? 
(iii) Same for  and .

Is  one-to-one or bijective, and is  if 
(i)  and ; 
(ii)  and 

Define  (or )  

 
on 

 

and  on  Prove the following. 
(i)  is one-to-one on  (find ). 
(ii) . 

(iii) Describe  geometrically.

=− sinα
∂(x, y, z)

∂(r, θ,α)
r2 (6.6.E.3)

x = r cosθ,

y = r sinθ sinα,  and 

z= r cosα

(6.6.E.4)

;E3 r=OP , ∠XOA= θ, ∠AOP = α. )

x = r cosθ, y = r sinθ, z= z

x = cosθ, y = sinθ,er er z= z

 Exercise 6.6.E. 9

f = ( , ) : →f1 f2 E2 E2 ≠ 0,Jf
(x, y) = cosyf1 ex (x, y) = sinyf2 ex

(x, y) = −f1 x2 y2 (x, y) = 2xy?f2

 Exercise 6.6.E. 10

f : →E3 E3 →C 3 C 3

f( ) =x⃗ 
x⃗ 

1 +∑3
k=1 xk

(6.6.E.5)

A={ | ≠ −1}x⃗ ∑
k=1

3

xk (6.6.E.6)

f = 0
→

−A.

f A !f−1

( ) =Jf x⃗  1

(1+ )∑3
k=1 xk

4

−A
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Given any sets  and maps  and  prove that 
(i)  and 
(ii)  if  is linear. 
Use these distributive laws to verify that 

 
In Corollary 3. 
[Hint: First verify the associativity of mapping composition.]

Prove that if  is linear and one-to-one, so is  where 

Let  be the column vectors in  Prove that  turns into 
(i)  if one of the  is multiplied by a scalar ; 
(ii)  if any two of the  are interchanged (consider  in formula (1)). 
Furthermore, show that 
(iii)  does not change if some  is replaced by ; 

(iv)  if some  is  or if two of the  are the same.

6.6.E: Problems on Bijective Linear Maps and Jacobians is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 6.6.E. 11

A,B f , g : A→ ,h : →E,E ′ E ′ k : B→A,

(f ±g) ∘ k= f ∘ k±g∘ k,

h ∘ (f ±g) = h ∘ f ±h ∘ g h

∘ (θ−ϕ) ∘ = −ϕ−1 θ−1 ϕ−1 θ−1 (6.6.E.7)

 Exercise 6.6.E. 12

ϕ : →EE ′ : → ,ϕ−1 E ′′ E ′ = ϕ [ ] .E ′′ E ′

 Exercise 6.6.E. 13

,… ,v ⃗ 1 v ⃗ n det[ϕ]. det[ϕ]

c ⋅ det[ϕ] v ⃗ k c

−det[ϕ], v ⃗ k λ

det[ϕ] v ⃗ k +c (i ≠ k)v ⃗ k v ⃗ i

det[ϕ] = 0 v ⃗ k ,0
→

v ⃗ k
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6.7: Inverse and Implicit Functions. Open and Closed Maps
I. "If  at  then  resembles a linear map (namely  at  Pursuing this basic idea, we first make precise our notion
of "  at ."

A map  is continuously differentiable, or of class  (written  at  iff the following statement is true:

By Problem 10 in §5, this definition agrees with Definition 1 §5, but is no longer limited to the case  See also
Problems 1 and 2 below.

We now obtain the following result.

Let  and  be complete. If  is of class  at  and if  is bijective (§6), then  is one-to-one on some
globe 

Thus  "locally" resembles df  in this respect.

Proof

Set  and

(cf. Theorem 2 of §6).

By Definition 1, fix  so that for .

Then by Note 5 in §2,

Now fix any  and set  Again, by Note 5 in §2,

so

By convexity,  so (1) holds for .

Noting this, set

Then for ,

f ∈ CD1 ,p ⃗  f df) . "p ⃗ 

f ∈ CD1 p ⃗ 

 Definition 1

f : → EE ′ CD1 f ∈ C ),D1 p ⃗ 

 Given any ε > 0,  there is δ > 0 such that f  is differentiable on the 

 globe  = ,  with G
¯ ¯¯̄ (δ)Gp ⃗ 

¯ ¯¯̄ ¯̄ ¯̄ ¯̄ ¯̄

∥df( ; ⋅) −df( ; ⋅)∥ < ε for all  ∈ .x⃗  p ⃗  x⃗  G
¯ ¯¯̄

(6.7.1)

= ( ) .E ′ En Cn

 Theorem 6.7.1

E ′ E f : → EE ′ CD1 p ⃗  df( ; ⋅)p ⃗  f

= (δ).G¯ ¯¯̄ Gp ⃗ 
¯ ¯¯̄ ¯̄

f ( ; ⋅)p ⃗ 

ϕ = df( ; ⋅)p ⃗ 

=∥∥ϕ−1∥∥
1

ε
(6.7.2)

δ > 0 ∈ =x⃗  G
¯ ¯¯̄ (δ)Gp ⃗ 

¯ ¯¯̄ ¯̄ ¯̄ ¯̄ ¯̄

∥df( ; ⋅) −ϕ∥ < ε.x⃗ 
1

2
(6.7.3)

(∀ ∈ ) (∀ ∈ ) |df( ; ) −ϕ( )| ≤ ε| |.x⃗  G
¯ ¯¯̄

u⃗  E ′ x⃗  u⃗  u⃗ 
1

2
u⃗  (6.7.4)

, ∈ , ≠ ,r ⃗  s ⃗  G
¯ ¯¯̄

r ⃗  s ⃗  = − ≠ 0.u⃗  r ⃗  s ⃗ 

| | = (ϕ( )) ≤ |ϕ( )| = |ϕ( )|;u⃗  ∣∣ϕ
−1 u⃗  ∣∣ ∥∥ϕ

−1∥∥ u⃗ 
1

ε
u⃗  (6.7.5)

0 < ε| | ≤ |ϕ( )|.u⃗  u⃗  (6.7.6)

⊇ I = L[ , ],G
¯ ¯¯̄

s ⃗  r ⃗  ∈ I, = + t , 0 ≤ t ≤ 1x⃗  x⃗  s ⃗  u⃗ 

h(t) = f( + t ) − tϕ( ), t ∈ .s ⃗  u⃗  u⃗  E1 (6.7.7)

0 ≤ t ≤ 1

(t)h′ = f( + t ) −ϕ( )Du ⃗  s ⃗  u⃗  u⃗ 

= df( + t ; ) −ϕ( ).s ⃗  u⃗  u⃗  u⃗ 
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(Verify!) Thus by (1) and (2),

(Explain!) Now, by Corollary 1 in Chapter 5, §4,

As  and

we obtain (even if 

But by the triangle law,

Thus

by (2).

Hence  whenever  in  so  is one-to-one on  as claimed.

Under the assumptions of Theorem 1, the maps  and  (the inverse of  restricted to ) are uniformly continuous on  and
 respectively.

Proof

By (3),

This implies uniform continuity for . (Why?)

Next, let  on .

If  let  and  so  with  and  Hence by (4),

proving all for  too.

Again,  resembles  which is uniformly continuous, along with .

II. We introduce the following definition.

| (t)|sup
0≤t≤1

h′ = |df( + t ; ) −ϕ( )|sup
0≤t≤1

s ⃗  u⃗  u⃗  u⃗ 

≤ | | ≤ |ϕ( )|.
ε

2
u⃗ 

1

2
u⃗ 

|h(1) −h(0)| ≤ (1 −0) ⋅ | (t)| ≤ |ϕ( )|.sup
0≤t≤1

h′ 1

2
u⃗  (6.7.8)

h(0) = f( )s ⃗ 

h(1) = f( + ) −ϕ( ) = f( ) −ϕ( ),s ⃗  u⃗  u⃗  r ⃗  u⃗  (6.7.9)

= )r ⃗  s ⃗ 

|f( ) −f( ) −ϕ( )| ≤ |ϕ( )| ( , ∈ , = − ).r ⃗  s ⃗  u⃗  1

2
u⃗  r ⃗  s ⃗  G

¯ ¯¯̄
u⃗  r ⃗  s ⃗  (6.7.10)

|ϕ( )| −|f( ) −f( )| ≤ |f( ) −f( ) −ϕ( )|.u⃗  r ⃗  s ⃗  r ⃗  s ⃗  u⃗  (6.7.11)

|f( ) −f( )| ≥ |ϕ( )| ≥ ε| | = ε| − |r ⃗  s ⃗ 
1

2
u⃗ 

1

2
u⃗ 

1

2
r ⃗  s ⃗  (6.7.12)

f( ) ≠ f( )r ⃗  s ⃗  ≠r ⃗  s ⃗  ;G
¯ ¯¯̄

f ,G
¯ ¯¯̄

□

 Corollary 6.7.1

f f−1 f G
¯ ¯¯̄

G
¯ ¯¯̄

f [ ],G
¯ ¯¯̄

|f( ) −f( )|r ⃗  s ⃗  ≤ |ϕ( )| + |ϕ( )|u⃗ 
1

2
u⃗ 

≤ |2ϕ( )|u⃗ 

≤ 2∥ϕ∥| |u⃗ 

= 2∥ϕ∥| − | ( , ∈ ).r ⃗  s ⃗  r ⃗  s ⃗  G
¯ ¯¯̄

f

g = f−1 H = f [ ]G
¯ ¯¯̄

, ∈ H,x⃗  y ⃗  = g( )r ⃗  x⃗  = g( );s ⃗  y ⃗  , ∈ ,r ⃗  s ⃗  G
¯ ¯¯̄ = f( )x⃗  r ⃗  = f( ).y ⃗  s ⃗ 

| − | ≥ ε|g( ) −g( )|,x⃗  y ⃗ 
1

2
x⃗  y ⃗  (6.7.13)

g, □

f ϕ ϕ−1

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/21628?pdf


6.7.3 https://math.libretexts.org/@go/page/21628

A map  is closed (open) on  iff, for any  the set  is closed (open) in  whenever  is
so in 

Note that continuous maps have such a property for inverse images (Problem 15 in Chapter 4, §2).

Under the assumptions of Theorem 1,  is closed on  and so the set  is closed in 

Similarly for the map  on .

Proof for  (for the general case, see Problem 6)

Given any closed  we must show that  is closed in 

Now, as  is closed and bounded, it is compact (Theorem 4 of Chapter 4, §6).

So also is  (Theorem 1 in Chapter 4, §6), and so is  (Theorem 1 of Chapter 4, §8).

By Theorem 2 in Chapter 4, §6,  is closed, as required.

For the rest of this section, we shall set .

If  in Theorem 1, with other assumptions unchanged, then  is open on the globe  with 
sufficiently small.

Proof

We first prove the following lemma.

 contains a globe  where .

Proof

Indeed, let

where  and  are as in the proof of Theorem 1. (We continue the notation and formulas of that proof.)

Fix any  so

Set  on  As  is uniformly continuous on  so is .

Now,  is compact in  so Theorem 2(ii) in Chapter 4, §8, yields a point  such that

We claim that  is in  (the interior of .

Otherwise,  for by (4),

 Definition 2

f : (S, ρ) → (T , )ρ′ D ⊆ S X ⊆ D f [X] T X

S.

 Corollary 6.7.2

f ,G
¯ ¯¯̄

f [ ]G
¯ ¯¯̄

E.

f−1 f [ ]G
¯ ¯¯̄

= E = ( )E
′

E
n

C
n

X ⊆ ,G
¯ ¯¯̄

f [X] E.

G
¯ ¯¯̄

X f [X]

f [X] □

= E = ( )E ′ En Cn

 Theorem 6.7.2

= E = ( )E ′ En Cn f G= (δ),Gp ⃗  δ

 Lemma

f [G] (α)Gq ⃗  = f( )q ⃗  p ⃗ 

α = εδ,
1

4
(6.7.14)

δ ε

∈ (α);c ⃗  Gq ⃗ 

| − | < α = εδ.c ⃗  q ⃗ 
1

4
(6.7.15)

h = |f − |c ⃗  .E ′ f ,G
¯ ¯¯̄

h

G
¯ ¯¯̄ ( ) ;En Cn ∈r ⃗  G

¯ ¯¯̄

h( ) = minh[ ].r ⃗  G¯ ¯¯̄ (6.7.16)

r ⃗  G )G
¯ ¯¯̄

| − | = δ;r ⃗  p ⃗ 
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But

and so (7) yields

contrary to the minimality of  (see (6)). Thus  cannot equal .

We obtain  so  and  We shall now show that 

To this end, we set  and prove that  Let

where

as before. Then

With  as above, fix some

with  so small that  also. Then by formula (3),

also,

by our choice of  and  Hence by the triangle law,

(Verify!)

As  this implies  (otherwise,  violating (6)).

Thus, indeed,

i.e.,

But  was an arbitrary point of  Hence

proving the lemma.

Proof of Theorem 2. The lemma shows that  is in the interior of  if  and  are as in Theorem 1.

2α = εδ = ε| − |
1

2

1

2
r ⃗  p ⃗  ≤ |f( ) −f( )|r ⃗  p ⃗ 

≤ |f( ) − | +| −f( )|r ⃗  c ⃗  c ⃗  p ⃗ 

= h( ) +h( ).r ⃗  p ⃗ 

h( ) = | −f( )| = | − | < α;p ⃗  c ⃗  p ⃗  c ⃗  q ⃗  (6.7.17)

h( ) < α < h( ),p ⃗  r ⃗  (6.7.18)

h( )r ⃗  | − |r ⃗  p ⃗  δ

| − | < δ,r ⃗  p ⃗  ∈ (δ) = Gr ⃗  Gp ⃗  f( ) ∈ f [G].r ⃗  = f( ).c ⃗  r ⃗ 

= −f( )v ⃗  c ⃗  r ⃗  = .v ⃗  0
→

= ( ),u⃗  ϕ−1 v ⃗  (6.7.19)

ϕ = df( ; ⋅),p ⃗  (6.7.20)

= ϕ( ) = df( ; ).v ⃗  u⃗  p ⃗  u⃗  (6.7.21)

r ⃗ 

= + t (0 < t < 1)s ⃗  r ⃗  u⃗  (6.7.22)

t ∈ Gs ⃗ 

|f( ) −f( ) −ϕ(t )| ≤ |t |;s ⃗  r ⃗  u⃗ 
1

2
v ⃗  (6.7.23)

|f( ) − +ϕ(t )| = (1 − t)| | = (1 − t)h( )r ⃗  c ⃗  u⃗  v ⃗  r ⃗  (6.7.24)

,v ⃗  u⃗  h.

h( ) = |f( ) − | ≤(1 − t)h( ).s ⃗  s ⃗  c ⃗ 
1

2
r ⃗  (6.7.25)

0 < t < 1, h( ) = 0r ⃗  h( ) < h( ),s ⃗  r ⃗ 

| | = |f( ) − | = 0,v ⃗  r ⃗  c ⃗  (6.7.26)

= f( ) ∈ f [G]  for  ∈ G.c ⃗  r ⃗  r ⃗  (6.7.27)

c ⃗  (α).Gq ⃗ 

(α) ⊆ f [G],Gq ⃗  (6.7.28)

□

f( )p ⃗  f [G] , f , df( ; ⋅),p ⃗  p ⃗  δ
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But Definition 1 implies that here  on all of  (see Problem 1).

Also,  is bijective for any  by our choice of  and Theorems 1 and 2 in §6.

Thus  maps all  onto interior points of  i.e.,  maps any open set  onto an open  as required.

Note 1. A map

is both open and closed ("clopen") iff  is continuous - see Problem 15(iv)(v) in Chapter 4, §2, interchanging  and 

Thus  in Theorem 1 is "clopen" on all of .

Again,  locally resembles .

III. The Inverse Function Theorem. We now further pursue these ideas.

Under the assumptions of Theorem 2, let  be the inverse of .

Then  on  and  is the inverse of  whenever 

Briefly: "The differential of the inverse is the inverse of the differential."

Proof

Fix any  and  so  and  Let 

As noted above,  is bijective for every  by Theorems 1 and 2 in §6; so we may set  We must show that 

To do this, give  an arbitrary (variable) increment  so small that  stays in  (an open set by Theorem 2).

As  and  are one-to-one,  uniquely determines

and vice versa:

Here  and  are the mutually corresponding increments of  and  By continuity,  iff 

As ,

or

where

As  we have

So from (9),

f ∈ CD1 G

df( ; ⋅)x⃗  ∈ Gx⃗  G

f ∈ Gx⃗  f [G]; f X ⊆ G f [X], □

f : (S, ρ) (T , )⟷
 onto 

ρ′ (6.7.29)

f−1 f .f−1

ϕ = df( ; ⋅)p ⃗  E ′

f df( ; ⋅)p ⃗ 

 Theorem  (inverse functions)6.7.3

g (f  restricted to G= (δ))fG Gp ⃗ 

g ∈ CD1 f [G] dg( ; ⋅)y ⃗  df( ; ⋅)x⃗  = g( ), ∈ G.x⃗  y ⃗  x⃗ 

∈ f [G]y ⃗  = g( );x⃗  y ⃗  = f( )y ⃗  x⃗  ∈ G.x⃗  U = df( ; ⋅).x⃗ 

U ∈ Gx⃗  V = .U−1

V = dg( ; ⋅).y ⃗ 

y ⃗  Δ ,y ⃗  +Δy ⃗  y ⃗  f [G]

g fG Δy ⃗ 

Δ = g( +Δ ) −g( ) = ,x⃗  y ⃗  y ⃗  y ⃗  t ⃗  (6.7.30)

Δ = f( + ) −f( ).y ⃗  x⃗  t ⃗  x⃗  (6.7.31)

Δy ⃗  t ⃗  = f( )y ⃗  x⃗  = g( ).x⃗  y ⃗  →y ⃗  0
→

→ .t ⃗  0
→

U = df( ; ⋅)x⃗ 

|f( + ) −f( ) −U( )| = 0,lim
→t ⃗  0¯̄̄

1

| |t ⃗ 
x⃗  t ⃗  t ⃗  t ⃗  (6.7.32)

|F ( )| = 0,lim
→t ⃗  0

→

1

| |t ⃗ 
t ⃗  (6.7.33)

F ( ) = f( + ) −f( ) −U( ).t ⃗  x⃗  t ⃗  t ⃗  t ⃗  (6.7.34)

V = ,U−1

V (U( )) = = g( +Δ ) −g( ).t ⃗  t ⃗  y ⃗  y ⃗  y ⃗  (6.7.35)

V (F ( ))t ⃗  = V (Δ ) −y ⃗  t ⃗ 

= V (Δ ) −[g( +Δ ) −g( )];y ⃗  y ⃗  y ⃗  y ⃗ 
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that is,

Now, formula (4), with  and  shows that

i.e.,  Hence by (8),

Since  as  (change of variables!), the expression (10) tends to 0 as 

By definition, then,  is differentiable at  with .

Moreover, Corollary 3 in §6, applies here. Thus

Taking here  and  we see that  near  This completes the proof.

Note 2. If  the bijectivity of  is equivalent to

(Theorem 1 of §6).

In this case, the fact that  is one-to-one on  means, componentwise (see Note 3 in §6), that the system of  equations

has a unique solution for the  unknowns  as long as

Theorem 3 shows that this solution has the form

where the  are of class  on  provided the  are of class  near  and det  Here

as in §6.

Thus again  "locally" resembles a linear map, .

IV. The Implicit Function Theorem. Generalizing, we now ask, what about solving  equations in  unknowns 
 Say, we want to solve

for the first  unknowns (or variables)  thus expressing them as

with  or .

Let us set  and

|g( +Δ ) −g( ) −V (Δ )| = , Δ ≠ .
1

|Δ |y ⃗ 
y ⃗  y ⃗  y ⃗  y ⃗ 

|V (F ( ))|t ⃗ 

|Δ |y ⃗ 
y ⃗  0

→
(6.7.36)

= , = + ,r ⃗  x⃗  s ⃗  x⃗  t ⃗  = ,u⃗  t ⃗ 

|f( + ) −f( )| ≥ ε| |;x⃗  t ⃗  x⃗  1

2
t ⃗  (6.7.37)

|Δ | ≥ ε| |.y ⃗  1
2 t ⃗ 

≤ = V ( F ( )) ≤ ∥V ∥ |F ( )| → 0 as  → .
|V (F ( ))|t ⃗ 

|Δ |y ⃗ 

|V (F ( )|t ⃗ 

ε| |1
2 t ⃗ 

2

ε

∣

∣

∣
∣

1

| |t ⃗ 
t ⃗ 

∣

∣

∣
∣

2

ε

1

| |t ⃗ 
t ⃗  t ⃗  0

→
(6.7.38)

→t ⃗  0
→

Δ →y ⃗  0
→

Δ → .y ⃗  0
→

g ,y ⃗  dg( ; ) = V =y ⃗  U−1

(∀ > 0) (∃ > 0) ∥U −W∥ < ⇒ − < .δ ′ δ ′′ δ ′′ ∥∥U−1 W −1∥∥ δ ′ (6.7.39)

= dg( )U−1 y ⃗  = dg( +Δ ),W −1 y ⃗  y ⃗  g ∈ CD1 .y ⃗  □

= E = ( ) ,E ′ En Cn ϕ = df( ; ⋅)p ⃗ 

det[ϕ] = det[ ( )] ≠ 0f ′ p ⃗  (6.7.40)

f G= (δ)Gp ⃗  n

( ) = f ( , … , ) = , i = 1, … ,n,fi x⃗  x1 xn yi (6.7.41)

n xk

( , … , ) = ∈ f [G].y1 yn y ⃗  (6.7.42)

= ( ), k = 1, … ,n,xk gk y ⃗  (6.7.43)

gk CD1 f [G] fi CD1 p ⃗  [ ( )] ≠ 0.f ′ p ⃗ 

det[ ( )] = ( ),f ′ p ⃗  Jf p ⃗  (6.7.44)

f ϕ = df( ; ⋅)p ⃗ 

n n+m

, … , , , … , ?x1 xn y1 ym

( , … , , , … , ) = 0, k = 1, 2, … ,n,fk x1 xn y1 ym (6.7.45)

n ,xk

= ( , … , ) , k = 1, … ,n,xk Hk y1 ym (6.7.46)

: →Hk Em E1 : → CHk Cm

= ( , … , ) , = ( , … , ) ,x⃗  x1 xn y ⃗  y1 ym

( , ) = ( , … , , , … , )x⃗  y ⃗  x1 xn y1 ym (6.7.47)
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so that .

Thus the system of equations (11) simplifies to

or

where  is a map of  into  is a function of  variables, but it has  components 
i.e.,

is a vector in .

Let  and let  be of class  near

Let  be the  matrix

If  and if  then there are open sets

with  and  for which there is a unique map

with

for all  furthermore,  on .

Thus  is a solution of (11) in vector form.

Proof

With the above notation, set

Then

since .

As  near  so is  (verify componentwise via Problem 9(ii) in §3 and Definition 1 of §5).

By Theorem 4, §3,  (explain!).

Thus Theorem 1 above shows that  is one-to-one on some globe  about 

Clearly  contains an open interval about  We denote it by  where  is open in  and 
 is open in 

By Theorem 3,  (  restricted to  has an inverse

( , ) ∈ ( )x⃗  y ⃗  En+m Cn+m

( , ) = 0, k = 1, … ,nfk x⃗  y ⃗  (6.7.48)

f( , ) = ,x⃗  y ⃗  0
→

(6.7.49)

f = ( , … , )f1 fn ( )En+m Cn+m ( ) ; fEn Cn n+m n ;fk

f( , ) = f ( , … , , , … , )x⃗  y ⃗  x1 xn y1 ym (6.7.50)

( )En Cn

 Theorem  (implicit functions)6.7.4

= ( ) ,E = ( ) ,E ′ En+m Cn+m En Cn f : → EE ′ CD1

( , ) = ( , … , , , … , ) , ∈ ( ) , ∈ ( ) .p ⃗  q ⃗  p1 pn q1 qm p ⃗  En Cn q ⃗  Em Cm (6.7.51)

[ϕ] n×n

( ( , )) , j, k = 1, … ,n.Djfk p ⃗  q ⃗  (6.7.52)

det[ϕ] ≠ 0 f( , ) = ,p ⃗  q ⃗  0
→

P ⊆ ( )  and Q ⊆ ( ) ,En Cn Em Cm (6.7.53)

∈ Pp ⃗  ∈ Q,q ⃗ 

H : Q → P (6.7.54)

f(H( ), ) =y ⃗  y ⃗  0
→

(6.7.55)

∈ Q;y ⃗  H ∈ CD1 Q

= H( )x⃗  y ⃗ 

F ( , ) = (f( , ), ), F : → .x⃗  y ⃗  x⃗  y ⃗  y ⃗  E ′ E ′ (6.7.56)

F ( , ) = (f( , ), ) = ( , ),p ⃗  q ⃗  p ⃗  q ⃗  q ⃗  0
→

q ⃗  (6.7.57)

f( , ) =p ⃗  q ⃗  0
→

f ∈ CD1 ( , ),p ⃗  q ⃗  F

det[ ( , )] = det[ϕ] ≠ 0F ′ p ⃗  q ⃗ 

F G ( , ).p ⃗  q ⃗ 

G ( , ).p ⃗  q ⃗  P ×Q ∈ P , ∈ Q;Pp ⃗  q ⃗  ( )En Cn

Q ( ) .Em Cm

FP×Q F P ×Q)

g : A P ×Q,⟷
 onto 

(6.7.58)
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where  is open in  (Theorem 2), and  on  Let the map  comprise the first 
components of  (exactly as  comprises the first  components of .

Then

exactly as  Also,  is of class  on  as  is (explain!).

Now set

here  while

for  preserves  (the last  coordinates). Also set

Then  (why?), and

by our choice of  and  (inverse to  Thus

as desired.

Moreover, as  we have

As  all  are continuous (Definition 1 in §5); hence so are the  Thus by Theorem 3 in §3, 
 on 

Finally,  is unique for the given  for

Thus  implies  so  is the only solution for 

Note 3.  is said to be implicitly defined by the equation  In this sense we say that  is an implicit function,

given by .

Similarly, under suitable assumptions,  defines  as a function of 

Note 4. While  is unique for a given neighborhood  of  another implicit function may result if  or  is
changed.

For example, let

A = F [P ×Q] E ′ g ∈ CD1 A. u = ( , … , )g1 gn n

g f n F )

g( , ) = (u( , ), )x⃗  y ⃗  x⃗  y ⃗  y ⃗  (6.7.59)

F ( , ) = (f( , ), ).x⃗  y ⃗  x⃗  y ⃗  y ⃗  u : A → P CD1 A, g

H( ) = u( , );y ⃗  0
→

y ⃗  (6.7.60)

∈ Q,y ⃗ 

( , ) ∈ A = F [P ×Q],0
→

y ⃗  (6.7.61)

F y ⃗  m

α( , ) = .x⃗  y ⃗  x⃗  (6.7.62)

f = α ∘F

f(H( ), ) = f(u( , ), ) = f(g( , )) = α(F (g( , )) = α( , ) =y ⃗  y ⃗  0
→

y ⃗  y ⃗  0
→

y ⃗  0
→

y ⃗  0
→

y ⃗  0
→

(6.7.63)

α g F ).

f(H( ), ) = , ∈ Q,y ⃗  y ⃗  0
→

y ⃗  (6.7.64)

H( ) = u( , ),y ⃗  0
→

y ⃗ 

H( ) = u( , ), ∈ Q, i ≤ m.
∂

∂yi
y ⃗ 

∂

∂yi
0
→

y ⃗  y ⃗  (6.7.65)

u ∈ C ,D1 ∂u/∂yi ∂H/∂ .yi
H ∈ CD1 Q.

H P ,Q;

f( , ) =x⃗  y ⃗  0
→
⟹ (f( , ), ) = ( , )x⃗  y ⃗  y ⃗  0

→
y ⃗ 

⟹ F ( , ) = ( , )x⃗  y ⃗  0
→

y ⃗ 

⟹ g(F ( , )) = g( , )x⃗  y ⃗  0
→

y ⃗ 

⟹ ( , ) = g( , ) = (u( , ), )x⃗  y ⃗  0
→

y ⃗  0
→

y ⃗  y ⃗ 

⟹ = u( , ) = H( ).x⃗  0
→

y ⃗  y ⃗ 

f( , ) =x⃗  y ⃗  0
→

= H( );x⃗  y ⃗  H( )y ⃗  . □x⃗ 

H f( , ) = .x⃗  y ⃗  0
→

H( )y ⃗ 

f( , ) =x⃗  y ⃗  0
→

f( , ) =x⃗  y ⃗  0
→

y ⃗  .x⃗ 

H P ×Q ( , ),p ⃗  q ⃗  P ×Q ( , )p ⃗  q ⃗ 

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/21628?pdf


6.7.9 https://math.libretexts.org/@go/page/21628

(a polynomial; hence  on all of  Geometrically,  describes a circle.

Solving for  we get  Thus we have two functions:

and

If  is in the upper part of the circle, the resulting function is  Otherwise, it is  See Figure 28.

V. Implicit Differentiation. Theorem 4 only states the existence (and uniqueness) of a solution, but does not show how to find it,
in general.

The knowledge itself that  exists, however, enables us to use its derivative or partials and compute it by implicit
differentiation, known from calculus.

(a) Let  as above.

This time treating  as an implicit function of  and writing  for  we differentiate both sides of
(x^{2}+y^{2}-25=0\) with respect to  using the chain rule for the term .

This yields  whence .

Actually (see Note 4), two functions are involved:  but both satisfy  so the result 
 applies to both.

Of course, this method is possible only if the derivative  is known to exist. This is why Theorem 4 is important.

(b) Let

Again  satisfies Theorem 4 for suitable  and .

Setting  differentiate the equation  partially with respect to  and  From the resulting two
equations, obtain  and .

f(x, y) = + −25x2 y2 (6.7.66)

f ∈ CD1 ).E2 + −25 = 0x2 y2

x, x = ± .25 −y2− −−−−−
√

(y) = +H1 25 −y2
− −−−−−

√ (6.7.67)

(y) = − .H2 25 −y2
− −−−−−

√ (6.7.68)

P ×Q .H1 .H2

H ∈ CD1

 Examples

f(x, y) = + −25 = 0,x2 y2

y x, y = H(x), y′ (x),H ′

x, = [H(x)y2 ]2

2x+2y = 0,y′ = −x/yy′

y = ± ;25 −x2− −−−−−√ + −25 = 0;x2 y2

= −x/yy′

y′

f(x, y, z) = + + −1 = 0, x, y, z ∈ .x2 y2 z2 E1 (6.7.69)

f x, y, z

z = H(x, y), f(x, y, z) = 0 x y.
∂z
∂x

∂z
∂y

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/21628?pdf


6.7.10 https://math.libretexts.org/@go/page/21628

This page titled 6.7: Inverse and Implicit Functions. Open and Closed Maps is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of
the LibreTexts platform; a detailed edit history is available upon request.

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/21628?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/06%3A_Differentiation_on_E_and_Other_Normed_Linear_Spaces/6.07%3A_Inverse_and_Implicit_Functions._Open_and_Closed_Maps
https://creativecommons.org/licenses/by/3.0
http://www.trillia.com/index.html
http://www.trillia.com/
http://www.trillia.com/zakon-analysisI.html


6.7.E.1 https://math.libretexts.org/@go/page/24092

6.7.E: Problems on Inverse and Implicit Functions, Open and Closed Maps

Discuss: In Definition 1,  can equivalently be replaced by  (an open globe).

Prove that if the set  is open (closed) in  then the map  is open (closed, respectively) on  iff 
 has this property as a map of  into . 

[Hint: Use Theorem 4 in Chapter 3, §12.]

Complete the missing details in the proofs of Theorems 1-4.

Verify footnotes 2 and 3.

Show that a map  may fail to be one-to-one on all of  even if  satisfies Theorem 1 near every 
Nonetheless, show that this cannot occur if . 
[Hints: For the first part, take  For the second, use Theorem 1 in Chapter 5, §2.]

(i) For maps  prove that the existence of a bijective  is equivalent to . 
(ii) Let 

 
Show that  and  near any  yet  is not one-to-one near 0. What is wrong?

Show that a map  may be bijective even if  at some  but then 
cannot be differentiable at  
[Hint: For the first clause, take  for the second, note that if  is differentiable at  then Note 2 in §4
implies that det  since  is the identity map.]

Prove Corollary 2 for the general case of complete  and . 
[Outline: Given a closed  take any convergent sequence  By Problem 8 in Chapter 4, §8, 
is a Cauchy sequence in  (why?). By the completeness of  (Theorem 4 of Chapter 3, §16). Infer that 

 so  is closed.]

 Exercise 6.7.E. 1

G
¯ ¯¯̄

G= (δ)Gp ⃗ 

 Exercise 6.7.E. 2

D (S, ρ), f : S → T D

(f  restricted to D)fD D f [D]

 Exercise 6.7.E. 3

 Exercise 6.7.E. 3′

 Exercise 6.7.E. 4

f : → EE ′ E ′ f ∈ .p ⃗  E ′

= E =E ′ E1

= C, f(x+ iy) = (cosy+ i siny).E ′ ex

 Exercise 6.7.E. 4′

f : → ,E1 E1 df(p; ⋅) (p) ≠ 0f ′

f(x) = x+ sin , f(0) = 0.x2 1

x
(6.7.E.1)

(0) ≠ 0,f ′ f ∈ CD1 p ≠ 0; f

 Exercise 6.7.E. 5

f : ( ) → ( ) , f ∈ C ,En Cn En Cn D1 det[ ( )] = 0f ′ p ⃗  ,p ⃗  f−1

= f( ).q ⃗  p ⃗ 

f(x) = , p = 0;x3 f−1 ,q ⃗ 

[df( ; ⋅)] ⋅ det[d ( ; ⋅)] = 1 ≠ 0,p ⃗  f−1 q ⃗  f ∘ f−1

 Exercise 6.7.E. 6

E ′ E

X ⊆ ,G
¯ ¯¯̄

{ } ⊆ f [X].y ⃗ n ( ) =f−1 y ⃗ n x⃗ n
X , (∃ ∈ X) →E ′ x⃗  x⃗ n x⃗ 

lim = f( ) ∈ f [X],y ⃗ n x⃗  f [X]
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Prove that "the composite of two open (closed) maps is open (closed)." State the theorem precisely. Prove it also for the
uniform Lipschitz property.

Prove in detail that  is open on  iff  maps the interior of  into that of  that is, 
.

Verify by examples that  may be: 
(i) closed but not open; 
(ii) open but not closed. 
[Hints: (i) Consider  constant. (ii) Define  by  and let 

 
use Theorem 4(iii) in Chapter 3, §16 and continuity to show that  is closed in  but  is not closed in 
However,  is open on all of  by Problem 8. (Verify!)]

Continuing Problem 9(ii), define  (or  by   for a fixed  (the " th projection map").
Show that  is open, but not closed, on .

(i) In Example (a), take  or  Are the conditions of Theorem 4 satisfied? Do the conclusions hold? 
(ii) Verify Example (b).

(i) Treating  as a function of  and  given implicitly by 

 
discuss the choices of  and  that satisfy Theorem 4. Find  and . 
(ii) Do the same for .

Given  prove that if  on a globe  cannot be one-to-one. 
[Hint for  If, say,  on .]

Suppose that  satisfies Theorem 1 for every  in an open set , and is one-to-one on  (cf. Problem 4). Let 
(restrict  to  and take its inverse). Show that  and  are open and of class  on  and  respectively.

 Exercise 6.7.E. 7

 Exercise 6.7.E. 8

f : (S, ρ) → (T , )ρ′ D ⊆ S f D f [D];

f [ ] ⊆ (f [D]D0 )0

 Exercise 6.7.E. 9

f

f = f : →E2 E1 f(x, y) = x

D ={(x, y) ∈ |y = , x > 0} ;E2 1

x
(6.7.E.2)

D ,E2 f [D] = (0, +∞) .E1

f E2

 Exercise 6.7.E. 10

f : →En E1 → C)Cn f( ) =x⃗  xk k ≤ n k

f ( )En Cn

 Exercise 6.7.E. 11

(p, q) = (5, 0) (−5, 0).

 Exercise 6.7.E. 12

z x y,

f(x, y, z) = +x −yz = 0, f : → ,z3 z2 E3 E1 (6.7.E.3)

P Q ∂z
∂x

∂z
∂y

f(x, y, z) = −1 = 0exyz

 Exercise 6.7.E. 13

f : ( ) → ( ) ,n > m,En Cn Em Cm f ∈ CD1 G, f

f : → :E2 E1 f ≠ 0D1 G, setF (x, y) = (f(x, y), y)

 Exercise 6.7.E. 14

f p ⃗  A ⊆ E ′ A g = f−1
A

f A f g CD1 A f [A],
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Given  and a scalar  define  ("translation by ") and  ("dilation by "), by setting 

 
Prove the following. 
(i)  and  are bijective, continuous, and "clopen" on  so also are  and 
(ii) Similarly for the Lipschitz property on . 
(iii) If  then  and . 
(iv) If  is linear, and  for some  then  and  where  and 
are the corresponding maps on  If, further,  is continuous at  it is continuous on all of  
[Hint for (iv): Fix any  Set  Verify that  and  is continuous at 

.]

Show that if  is linear and if  is open in  for some  then 
(i)  is open on all of ; 
(ii)  is onto . 
[Hints: (i) By Problem 8, it suffices to show that the set  is open, for any globe  (why?). First take  Then

use Problems 7 and 15(i)-(iv), with suitable  and  
(ii) To prove  fix any  As \(f=G_{\overrightarrow{0} (\delta\) is open, it contains a globe 

For small  Hence  (Problem 10 in §2).]

Continuing Problem 16, show that if  is also one-to-one on  then 

 
 is clopen on  and  is so on . 

[Hints: To prove that  is one-to-one on  let  for some . Show that 

 
Deduce that  and  Then use Problem 15(v) in Chapter 4, §2, and Note 1.]

A map 

 
is said to be bicontinuous, or a homeomorphism, (from  onto  iff both  and  are continuous. Assuming this, prove the
following. 
(i)  in  iff  in ; 
(ii)  is closed (open, compact, perfect) in  iff  is so in ; 
(iii)  in  iff  in ; 
(iv)  in  iff  in ; 

 Exercise 6.7.E. 15

∈ Ev ⃗  c ≠ 0, : E → ETv ⃗  v ⃗  : E → EMc c

( ) = +  and  ( ) = c .Tv ⃗  x⃗  x⃗  v ⃗  Mc x⃗  x⃗  (6.7.E.4)

Tv ⃗  (= )T −1
v ⃗  T−v ⃗  E; Mc (= ) .M−1

c M1/c

E

G= (δ) ⊂ E,Gq ⃗  [G] = (δ),Tv ⃗  G +q ⃗  v ⃗  [G] = (|cδ|)Mc Gcq ⃗ 

f : → EE ′ = f( )v ⃗  p ⃗  ∈ ,p ⃗  E ′ ∘ f = f ∘Tv ⃗  T ′
p ⃗  ∘ f = f ∘ ,Mc M ′

c T ′
p ⃗  M ′

c

.E ′ f ,p ⃗  .E ′

∈ .x⃗  E ′ = f( − ), g = ∘ f ∘ .v ⃗  x⃗  p ⃗  Tv ⃗  T ′
−p ⃗  x ⃗ 

g = f , ( ) = ,T ′
−p ⃗  x ⃗ 

x⃗  p ⃗  g

x⃗ 

 Exercise 6.7.E. 16

f : → EE ′ f [ ]G∗ E = (δ) ⊆ ,G∗ Gp ⃗  E ′

f E ′

f E

f [G] G G= (δ).G
0
→

v ⃗  c.

E = f [ ] ,E ′ ∈ E.y ⃗  = (r).G′ G
0
→

c, c ∈ ⊆ f [ ] .y ⃗  G′ E ′ ∈ f [ ]y ⃗  E ′

 Exercise 6.7.E. 17

f ,G∗

f : E,E ′  onto 
⟷

(6.7.E.5)

f ∈ L ( ,E) , ∈ L (E, ) , fE ′ f−1 E ′ ,E ′ f−1 E

f ,E ′ f( ) =x⃗  y ⃗  , ∈x⃗  x⃗ ′ E ′

(∃c, ε > 0) c ∈ (ε) ⊆ f [ (δ)]  and f(c + ) = f (c + ) ∈ f [ (δ)] = f [ ] .y ⃗  G
0
→ G

0
→ x⃗  p ⃗  x⃗ ′ p ⃗  Gp ⃗  G∗ (6.7.E.6)

c + = c +x⃗  p ⃗  x⃗ ′ p ⃗  = .x⃗  x⃗ ′

 Exercise 6.7.E. 18

f : (S, ρ) (T , ) onto 
⟷

ρ′ (6.7.E.7)

S T ) f f−1

→ pxn S f ( ) → f(p)xn T

A S f [A] T

B = A
¯ ¯¯̄

S f [B] = f [A]
¯ ¯¯̄¯̄ ¯̄¯

T

B = A0 S f [B] = (f [A])0 T
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(v)  is dense in  (i.e., ) in  iff  is dense in  
[Hint: Use Theorem 1 of Chapter 4, §2, and Theorem 4 in Chapter 3, §16, for closed sets; see also Note 1.]

Given  and a scalar  set 

 
Assuming  prove that 
(i)  is closed (open, compact, perfect) in  iff  is; 

(ii)  iff ; 
(iii)  iff ; 
(iv)  is dense in  iff  is dense in . 
[Hint: Apply Problem 18 to the maps  and  of Problem 15, noting that  and ]

Prove Theorem 2, for a reduced  assuming that only one of  and is  and the other is just complete. 
[Hint: If, say,  then  is compact (being closed and bounded), and so is  (Why?) Thus the
Lemma works out as before, i.e., . 
Now use the continuity of  to obtain a globe  such that  Let  further restricted to 

 Apply Problem 15(v) in Chapter 4, §2, to  with .]

6.7.E: Problems on Inverse and Implicit Functions, Open and Closed Maps is shared under a CC BY 1.0 license and was authored, remixed,
and/or curated by LibreTexts.

A B A ⊆ B ⊆ ⊆ SA
¯ ¯¯̄

(S, ρ) f [A] f [B] ⊆ (T , ) .ρ′

 Exercise 6.7.E. 19

A,B ⊆ E, ∈ Ev ⃗  c,

A+ = { + | ∈ A} and cA = {c | ∈ A}.v ⃗  x⃗  v ⃗ x⃗  x⃗ x⃗  (6.7.E.8)

c ≠ 0,

A E cA+v ⃗ 

B = A
¯ ¯¯̄

cB+ =v ⃗  cA+v ⃗ 
¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄

B = A0 cB+ = (cA+v ⃗  v ⃗ )0

A B cA+v ⃗  cB+v ⃗ 

Tv ⃗  Mc A+ = [A]v ⃗  Tv ⃗  cA = [A].Mc

 Exercise 6.7.E. 20

δ, E ′ E ( ) ,En Cn

E = ( ) ,En Cn f [ ]G
¯ ¯¯̄

= [f [ ]].G
¯ ¯¯̄

f−1 G
¯ ¯¯̄

f [G] ⊇ (α)Gq̄̄̄

f = ( ) ⊆ GG′ Gp ⃗  δ
′ f [ ] ⊆ (α).G′ Gq ⃗  g = ,f−1

G

(α).Gq ⃗  g, S = (α),T =Gq ⃗  E ′
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6.8: Baire Categories. More on Linear Maps
We pause to outline the theory of so-called sets of Category I or Category II, as introduced by Baire. It is one of the most powerful
tools in higher analysis. Below,  is a metric space.

A set  is said to be nowhere dense (in  iff its closure  has no interior points (i.e., contains no globes): .

Equivalently, the set  is nowhere dense iff every open set  in  contains a globe  disjoint from  (Why?)

A set  is meagre, or of Category I (in  iff

for some sequence of nowhere dense sets .

Otherwise,  is said to be nonmeagre or of Category II.

 is residual iff  is meagre, but  is not.

(a)  is nowhere dense.

(b) Any finite set in a normed space  is nowhere dense.

(c) The set  of all naturals in  is nowhere dense.

(d) So also is Cantor's set  (Problem 17 in Chapter 3, §14); indeed,  is closed  and has no interior points (verify!),
so .

(e) The set  of all rationals in  is meagre; for it is countable (see Chapter 1, §9), hence a countable union of nowhere dense
singletons { },  But  is not nowhere dense; it is even dense in  since  (see Definition 2, in Chapter 3,
§14). Thus a meagre set need not be nowhere dense. (But all nowhere dense sets are meagre why?)

Examples (c) and (d) show that a nowhere dense set may be infinite (even uncountable). Yet, sometimes nowhere dense sets
are treated as "small" or "negligible," in comparison with other sets. Most important is the following theorem.

In a complete metric space  every open set  is nonmeagre. Hence the entire space  is residual.

Proof

Seeking a contradiction, suppose  is meagre, i.e.,

for some nowhere dense sets  Now, as  is nowhere dense,  contains a closed globe

Again, as  is nowhere dense,  contains a globe

(S, ρ)

 Definition 1

A ⊆ (S, ρ) S) A
¯ ¯¯̄ ( = ∅A

¯ ¯¯̄ )0

A ≠ ∅G∗ S G
¯ ¯¯̄

A.

 Definition 2

A ⊆ (S, ρ) S),

A = ,⋃
n=1

∞

An (6.8.1)

An

A

A −A A

 Examples

∅

E

N E1

P P (P = )P¯ ¯¯̄

( = = ∅P
¯ ¯¯̄ )0 P 0

R E1

rn ∈ R.rn R ,E1 =R¯ ¯¯̄ E1

 Theorem  (Baire)6.8.1

(S, ρ), ≠ ∅G∗ S

G∗

=G∗ ⋃
n=1

∞

An (6.8.2)

.An A1 G∗

= ⊆− .G
¯ ¯¯̄

1 ( )Gx1 δ1
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

A1 (6.8.3)

A2 G1

= ⊆− ,  with 0 < ≤ .G
¯ ¯¯̄

2 ( )Gx2
δ2

¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
A2 δ2

1

2
δ1 (6.8.4)
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By induction, we obtain a contracting sequence of closed globes

As  is complete, so are the  (Theorem 5 in Chapter 3, §17). Thus, by Cantor's theorem (Theorem 5 of Chapter 4, §6),
there is

As  we have  But, as  we also have  ; hence

(the desired contradiction!).

We shall need a lemma based on Problems 15 and 19 in §7. (Review them!)

Let  complete. Let  be the unit globe in  If  (closure of  in  ) contains a globe 
 then 

Note. Recall that we "arrow" only vectors from  (e.g.,  but not those from  (e.g., 0).

Proof

Let  We claim that  is dense in  i.e.,  Indeed, by assumption, any  is in 
Thus by Theorem 3 in Chapter 3, §16, any  meets  if  Hence

i.e.,  as claimed.

Now fix any  and a real  As  is dense in ,

so let  Then

As  we can fix some  with  Also, by Problems 19(iv) and 15(iii) in §7, 
is dense in . But . Thus

so let  so  etc.

Inductively, we fix for each  some  with

i.e.,

As  linearity yields

= ,  with 0 < ≤ → 0.G
¯ ¯¯̄

n ( )Gxn δn
¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯

δn

1

2n δ1 (6.8.5)

S G
¯ ¯¯̄

n

p ∈ .⋂
n=1

∞

G
¯ ¯¯̄

n (6.8.6)

⊇ ,G∗ G
¯ ¯¯̄

n p ∈ .G∗ ⊆− ,G
¯ ¯¯̄

n An (∀n)p ∉ An

p ∉ =⋃
n=1

∞

An G∗ (6.8.7)

□

 lemma

f ∈ L ( ,E) ,E ′ E ′ G = (1)G0 .E ′ f [G]
¯ ¯¯̄ ¯̄ ¯̄¯

f [G] E

= (r) ⊂ E,G0 G0 ⊆ f [G].G0

E ′ ),0
→

E

A = f [G] ∩ ⊆ .G0 G0 A ;G0 ⊆ .G0 A
¯ ¯¯̄

q ∈ G0 f [G].
Gq f [G] ∩ = AG0 q ∈ .G0

(∀q ∈ ) q ∈ ,G0 A
¯ ¯¯̄ (6.8.8)

⊆ ,G0 A
¯ ¯¯̄

∈ = (r)q0 G0 G0 c(0 < c < 1). A G0

A∩ (cr) ≠ ∅;Gq0 (6.8.9)

∈ A∩ (cr) ⊆ f [G].q1 Gq0

| − | < cr, ∈ (cr).q1 q0 q0 Gq1 (6.8.10)

∈ f [G],q1 ∈ G = (1),p ⃗ 1 G0 f ( ) = .p ⃗ 1 q1 cA+q1
c + = (cr)G0 q1 Gq1 ∈ (cr)q0 Gq1

( r)∩ (cA+ ) ≠ ∅;Gq0 c2 q1 (6.8.11)

∈ ( r)∩ (cA+ ) ,q2 Gq0 c2 q1 ∈ ( r) ,q0 Gq2 c2

n > 1 ∈ ( r) ,qn Gq0 cn

∈ A+ ,qn cn−1 qn−1 (6.8.12)

− ∈ A.qn qn−1 cn−1 (6.8.13)

A ⊆ f [ (1)] ,G0

− ∈ f [ (1)] = f [ ( )] , n > 1.qn qn−1 cn−1G0 G0 cn−1 (6.8.14)
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Thus for each  there is , (i.e.,  such that  Now, as  and 
,

so by the completeness of  converges in  (Theorem 1 in Chapter 4, §13). Let  then

But  and  so

Thus

Moreover,  Thus

i.e.,

But  so

As  was arbitrary, we have

or by linearity,

This holds for any  Hence

Thus all is proved.

We can now establish an important result due to S. Banach.

n > 1, ∈ ( )p ⃗ n G0 cn−1 | | < )p ⃗ n cn−1 f( ) = − .p ⃗ n qn qn−1 | | <p ⃗ n cn−1

0 < c < 1

| | <+∞;∑
1

∞

p ⃗ n (6.8.15)

,∑E ′ p ⃗ n E ′ = ;p ⃗  ∑∞
k=1 p ⃗ k

f( )p ⃗  = f ( ) = f ( )lim
n→∞

∑
k=1

n

p ⃗ k lim
n→∞

∑
k=1

n

p ⃗ k

= f ( )  for f ∈ L ( ,E) .lim
n→∞

∑
k=1

n

p ⃗ k E ′

f( ) = − (k > 1),p ⃗ k qk qk−1 f( ) = ;p ⃗ 1 q1

f ( ) = + ( − ) = .∑
k=1

n

p ⃗ k q1 ∑
k=2

n

qk qk−1 qn (6.8.16)

f( ) = f ( ) = = .p ⃗  lim
n→∞

∑
k=1

n

p ⃗ k lim
n→∞

qn q0 (6.8.17)

| | < (k ≥ 1).p ⃗ k ck−1

| | ≤ | | < = ;p ⃗  ∑
k=1

∞

p ⃗ k ∑
k=1

∞

ck−1 1

1−c
(6.8.18)

∈ ( ) .p ⃗  G
0
→

1

1−c
(6.8.19)

= f( );q0 p ⃗ 

∈ f [ ( )] .q0 G
0
→

1

1−c
(6.8.20)

∈ (r)q0 G0

(r) ⊆ f [ ( )] ,G0 G0
1

1−c
(6.8.21)

(r(1−c)) ⊆ f [ (1)] = f [G].G0 G0 (6.8.22)

c ∈ (0, 1).

f [G] ⊇ (r(1−c)) = (r). (Verify!)⋃
0<c<1

G0 G0 (6.8.23)

□
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Let  with  complete. Then  is meagre in  or  according to whether  is or is not
nowhere dense.

Proof

If  is nowhere dense in  so also is  (Verify by Problems 15 and 19 in §7.) But then

is a countable union of nowhere dense sets, hence meagre, by definition.

Now suppose  is not nowhere dense; so  contains some  We may assume 

(if not, replace  by a close point from  Then  for some  The latter implies

so

Also, as  translation by  yields

i.e.,

Hence  (why?); so, by the Lemma

This implies  and so

i.e.,  as required. Thus the theorem is proved.

Let  with  and  complete. Then the map  is open on  iff  i.e., iff  is onto .

Proof

If  then by Theorem 1,  is nonmeagre in  as is  itself. Thus by Theorem 2,  is not nowhere

dense, and (1) follows as before. Hence by Problems 15(iii) and 19 in §7,  some  whenever . (Why?)
Therefore,  implies

i.e.,  maps any interior point  into such a point of  By Problem 8 in §7,  is open on 

 Theorem  (Banach)6.8.2

f ∈ L ( ,E) ,E ′ E ′ f [ ]E ′ E f [ ] = E,E ′ f [ (1)]G0

f [ (1)]G0 E, f [ (n)] ,n > 0.G0

f [ ] = f [ (n)] = f [ (n)]E ′ ⋃
n=1

∞

G0 ⋃
n=1

∞

G
0
→ (6.8.24)

f [ (1)]G0 f [ (1)]G0
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯ (r) ⊆ E.Gq q ∈ f [ (1)]G

0
→

q f [ (1)]).G0 q = f( )p ⃗  ∈ (1).p ⃗  G0

| − | = | | = ρ( , ) < 1;p ⃗  p ⃗  p ⃗  0
→

(6.8.25)

(1) ⊆ (2).G−p ⃗  G
0
→ (6.8.26)

⊇ (r),f [ (1)]G
0¯̄̄

¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
Gq −q = f(− )p ⃗ 

+f(− ) ⊇ (r)−q = (r),f [ (1)]G
0
¯̄̄

¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
p ⃗  Gq G0 (6.8.27)

(r) ⊆ ⊆ .G0 f [ (1)]G−p ⃗ 
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

f [ (2)]G
0
→

¯ ¯¯̄¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

(6.8.28)

⊇ ( r)f [ (1)]G
0
→

¯ ¯¯̄¯̄¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄

G0
1
2

f [ (1)]⊇ ( r)  in E.G
0
→ G0

1

2
(6.8.29)

f [ (2n)]⊇ (nr),G
0
→ G0

f [ ] ⊇ (nr) = E,E ′ ⋃
n=1

∞

G0 (6.8.30)

f [ ] = E,E ′
□

 Theorem  (Open map principle)6.8.3

f ∈ L ( ,E) ,E ′ E ′ E f E ′ f [ ] = E,E ′ f E

f [ ] = E,E ′ f [ ]E ′ E, E f [ (1)]G
0
→

f [ ] ⊇Gp ⃗  Gq q = f( )p ⃗ 

⊆ A ⊆Gp ⃗  E ′

⊆ f [ ] ⊆ f [A];Gf( )p ⃗  Gp ⃗  (6.8.31)

f ∈ Ap ⃗  f [A]. f .E ′
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Conversely, if so, then  is an open set  in  a complete space; so by Theorems 1 and 2,  is nonmeagre and
equals  (See also Problem 16(ii) in §7.)

Note 1. Theorem 3 holds even if  is not one-to-one.

Note 2. If in Theorem 3, however,  is bijective, it is open on  and so  by Note 1 in §7. (This is the promised
general proof of Corollary 2 in §6.)

Let  complete. Let  be a family of maps  such that

("  is bounded at each .")

Then  is "norm-bounded," i.e.,

with  as in §2.

Proof

It suffices to show that  is "uniformly" bounded on some globe,

For then  implies

or (setting  implies

so

Thus, seeking a contradiction, suppose (3) fails and assume its negation:

Then for  we can fix some  and  such that  and

By the continuity of the norm , we can choose  so small that

Again by (4), we fix  and  such that  on some globe

with  Inductively, we thus form a contracting sequence of closed globes

and a sequence  such that

f [ ]E ′ ≠ ∅ E, f [ ]E ′

E. □

f

f ,E ′ ∈ L (E, )f−1 E ′

 Theorem  (Banach-Steinhaus uniform boundedness principle)6.8.4

beE ′ N f ∈ L ( ,E)E ′

(∀x ∈ )(∃k ∈ ) (∀f ∈N ) |f( )| < k.E ′ E1 x⃗  (6.8.32)

N x⃗ 

N

(∃K ∈ ) (∀f ∈N ) ∥f∥ < K,E1 (6.8.33)

∥ ∥

N

(∃c ∈ ) (∃G = (r)) (∀f ∈N )(∀ ∈ G) |f( )| ≤ c.E1 Gp ⃗  x⃗  x⃗  (6.8.34)

| − | ≤ rx⃗  p ⃗ 

2c > |f( )−f( )| = |f( − )|,x⃗  p ⃗  x⃗  p ⃗  (6.8.35)

− = r )| | < 1x⃗  p ⃗  y ⃗  y ⃗ 

(∀f ∈N ) |f( )| < (why?);y ⃗ 
2c

r
(6.8.36)

(∀f ∈N ) ∥f∥ = |f( )| < .sup
| |≤1y ⃗ 

y ⃗ 
2c

r
(6.8.37)

(∀c ∈ ) (∀G = (r)) (∃f ∈N )(∃ ∈ G = (r)) |f( )| > c.E1 Gp ⃗  x⃗  Gp ⃗  x⃗  (6.8.38)

c = 1, ∈Nf1 ( )Gx ⃗ 1
r1 0 < < 1r1

| ( )| > 1.f1 x⃗ 1 (6.8.39)

|| r1

(∀ ∈ ) |f( )| > 1.x⃗  ( )Gx ⃗ 1
r1

¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
x⃗  (6.8.40)

∈Nf2 ∈ ( )x⃗ 2 Gx ⃗ 1
r1 | | > 2f2

⊆ ( ) ,( )Gx ⃗ 2
r2

¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Gx ⃗ 1

r1 (6.8.41)

0 < < 1/2.r2

, 0 < < ,( )Gx ⃗ n
rn

¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯
rn

1

n
(6.8.42)

{ } ⊆N ,fn
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As  is complete, so are the closed globes  Also,  1  Thus by Cantor's theorem
(Theorem 5 of Chapter 4, §6), there is

As  is in each  we have

so  is not bounded at  contrary to (2). This contradiction completes the proof.

Note 3. Complete normed spaces are also called Banach spaces.

This page titled 6.8: Baire Categories. More on Linear Maps is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

(∀n) | | > n on  ⊆ .fn ( )Gx ⃗ n
rn

¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯
E ′ (6.8.43)

E ′ ⊆ .( )Gx ⃗ n
rn

¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯
E ′ 0 < <rn /n →0.

∈ .x⃗ 0 ⋂
n=1

∞

( )Gx ⃗ n
rn

¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯ (6.8.44)

x⃗ 0 ,( )Gx ⃗ n
rn

¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄¯

(∀n) | ( )| > n;fn x⃗ 0 (6.8.45)

N ,x⃗ 0 □
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6.8.E: Problems on Baire Categories and Linear Maps

Verify the equivalence of the various formulations in Definition 1. Discuss:  is nowhere dense iff it is not dense in any open
set .

Verify Examples (a) to (e). Show that Cantor's set  is uncountable. 
[Hint: Each  corresponds to a "ternary fraction,"  also written  where  or

 according to whether  is to the left, or to the right, of the nearest "removed" open interval of length . Imitate the
proof of Theorem 3 in Chapter 1, §9, for uncountability. See also Chapter 1, §9, Problem 2(ii).]

Complete the missing details in the proof of Theorems 1 to 4.

Prove the following. 
(i) If  and  is nowhere dense or meagre, so is . 
(ii) If  and  is nonmeagre, so is . 
[Hint: Assume  is meagre and use (i)).] 
(iii) Any finite union of nowhere dense sets is nowhere dense. Disprove it for infinite unions. 
(iv) Any countable union of meagre sets is meagre.

Prove that in a discrete space  only  is meagre. 
[Hint: Use Problem 8 in Chapter 3, §17, Example 7 in Chapter 3, §12, and our present Theorem 1.]

Use Theorem 1 to give a new proof for the existence of irrationals in . 
[Hint: The rationals  are a meagre set, while  is not.]

What is wrong about this "proof" that every closed set  in a complete space  is residual: "By Theorem 5 of Chapter
3, §17,  is complete as a subspace. Thus by Theorem 1,  is residual." Give counterexamples!

We call  a -set and write  iff  for some open sets  
(i) Prove that if  is a -set, and if  is dense in a complete metric space  i.e.,  then  is residual in . 
[Hint: Let  Verify that  is dense in  and  is nowhere dense. Deduce that  is
meagre. Use Theorem 1.] 
(ii) Infer that  (the rationals) is not a -set in  (cf. Example(c)).

 Exercise 6.8.E. 1

A

≠ ∅

 Exercise 6.8.E. 2

P

p ∈ P p = / ,∑∞
n=1 xn 3n 0. , ,… , ,… ,x1 x2 xn = 0xn

= 2xn p 1/3n

 Exercise 6.8.E. 3

 Exercise 6.8.E. 4

B ⊆ A A B

B ⊆ A B A

A

 Exercise 6.8.E. 5

(S, ρ), ∅

 Exercise 6.8.E. 6

E1

R E1

 Exercise 6.8.E. 7

F ≠ ∅ (S, ρ)
F F

 Exercise 6.8.E. 8

K Gδ K ∈ Gδ K =⋂∞
n=1 Gn .Gn

K Gδ K (S, ρ), = S,K¯ ¯¯̄¯ K S

=− .Fn Gn (∀n)Gn S, Fn −K =−⋂ =∪Gn Fn

R Gδ E1
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Show that, in a complete metric space  a meagre set  cannot have interior points.
[Hint: Otherwise,  would obtain a globe  Use Theorem 1 and Problem 4(ii).]

(i) A singleton  is nowhere dense if  clusters at  otherwise, it is nonmeagre in  (being a globe, and not a
union of nowhere dense sets). 
(ii) If  clusters at each  any countable set  is meagre in .

(i) Show that if  (see Problem 8) in a complete space  and  clusters at each  then  is uncountable. 
(ii) Prove that any nonempty perfect set (Chapter 3, §14) in a complete space is uncountable. 
(iii) How about  (the rationals) in  and in  as a subspace of  What is wrong? 
[Hints: (i) The subspace  is complete (why?); so  is nonmeagre in  by Problem 8. Use Problem 10(ii). (ii) Use
Footnote 3.]

If  is open in  then  is nowhere dense in . 
[Hint:  is closed; so 

 
by Problem 15 in Chapter 3, §12 and Problem 15 in Chapter 3, §16.]

("Simplified" uniform boundedness theorem.) Let  be continuous for  with  complete. If 
 is a bounded sequence in  for each  then  is uniformly bounded on some open  

 
[Outline: Fix  and  set 

 
Use the continuity of  and of  to show that  is closed in  and . By Theorem 1,  is nonmeagre; so at
least one  is not nowhere dense-call it , so . Set  and show that  is as required.]

Let  be continuous for . Show that if  (pointwise) on  then  is continuous on 
 with  meagre in  

[Outline:  let 

 Exercise 6.8.E. 9

(S, ρ), A

A G.

 Exercise 6.8.E. 10

{p} ⊆ (S, ρ) S p; S

A ⊆ S p ∈ A, B ⊆ A S

 Exercise 6.8.E. 11

∅ ≠ A ∈ Gδ (S, ρ), A p ∈ A, A

R E1 R ?E1

( , ρ)A
¯ ¯¯̄

A ,A
¯ ¯¯̄

 Exercise 6.8.E. 12

G (S, ρ), −GG
¯ ¯¯̄

S

−G = ∩(−G)G
¯ ¯¯̄

G
¯ ¯¯̄

= ( −G = ( ∩−G = ∅( −GG
¯ ¯¯̄

)0
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄

G
¯ ¯¯̄

)0 G
¯ ¯¯̄

)0 (6.8.E.1)

 Exercise 6.8.E. 13

: (S, ρ) → (T , )fn ρ′ n = 1, 2,… , S

{ (x)}fn T x ∈ S, { }fn G ≠ ∅ :

(∀p ∈ T )(∃k)(∀n)(∀x ∈ G) (p, (x)) ≤ k.ρ′ fn (6.8.E.2)

p ∈ T (∀n)

= {x ∈ S|(∀m)n ≥ (p, (x))} .Fn ρ′ fm (6.8.E.3)

fm ρ′ Fn S, S =⋃∞
n=1 Fn S

Fn F ( = ≠ ∅F¯ ¯¯̄ )0 F 0 G = F 0 G

 Exercise 6.8.E. 14

: (S, ρ) → (T , )fn ρ′ n = 1, 2,… → ffn S, f

S−Q, Q S.
(∀k,m)

= {x ∈ S| ( (x), (x)) > } .Akm ⋃
m=n

∞

ρ′ fn fm

1

k
(6.8.E.4)
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By the continuity of  and  is open in  (Why?) So by Problem 12,  is meagre for 

. 
Also, as  on  (Verify!) Thus 

 
(Why?) Hence the set  is meagre in  
Moreover,  by Problem 16 in Chapter 3, §16. Deduce that if  then 

 
Keeping  fixed, let  to get 

 
Now modify the proof of Theorem 2 of Chapter 4, §12, to show that this implies the continuity of  at each .]

6.8.E: Problems on Baire Categories and Linear Maps is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

,ρ′ fn ,fm Akm S. ( − )⋃∞
m=1 Akm

¯ ¯¯̄¯̄¯̄¯
Akm

k = 1, 2,…
→ ffn S, = ∅.⋂∞

m=1 Akm

(∀k) ⊆ ( − ) .⋂
m=1

∞

Akm
¯ ¯¯̄¯̄¯̄¯ ⋃

m=1

∞

Akm
¯ ¯¯̄¯̄¯̄¯

Akm (6.8.E.5)

Q =⋃∞
k=1⋂

∞
m=1 Akm

¯ ¯¯̄¯̄¯̄¯
S.

S−Q =⋂∞
k=1 ∪

∞
m=1 (− )Akm

0 p ∈ S−Q,

(∀ε > 0) (∃ ) (∃ ) (∀n,m ≥ )(∀x ∈ ) ( (x), (x)) < ε.m0 Gp m0 G0 ρ′ fm fn (6.8.E.6)

m n →∞

(∀ε > 0) (∃ ) (∃ ) (∀m ≥ )(∀x ∈ ) ( (x), f(x)) ≤ ε.m0 Gp m0 Gp ρ′ fm (6.8.E.7)

f p ∈ S−Q
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6.9: Local Extrema. Maxima and Minima
We say that  has a local maximum (minimum) at  iff  is the largest (least) value of  on some globe 
about  more precisely, iff

We speak of an improper extremum if we only have  on  In any case, all depends on the sign of 

From Problem 6 in §1, recall the following necessary condition.

If  has a local extremum at  then  for all  in 

In the case  this means that  on .

(Recall that  It vanishes if the  do.

Note 1. This condition is only necessary, not sufficient. For example, if  then  yet  has no extremum

at  (Verify!)

Sufficient conditions were given in Theorem 2 of §5, for  We now take up 

Let  be of class  on a globe  Suppose  on  Set 
and .

Then the following statements are true.

(i) If  has a maximum or minimum at  according to whether

 or 

(ii) If  has no extremum at .

The case  is unresolved.

Proof

Let  and .

As  Theorem 2 in §5, yields

with  (see Corollary 1 of §5). As  we have  on  (Theorem 1 in §5). Thus by
formula (4) in §5,

Now, as the partials involved are continuous, we can choose  so small that the sign of expression (1) will not
change if  is replaced by . Then the crucial sign of  on  coincides with that of

(with  and  as stated in the theorem).

From (2) we obtain, by elementary algebra,

f : →E ′ E1 ∈p ⃗  E ′ f( )p ⃗  f G

;p ⃗ 

(∀ ∈ G) Δf = f( ) −f( ) < 0(> 0).x⃗  x⃗  p ⃗  (6.9.1)

Δf ≤ 0(≥ 0) G. Δf .

 Theorem 6.9.1

f : →E ′ E1 p ⃗  f( ) = 0Du ⃗  p ⃗  ≠u⃗  0
→

.E ′

= ( ) ,E ′ En Cn f( ; ⋅) = 0d1 p ⃗  E ′

f( ; ) = f( ) .d1 p ⃗  t ⃗  ∑n
k=1 Dk p ⃗ tk f( )Dk p ⃗ 

f(x, y) = xy, f( ; ⋅) = 0;d1 0
→

f

.0
→

= .E ′ E1 = .E ′ E2

 Theorem 6.9.2

f : →E2 E1 CD2 G= (δ).Gp ⃗  f( ; ⋅) = 0d1 p ⃗  .E2 A = f( ),B = f( ),D11 p ⃗  D12 p ⃗ 

C = f( )D22 p ⃗ 

AC > ,B2 ,p ⃗ 

A < 0 A > 0.

AC < , fB2 p ⃗ 

AC = B

∈ Gx⃗  = − ≠u⃗  x⃗  p ⃗  0
→

f( ; ⋅) = 0,d1 p ⃗ 

Δf = f( ) −f( ) = = f( ; ),x⃗  p ⃗  R1
1

2
d2 s ⃗  u⃗  (6.9.2)

∈ L( , ) ⊆ Gs ⃗  p ⃗  x⃗  f ∈ C ,D2 f = fD12 D21 G

Δf = f( ; ) = [ f( ) +2 f( ) + f( ) ] .
1

2
d2 s ⃗  u⃗ 

1

2
D11 s ⃗ u2

1 D12 s ⃗ u1u2 D22 s ⃗ u2
2 (6.9.3)

G= (δ)Gp ⃗ 

s ⃗  p ⃗  Δf G

D = A +2B +Cu2
1 u1u2 u2

2 (6.9.4)

A,B, C
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Clearly, if  the right-side expression in (3) is  so , i.e.,  has the same sign as 

Hence if  we also have  on  and  has a maximum at  If  then  and  has a minimum at 
.

Now let . We claim that no matter how small  changes sign as  varies in  and so  has no
extremum at .

Indeed, we have  If  (3) shows that  and  have the same sign as 

But if  and  (assuming  then  and  have the sign opposite to that of  and  is still in 
 if  is small enough (how small?).

One proceeds similarly if  (interchange  and  and use (3').

Finally, if  then by (2),  and  (since . Again  and  change sign as 
does; so  has no extremum at  Thus all is proved.

Briefly, the proof utilizes the fact that the trinomial (2) is sign-changing iff its discriminant  is positive, i.e., 

.

Note 2. Functions  (of one complex variable) are likewise covered by Theorem 2 if one treats them as functions on 
(of two real variables).

Functions of n variables. Here we must rely on the algebraic theory of so-called symmetric quadratic forms, i.e., polynomials 
 of the form

where  and .

We take for granted a theorem due to J. J. Sylvester (see S. Perlis, Theory of Matrices, 1952, p. 197), which may be stated as
follows.

Let  be a symmetric quadratic form,

(i)  on all of  iff the following  determinants  are positive:

(ii) We have  on  iff  for .

Now we can extend Theorem 2 to the case . (This will also cover  treated as  The
proof resembles that of Theorem 2.

AD

CD

= +(AC − ) ,(A +B )u1 u2
2

B2 u2
2

= +(AC − ) .(C +B )u1 u2
2

B2 u2
2

AC > ,B2 > 0; AD > 0 D A.

A < 0, Δf < 0 G, f .p ⃗  A > 0, Δf > 0, f

p ⃗ 

AC < B2 G= (δ), ΔfGp ⃗  x⃗  G, f

p ⃗ 

= + , = ( , ) ≠ .x⃗  p ⃗  u⃗  u⃗  u1 u2 0
→

= 0,u2 D Δf A(A ≠ 0).

≠ 0u2 = −B /Au1 u2 A ≠ 0), D Δf A; x⃗ 

G u2

C ≠ 0 A C,

A = C = 0, D = 2Bu1u2 B ≠ 0 AC < )B2 D Δf u1u2

f .p ⃗  □

−ACB2

< 0
∣

∣
∣
A

B

B

C

∣

∣
∣

f : C → E1 E2

P : →En E1

P ( ) = ,u⃗  ∑
j=1

n

∑
i=1

n

aijuiuj (6.9.5)

= ( , … , ) ∈u⃗  ui un En = ∈aij aji E1

P : →En E1

P ( ) = .u⃗  ∑
j=1

n

∑
i=1

n

aijuiuj (6.9.6)

P > 0 −{ }En 0
→

n Ak

= , k = 1, 2, … ,n.Ak

∣

∣

∣
∣
∣
∣

a11

a21

…

ak1

a12

a22

… … …

ak2

…

…

…

…

a1k

a2k

a2k

akk

∣

∣

∣
∣
∣
∣

(6.9.7)

P < 0 −{ }En 0
→

(−1 > 0)kAk k = 1, 2, … ,n

f : →En E1 f : → ,Cn E1 f : → . )E2n E1
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Let  be of class  on some  Suppose  on  Define the  as in (4), with 
 Then the following statements hold.

(i)  has a local minimum at  if  for .

(ii)  has a local maximum at  if  for .

(iii)  has no extremum at  if the expression

is  for some  and  for others (i.e.,  changes sign on .

Proof

Let again  and use Taylor's theorem to obtain

with .

As  the partials  are continuous on  Thus we can make  so small that the sign of the last double sum
does not change if  is replaced by . Hence the sign of  on  is the same as that of , with
the  as stated in the theorem.

The quadratic form  is symmetric since  by Theorem 1 in §5. Thus by Sylvester's theorem stated above, one
easily obtains our assertions (i) and (ii). Indeed, they are immediate from clauses (i) and (ii) of that theorem.

Now, for (iii), suppose  i.e.,

If here  and  are replaced by  and  then  and  turn into  and  respectively. Hence

Now, for any  the point  lies on the -directed line through  inside  (Why?)
Similarly for the point 

Hence for such  and  Taylor's theorem again yields formulas analogous to (5) for some  and 

 lying on the same two lines. It again follows that for small ,

just as .

Thus  changes sign on  and (iii) is proved.

Note 3. Still unresolved are cases in which  vanishes for some  without changing its sign; e.g., 
 for . Then the answer depends on higher-order terms of the Taylor formula. In

particular, if  on  then  etc.

Note 4. The largest or least value of  on a set  (sometimes called the absolute maximum or minimum) may occur at sominterior
(e.g., boundary) point  and then fails to be among the local extrema (where, by definition, a globe  is presupposed).
Thus to find absolute extrema, one must also explore the behaviour of  at noninterior points of 

 Theorem 6.9.3

f : →En E1 CD2 G= (δ).Gp ⃗  df( ; ⋅) = 0p ⃗  .En Ak

= f( ), i, j, k ≤ naij Dij p ⃗ 

f p ⃗  > 0Ak k = 1, 2, … ,n

f p ⃗  (−1 > 0)kAk k = 1, … ,n

f p ⃗ 

P ( ) =u⃗  ∑
j=1

n

∑
i=1

n

aijuiuj (6.9.8)

> 0 ∈u⃗  En < 0 P )En

∈ G, = − ≠ ,x⃗  u⃗  x⃗  p ⃗  0
→

Δf = f( ) −f( ) = = f( ; ) = f( ) ,x⃗  p ⃗  R1
1

2
d2 s ⃗  u⃗  ∑

j=1

n

∑
i=1

n

Dij s ⃗ uiuj (6.9.9)

∈ L( , )s ⃗  x⃗  p ⃗ 

f ∈ C ,D2 fDij G. G

s ⃗  p ⃗  Δf G P ( ) =u⃗  ∑n

j=1 ∑
n

i=1 aijuiuj

aij

P =aij aji

P ( ) > 0 > P ( ),u⃗  v ⃗ 

> 0 >  for some  , ∈ −{ }.∑
j=1

n

∑
i=1

n

aijuiuj ∑
j=1

n

∑
i=1

n

aijvivj u⃗  v ⃗  En 0
→

(6.9.10)

u⃗  v ⃗  tu⃗  t (t ≠ 0),v ⃗  uiuj vivj t2uiuj ,t2vivj

P (t ) = P ( ) > 0 > P ( ) = P (t ).u⃗  t2 u⃗  t2 v ⃗  v ⃗  (6.9.11)

t ∈ (0, δ/| |),u⃗  = + tx⃗  p ⃗  u⃗  u⃗  ,p ⃗  G= (δ).Gp ⃗ 

= + t .x⃗ ′ p ⃗  v ⃗ 

x⃗  ,x⃗ ′ ∈ L( , )s ⃗  p ⃗  x⃗ 

∈ L( , )s ⃗ ′ p ⃗  x⃗ ′ δ

f( ) −f( ) > 0 > f ( )−f( ),x⃗  p ⃗  x⃗ ′ p ⃗  (6.9.12)

P ( ) > 0 > P ( )u⃗  v ⃗ 

Δf (δ),Gp ⃗  □

P ( )u⃗  ≠ ,u⃗  0
→

P ( ) = = 0u⃗  ( + + )u1 u2 u3
2 = (1, 1, −2)u⃗ 

f( ; ⋅) = f( ; ⋅) = 0d1 p ⃗  d2 p ⃗  ,En Δf = = f( ; ),R2
1
6
d3 p ⃗  s ⃗ 

f A

∈ A,p ⃗  ⊆ AGp ⃗ 

f A.

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/21630?pdf


6.9.4 https://math.libretexts.org/@go/page/21630

By Theorem 1, local extrema can occur only at so-called critical points , i.e., those at which all directional derivatives vanish (or
fail to exist, in which case  by convention).

In practice, to find such points in  one equates the partials   to  Then one uses Theorems 2 and 3 or other
considerations to determine whether an extremum really exists.

(A) Find the largest value of

on the set  bounded by the lines  and .

We have

Inside the triangle  both partials vanish only at the point  at which  On the boundary of  (i.e., on the
lines  and  Thus even without using Theorem 2, it is evident that  attains its largest value,

at this unique critical point.

(B) Find the largest and the least value of

on the condition that  and .

As  we can eliminate  from  and replace by 

(Explain!) For  we seek the extrema on the disc  where  (so as not to violate the condition 
.

Equating to 0 the two partials

and solving this system of equations, we find these critical points inside 

(1)  ( ;

(2)  and

(3) .

(Verify!)

Now, for the boundary of  i.e., the circle  repeat this process: substitute  in the formula for 
 thus reducing it to

on the interval  In  the derivative

vanishes only when

p ⃗ 

f( ) = 0Du ⃗  p ⃗ 

( ) ,En Cn fDk (k ≤ n) 0.

 Examples

f(x, y) = sinx+siny−sin(x+y) (6.9.13)

A ⊆ E2 x = 0, y = 0 x+y = 2π

f(x, y) = cosx−cos(x+y) and  f(x, y) = cosy−cos(x+y).D1 D2 (6.9.14)

A, ( , )2π
3

2π
3

f = .3
2

3
–

√ A

x = 0, y = 0 x+y = 2π), f = 0. f

f ( , ) = ,
2π

3

2π

3

3

2
3
–

√ (6.9.15)

f(x, y, z) = + + − ,a2x2 b2y2 c2z2 (a +b +c )x2 y2 z2 2
(6.9.16)

+ + = 1x2 y2 z2 a > b > c > 0

= 1 − − ,z2 x2 y2 z f(x, y, z) f F : → :E2 E1

F (x, y) = ( − ) +( − ) + − .a2 c2 x2 b2 c2 y2 c2 [(a−c) +(b−c) +c]x2 y2 2
(6.9.17)

F , = (1) ⊂ ,G
¯ ¯¯̄

G
¯ ¯¯̄

0 E2 + ≤ 1x2 y2

+ + = 1)x2 y2 z2

F (x, y) = 2x(a−c){(a+c) −2 } = 0,D1 [(a−c) +(b−c) +c]x2 y2 2

F (x, y) = 2y(b−c){(b+c) −2 } = 0D2 [(a−c) +(b−c) +c]x2 y2 2
(6.9.18)

G :

x = y = 0 F = 0)

x = 0, y = ± (F = (b−c ) ;2− 1

2
1
4

)2

x = ± , y = 0 (F = (a−c )2− 1
2

1
4

)2

,G
¯ ¯¯̄

+ = 1,x2 y2 = 1 −y2 x2

F (x, y),

h(x) = ( − ) + + , h : → ,a2 b2 x2 b2 [(a−b) +b]x2 2
E1 E1 (6.9.19)

[−1, 1] ⊂ .E1 (−1, 1)

(x) = 2(a−b)x (1 −2 )h′ x2 (6.9.20)
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(4)  (  and

(5) .

Finally, at the endpoints of  we have

(6)  ( .

Comparing the resulting function values in all six cases, we conclude that the least of them is  while the largest is 
These are the desired least and largest values of  subject to the conditions stated. They are attained, respectively, at the points

Again, the use of Theorems 2 and 3 was redundant. However, we suggest as an exercise that the reader test the critical points
of  by using Theorem 2.

Caution. Theorems 1 to 3 apply to functions of independent variables only. In Example (B),  were made interdependent by
the imposed equation

(which geometrically limits all to the surface of  in  so that one of them,  could be eliminated. Only then can

Theorems 1 to 3 be used.

This page titled 6.9: Local Extrema. Maxima and Minima is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

x = 0 h = 0),

x = ± (h = (a−b )2− 1
2

1
4

)2

[−1, 1],

x = ±1 h = 0)

0, (a−c .1
4

)2

f ,

(0, 0, ±1), (0, ±1, 0), (±1, 0, 0),  and (± , 0, ± ) .2−
1

2 2−
1

2 (6.9.21)

F

x, y, z

+ + = 1x2 y2 z2 (6.9.22)

(1)G
0
→ ),E3 z,
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6.9.E: Problems on Maxima and Minima

Verify Note 1.

Complete the missing details in the proof of Theorems 2 and 3.

Verify Examples (A) and (B). Supplement Example (A) by applying Theorem 2.

Test  for extrema in  if  is 

(i) ; 

(ii) ; 
(iii) ;
(iv) .

(i) Find the maximum volume of an interval  (see Chapter 3, §7) whose edge lengths  have a prescribed sum: 
. 

(ii) Do the same in  and in  show that  is a cube. 
(iii) Hence deduce that 

 
i.e., the geometric mean of  nonnegative numbers is  their arithmetic mean.

Find the minimum value for the sum  of four positive numbers on the condition that 
(constant). 
[Answer: .]

Among all triangles inscribed in a circle of radius  find the one of maximum area. 
[Hint: Connect the vertices with the center. Let  be the angles at the center. Show that the area of the triangle 

 with .]

Among all intervals  inscribed in the ellipsoid 

 Exercise 6.9.E. 1

 Exercise 6.9.E. 1′

 Exercise 6.9.E. 2

 Exercise 6.9.E. 3

f E2 f(x, y)

+ (p > 0, q > 0)x2

2p

y2

2q

− (p > 0, q > 0)x2

2p

y2

2q

+y2 x4

+y2 x3

 Exercise 6.9.E. 4

A ⊂ E3 x, y, z

x+y +z = a

E4 ;En A

≤ ( ≥ 0) ,⋯x1x2 xn
− −−−−−−−−

√n
1

n
∑
1

n

xk xk (6.9.E.1)

n ≤

 Exercise 6.9.E. 5

f(x, y, z, t) = x+y +z+ t xyzt = c4

x = y = z = t = c; = 4cfmax

 Exercise 6.9.E. 6

R,
x, y, z

= (sinx+siny +sinz),1
2

R2 z = 2π −(x+y)

 Exercise 6.9.E. 7

A ⊂ E3
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find the one of largest volume. 
[Answer: the edge lengths are .]

Let  be 3 points in  forming a triangle in which one angle (say,  is . 
Find a point  for which the sum of the distances, 

 
is the least possible. 

[Outline: Let . 
Show that  has no partial derivatives at  or  (and so  and  are critical points at which an extremum may
occur), while at other points  partials do exist but never vanish simultaneously, so that there are no other critical points. 
Indeed, prove that  would imply that 

 
where  is the angle between  and the -axis; hence 

 
and so  contrary to  (Why?) 
From geometric considerations, conclude that  has an absolute minimum at . 
(This shows that one cannot disregard points at which  has no partials.)]

Continuing Problem 8, show that if none of  and  is   then  attains its least value at some  (inside the
triangle) such that . 
[Hint: Verify that  at . 
Use the law of cosines to show that  and . 
Adding, obtain  i.e.,  Similarly,  and  
Combining with Problem 8, obtain the result.]

In a circle of radius  inscribe a polygon with  sides of maximum area. 
[Outline: Let  be the central angles subtended by the sides of the polygon. Then its area  is 

 
with  (Why?) Thus all reduces to maximizing 

+ + = 1
x2

a2

y2

b2
z2

c2
(6.9.E.2)

, ,2a

3√
2b

3√
2c

3√

 Exercise 6.9.E. 8

= ( ⋅ ) , i = 1, 2, 3,Pi ai bi E2 easureangle )P1 ≥ 2π/3
P = (x, y)

P +P +P = ,P1 P2 P3 ∑
i=1

3

+(x− )ai
2

(y − )bi
2

− −−−−−−−−−−−−−−−
√ (6.9.E.3)

f(x, y) =∑
3
i=1 +(x− )ai

2
(y − )bi

2
− −−−−−−−−−−−−−−−

√

f , ,P1 P2 P3 , ,P1 P2 P3

P ,
f(P ) = 0 = f(P )D1 D2

cos = 0 = sin ,∑
i=1

3

θi ∑
1

3

θI (6.9.E.4)

θi P Pi
¯ ¯¯̄¯̄¯̄¯

x

sin( − ) = sin( − ) = sin( − ) (why?),θ1 θ2 θ2 θ3 θ3 θ1 (6.9.E.5)

− = − = − = 2π/3,θ1 θ2 θ2 θ3 θ3 θ1 ∠ ≥ 2π/3.P1

f P1

f

 Exercise 6.9.E. 9

∠ ,∠ ,P1 P2 ∠P3 ≥ 2π/3, f P

∠ P =∠ P =∠ P = 2π/3P1 P2 P2 P3 P3 P1

f = 0 = fD1 D2 P

> P + PP1P2 P2
1
2

P1 > P + PP1P3 P3
1
2

P1

+ > P +P +P ,P1P3 P1P2 P1 P2 P3 f ( ) > f(P ).P1 f ( ) > f(P )P2 f ( ) > f(P ).P3

 Exercise 6.9.E. 10

R n+1
, ,… ,x1 x2 xn+1 A

sin ,
1

2
R2∑

k=1

n+1

xk (6.9.E.6)

= 2π − .xn+1 ∑n
k=1 xk
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on the condition that  and  (Why?) 
These inequalities define a bounded set  (called a simplex). Equating all partials of  to  show that the only critical
point interior to  is  with  (implying that  too). For that  we get 

 
This value must be compared with the "boundary" values of  on the "faces" of the simplex D (see Note 4). 
Do this by induction. For  Problem 6 shows that  is indeed the largest when all  equal  Now let  be the
"face" of  where  On that face, treat  as a function of only  variables, . 
By the inductive hypothesis, the largest value of  on  is  Similarly for the other "faces." As 

 the induction is complete. 
Thus, the area  is the largest when the polygon is regular, for which 

Among all triangles of a prescribed perimeter  find the one of maximum area. 
[Hint: Maximize  on the condition that .]

Among all triangles of area  find the one of smallest perimeter.

Find the shortest distance from a given point  to a given plane  (Chapter 3, §§4-6). Answer: 

 
[Hint: First do it in  writing  for .]

6.9.E: Problems on Maxima and Minima is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

f ( ,… , ) = sin +sin(2π − ),x1 xn ∑
k=1

n

xk ∑
k=1

rk

xk (6.9.E.7)

0 ≤ xk ≤ 2π.∑n
k=1 xk

D ⊂ En f 0,

D = ( ,… , ) ,x⃗  x1 xn = , k ≤ nxk
2π

n+1
= ,xn+1

2π

n+1
,x⃗ 

f( ) = (n+1) sin[2π/(n+1)].x⃗  (6.9.E.8)

f ,

n = 2, f( )x⃗  xk .2π

n+1
Dn

D, = 0.xn f n−1 ,… ,x1 xn−1

f Dn n sin(2π/n).
n sin(2π/n) < (n+1) sin2π/(n+1),

A

A = (n+1) sin . ]
1

2
R2 2π

n+1
(6.9.E.9)

 Exercise 6.9.E. 11

2p,
p(p−x)(p−y)(p−z) x+y +z = 2p

 Exercise 6.9.E. 12

A,

 Exercise 6.9.E. 13

∈p ⃗  En ⋅ = cu⃗  x⃗ 

± .
⋅ −cu⃗  p ⃗ 

| |u⃗ 
(6.9.E.10)

,E3 (x, y, z) x⃗ 
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6.10: More on Implicit Differentiation. Conditional Extrema
I. Implicit differentiation was sketched in §7. Under suitable assumptions (Theorem 4 in §7), one can differentiate a given system
of equations,

treating the  as implicit functions of the  without seeking an explicit solution of the form

This yields a new system of equations from which the partials  can be found directly.

We now supplement Theorem 4 in §7 (review it!) by showing that this new system is linear in the partials involved and that its
determinant is  Thus in general, it is simpler to solve than (1).

As in Part IV of §7, we set

replacing the  of §7 by  Then equations (1) simplify to

where  (or .

Adopt all assumptions of Theorem 4 in §7, replacing  by  and setting ,

Then for each  we have  linear equations,

with

that uniquely determine the partials  for .

Proof

As usual, extend the map  of Theorem 4 in §7 to   (or  by setting  on .

Also, define  by

Then  is differentiable at  as are its  components. (Why?) since  is a solution of (2), equations (1)
and (2) become identities when  is replaced by  Also,  since . Moreover,

i.e.,  on .

Now, by assumption,  at  so the chain rule (Theorem 2 in §4) applies, with  and  replaced by 
 and  respectively.

As  on  an open set, the partials of  vanish on  So by Theorem 2 of §4, writing  for the th
component of 

( , … , , , … , ) = 0, k = 1, 2, … ,n,gk x1 xn y1 ym (6.10.1)

xj yi

= ( , … , ) .xj Hj y1 ym (6.10.2)

=DiHj
∂xj

∂yi

≠ 0.

( , ) = ( , … , , , … , )  and g = ( , … , ) ,x⃗  y ⃗  x1 xn y1 ym g1 gn (6.10.3)

f g.

g( , ) = ,x⃗  y ⃗  0
→

(6.10.4)

g : →En+m En g : → )Cn+m Cn

 Theorem  (implicit differentiation)6.10.1

f g H = ( , … , )H1 Hn

( , ) = , j≤ n+m, k ≤ n.Djgk p ⃗  q ⃗  ajk (6.10.5)

i = 1, … ,m, n

( ) = − , k ≤ n,∑
j=1

n

ajkDiHj q ⃗  an+i,k (6.10.6)

det( ) ≠ 0, (j, k ≤ n),ajk (6.10.7)

( )DiHj q ⃗  j= 1, 2, … ,n

H : Q → P H : →Em En → )Cm Cn H = 0
→

−Q

σ : → ( → )Em En+m Cm Cn+m

σ( ) = (H( ), ) = ( ( ), … , ( ), , … , ) , ∈ ( ) .y ⃗  y ⃗  y ⃗  H1 y ⃗  Hn y ⃗  y1 ym y ⃗  Em Cm (6.10.8)

σ ∈ Q,q ⃗  n+m = H( )x⃗  y ⃗ 

x⃗  H( ).y ⃗  σ( ) = (H( ), ) = ( , )q ⃗  q ⃗  q ⃗  p ⃗  q ⃗  H( ) =q ⃗  p ⃗ 

g(σ( )) = g(H( ), ) =  for  ∈ Q;y ⃗  y ⃗  y ⃗  0
→

y ⃗  (6.10.9)

g∘ σ = 0
→

Q

g ∈ CD1 ( , );p ⃗  q ⃗  f , , ,n,p ⃗  q ⃗  m

σ, , ( , ),m,q ⃗  p ⃗  q ⃗  n+m,

h = g∘ σ = 0
→

Q, h Q. σj j

σ,
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By (4),  if  and  if  Thus   but for  we have  if 
 and  otherwise. Hence by (5),

As  each of these vector equations splits into  scalar ones:

With  this yields (3), where  by hypothesis (see Theorem 4 in §7).

Thus all is proved.

Note 1. By continuity (Note 1 in §6), we have det  for all  in a sufficiently small neighborhood of 
Thus Theorem 1 holds also with  replaced by such . In practice, one does not have to memorize (3), but one obtains it
by implicitly differentiating equations (1).

II. We shall now apply Theorem 1 to the theory of conditional extrema.

We say that  has a local conditional maximum (minimum) at  with constraints

 iff in some neighborhood  of  we have

for all  for which .

In §9 (Example (B) and Problems), we found such conditional extrema by using the constraint equations  to eliminate some
variables and thus reduce all to finding the unconditional extrema of a function of fewer (independent) variables.

Often, however, such elimination is cumbersome since it involves solving a system (1) of possibly nonlinear equations. It is here
that implicit differentiation (based on Theorem 1) is useful.

Lagrange invented a method (known as that of multipliers) for finding the critical points at which such extrema may exist; to wit,
we have the following:

Given  set

where the constants  are to be determined and  are as above.

Then find the partials  and solve the system of  equations

for the  "unknowns"  and  the  originating from (7).

Any  satisfying (8), with the  so determined is a critical point (still to be tested). The method is based on Theorem 2 below,
where we again write  for  and  for  (we call it "double notation").

= g( , ) ⋅ ( ), i ≤ m.0
→

∑
j=1

n+m

Dj p ⃗  q ⃗  Diσj q ⃗  (6.10.10)

=σj Hj j≤ n, ( ) =σj y ⃗  yi j= n+ i. =Diσj DiHj j≤ n; j> n, = 1Diσj
j= n+ i, = 0Diσj

= g( , ) ⋅ ( ) + g( , ), i = 1, 2, … ,m.0
→

∑
j=1

n

Dj p ⃗  q ⃗  DiHj q ⃗  Dn+i p ⃗  q ⃗  (6.10.11)

g = ( , … , ) ,g1 gn n

0 = ( , ) ⋅ ( ) + ( , ), i ≤ m, k ≤ n.∑
j=1

n

Djgk p ⃗  q ⃗  DiHj q ⃗  Dn+igk p ⃗  q ⃗  (6.10.12)

( , ) = ,Djgk p ⃗  q ⃗  ajk det( ) = det( ( , )) ≠ 0ajk Djgk p ⃗  q ⃗ 

□

( , )) ≠ 0Djgk x⃗  y ⃗  ( , )x⃗  y ⃗  ( , ).p ⃗  q ⃗ 

( , )p ⃗  q ⃗  ( , )x⃗  y ⃗ 

 Definition 1

f : →En+m E1 ∈ ,p ⃗  En+m

g = ( , … , ) =g1 gn 0
→

(6.10.13)

(g : → )En+m En G p ⃗ 

Δf = f( ) −f( ) ≤ 0 (≥ 0,  respectively)x⃗  p ⃗  (6.10.14)

∈ Gx⃗  g( ) =x⃗  0
→

g = 0
→

f : → ,En+m E1

F = f + ,∑
k=1

n

ckgk (6.10.15)

ck gk

F (j≤ n+m)Dj 2n+m

F ( ) = 0, j≤ n+m,  and  ( ) = 0, k ≤ n,Dj x⃗  gk x⃗  (6.10.16)

2n+m (j≤ n+m)xj (k ≤ n),ck ck

x⃗  ck
( , )p ⃗  q ⃗  p ⃗  ( , )x⃗  y ⃗  x⃗ 
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Suppose  is differentiable at

and has a local extremum at  subject to the constraints

with  as in Theorem 1,  Then

for certain multipliers  (determined by the first n equations in (9)).

Proof

These  equations admit a unique solution for the  as they are linear, and

by hypothesis. With the  so determined, (9) holds for  It remains to prove (9) for 

Now, since  has a conditional extremum at  as stated, we have

for all  with  provided we make the neighborhood  small enough.

Define  and  as in the previous proof (see (4)); so  is equivalent to  for .

Then, for all such  with  we surely have  and also

Set  Then (10) reduces to

This means that  has an unconditional extremum at  an interior point of  Thus, by Theorem 1 in §9,

Hence, applying the chain rule (Theorem 2 of §4) to  we get, much as in the previous proof,

(Verify!)

Next, as  by hypothesis satisfies Theorem 1, we get equations (3) or equivalently (6). Multiplying (6) by  adding and
combining with (11), we obtain

(Verify!) But the square-bracketed expression is  for we chose the  so as to satisfy (9) for  Thus all simplifies to

 Theorem  (Lagrange multipliers)6.10.2

f : →En+m E1

( , ) = ( , … , , , … , )p ⃗  q ⃗  p1 pn q1 qm (6.10.17)

( , )p ⃗  q ⃗ 

g = ( , … , ) = ,g1 gn 0
→

(6.10.18)

g g : → .En+m En

( , ) = − f( , ), j= 1, 2, … ,n+m,∑
k=1

n

ckDjgk p ⃗  q ⃗  Dj p ⃗  q ⃗  (6.10.19)

ck

n ,ck

det( ( , )) ≠ 0 (j, k ≤ n)Djgk p ⃗  q ⃗  (6.10.20)

ck j≤ n. n < j≤ n+m.

f ( , )p ⃗  q ⃗ 

f( , ) −f( , ) ≤ 0 ( or  ≥ 0)x⃗  y ⃗  p ⃗  q ⃗  (6.10.21)

( , ) ∈ P ×Qx⃗  y ⃗  g( , ) = ,x⃗  y ⃗  0
→

P ×Q

H σ = H( )x⃗  y ⃗  g( , ) =x⃗  y ⃗  0
→

( , ) ∈ P ×Qx⃗  y ⃗ 

( , ),x⃗  y ⃗  = H( ),x⃗  y ⃗  g( , ) =x⃗  y ⃗  0
→

f( , ) = f(H( ), ) = f(σ( )).x⃗  y ⃗  y ⃗  y ⃗  y ⃗  (6.10.22)

h = f ∘ σ,h : → .Em E1

h( ) −h( ) ≤ 0( or  ≥ 0)  for all  ∈ Q.y ⃗  q ⃗  y ⃗  (6.10.23)

h ,q ⃗  Q.

h( ) = 0, i = 1, … ,m.Di q ⃗  (6.10.24)

h = f ∘ σ,

0 = f( , ) ( )∑
j=1

n+m

Dj p ⃗  q ⃗ Diσj q ⃗ 

= f( , ) ( ) + f( , ), i ≤ m.∑
j=1

n

Dj p ⃗  q ⃗ DiHj q ⃗  Dn+i p ⃗  q ⃗ 

g ,ck

[ f( , ) + ( , )] ( )∑n

j=1 Dj p ⃗  q ⃗  ∑n

k=1 ckDjgk p ⃗  q ⃗  DiHj q ⃗ 

+ f( , ) + ( , ) = 0, i ≤ m.Dn+i p ⃗  q ⃗  ∑n
k=1 ckDn+igk p ⃗  q ⃗ 

(6.10.25)

0; ck j≤ n.
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Hence (9) holds for  too, and all is proved.

Remarks. Lagrange's method has the advantage that all variables (the  and ) are treated equally, without singling out the
dependent ones. Thus in applications, one uses only  i.e.,  and  (not ).

One can also write  for  (the "double" notation was good for the proof
only).

On the other hand, one still must solve equations (8).

Theorem 2 yields only a necessary condition (9) for extrema with constraints. There also are various sufficient conditions, but
mostly one uses geometric and other considerations instead (as we did in §9). Therefore, we limit ourselves to one proposition
(using "single" notation this time).

Let

with  and  as in Theorem 2.

Then  has a maximum (minimum) at  (with constraints  whenever  does. (A
fortiori, this is the case if  has an unconditional extremum at .)

Proof

Suppose  has a maximum at  with constraints  Then

for those  near  (including  for which .

But for such  and so

Hence  has a maximum at  with constraints as stated.

Similarly,  in case  has a conditional minimum at .

Find the local extrema of

on the condition that

with  and  (Note that inequalities do not count as "constraints" in the sense of Theorems 2 and 3.) Here one
can simply eliminate  but it is still easier to use Lagrange's method.

Set  (We drop  since it will anyway disappear in differentiation.) Equations (8) then
read

( , ) = − f( , ), i = 1, 2, … ,m.∑
k=1

n

ckDn+igk p ⃗  q ⃗  Dn+i p ⃗  q ⃗  (6.10.26)

n < j≤ n+m, □

xk yi
F , f g H

= ( , … , )x⃗  x1 xn+m ( , ) = ( , … , , , … , )x⃗  y ⃗  x1 xn y1 ym

 Theorem  (sufficient conditions)6.10.3

F = f + ,∑
k=1

n

ckgk (6.10.27)

f : → , g : → ,En+m E1 En+m En ck

f = ( , … , )p ⃗  p1 pn+m g = ( , … , ) =g1 gn 0
→

F

F p ⃗ 

F ,p ⃗  g = .0
→

0 ≥ F ( ) −F ( ) = f( ) −f( ) + [ ( ) − ( )]x⃗  p ⃗  x⃗  p ⃗  ∑
k=1

n

ck gk x⃗  gk p ⃗  (6.10.28)

x⃗  p ⃗  = )x⃗  p ⃗  g( ) =x⃗  0
→

, ( ) = ( ) = 0, [ ( ) − ( )] = 0,x⃗  gk x⃗  gk p ⃗  ck gk x⃗  gk p ⃗ 

0 ≥ F ( ) −F ( ) = f( ) −f( ).x⃗  p ⃗  x⃗  p ⃗  (6.10.29)

f ,p ⃗ 

ΔF = Δf F p ⃗  □

 Example 1

f(x, y, z, t) = x+y+z+ t (6.10.30)

g(x, y, z, t) = xyzt− = 0,a4 (6.10.31)

a > 0 x, y, z, t > 0.

t = /(xyz),a4

F (x, y, z, t) = x+y+z+ t+cxyzt. a4
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Solving for  and  we get .

Thus  and the only critical point is  (Verify!)

By Theorem 3, one can now explore the sign of  where  For  near  it agrees with the sign of 
 (See proof of Theorem 2 in §9.) We shall do it below, using yet another device, to be explained now.

Elimination of dependent differentials. If all partials of  vanish at  (e.g., if  satisfies (9), then  on 
(briefly ).

Conversely, if  on a globe  for some function  on  independent variables, then

since  (a polynomial!) vanishes at infinitely many points if its coefficients  vanish. (The latter fails, however, if
the variables are interdependent.)

Thus, instead of working with the partials, one can equate to  the differential  or  Using the "variable" notation and the
invariance of  (Note 4 in §4), one then writes  for the "differentials" of dependent and independent variables alike, and
tries to eliminate the differentials of the dependent variables. We now redo Example 1 using this method.

With  and  as in Example 1, we treat  as the dependent variable, i.e., an implicit function of ,

and differentiate the identity  to obtain

so

Substituting this value of  in  (the equation for critical points), we eliminate  and find:

As  are independent variables, this identity implies that the coefficients of  and  must vanish, as pointed out
above. Thus

Hence . (Why?) Thus again, the only critical point is 

Now, returning to Lagrange's method, we use formula (5) in §5 to compute

(Verify!)

We shall show that this expression is sign-constant (if , near the critical point  Indeed, setting 
 in (12), we get  and (13) turns into

0 = 1 +cyzt = 1 +cxzt = 1 +cxyt = 1 +cxyz, xyzt− = 0.a4 (6.10.32)

x, z, t c, c = − , x = y = z = t = aa−3

F (x, y, z, t) = x+y+z+ t−xyzt/ ,a3 = (a, a, a, a).p ⃗ 

F ( ) −F ( ),x⃗  p ⃗  = (x, y, z, t).x⃗  x⃗  ,p ⃗ 

F ( ; ⋅).d2 p ⃗ 

F p ⃗  p ⃗  F ( ; ⋅) = 0d1 p ⃗  En+m

dF ≡ 0

f( ; ⋅) = 0d1 p ⃗  ,Gp ⃗  f n

f( ) = 0, k = 1, 2, … ,n,Dk p ⃗  (6.10.33)

f( ; ⋅)d1 p ⃗  f( )Dk p ⃗ 

0 dF df .

df dx, dy, …

 Example 2

f g t x, y, z

t = /(xyz) = H(x, y, z),a4 (6.10.34)

xyzt− = 0a4

0 = yztdx+xztdy+xytdz+xyzdt; (6.10.35)

dt = −t( + + ) .
dx

x

dy

y

dz

z
(6.10.36)

dt df = dx+dy+dz+dt = 0 dt

(1 − ) dx+(1 − ) dy+(1 − ) dz ≡ 0.
t

x

t

y

t

z
(6.10.37)

x, y, z dx, dy, dz

1 − = 1 − = 1 − = 0.
t

x

t

y

t

z
(6.10.38)

x = y = z = t = a = (a, a, a, a).p ⃗ 

F = − (dxdy+dxdz+dzdt+dxdt+dydz+dydt).d2 2

a
(6.10.39)

xyzt = )a4 .p ⃗ 

x = y = z = t = a dt = −(dx+dy+dz),

− [dxdy+dxdz+
2

a

=

dydz−(dx+dy+dz ])2

[d +d +d +(dx+dy+dz ] = F .
1

a
x2 y2 z2 )2 d2
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This expression is  (for  and  are not all ). Thus  has 
a local conditional minimum at 

Caution; here we cannot infer that  is the least value of  under the imposed conditions:  and 

The simplification due to the Cauchy invariant rule (Note 4 in §4) makes the use of the "variable" notation attractive, though
caution ismandatory.

Note 2. When using Theorem 2, it suffices to ascertain that some  equations from (9) admit a solution for the  for then,
renumbering the equations, one can achieve that these become the first  equations, as was assumed. This means that the 

 matrix  must be of rank  i.e., contains an -submatrix (obtained by deleting some columns), with
a nonzero determinant.

In the Problems we often use  for Lagrange multipliers.

This page titled 6.10: More on Implicit Differentiation. Conditional Extrema is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of
the LibreTexts platform; a detailed edit history is available upon request.

> 0 dx, dy, dz 0 f

= (a, a, a, a).p ⃗ 

f( )p ⃗  f x, y, z > 0 xyzt = .a4

n ;ck
n

n×(n+m) ( ( , ))Djgk p ⃗  q ⃗  n, n×n

r, s, t, …
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6.10.E: Further Problems on Maxima and Minima

Fill in all details in Examples 1 and 2 and the proofs of all theorems in this section.

Redo Example (B) in §9 by Lagrange's method. 
[Hint: Set . Compare the values of  at all critical
points.]

An ellipsoid 

 
is cut by a plane  Find the semiaxes of the section-ellipse, i.e., the extrema of 

 

under the constraints  where 

 
Assume that  and that not all . 
[Outline: By Note 2, explore the rank of the matrix 

 
(Why this particular matrix?) 
Seeking a contradiction, suppose all its  determinants vanish at all points of the section-ellipse. Then the upper and lower
entries in (14) are proportional (why?); so  (a contradiction!). 
Next, set 

 
Equate  to  

 

Multiplying by  respectively, adding, and combining with  obtain   so, by (15), for , 

 Exercise 6.10.E. 1

 Exercise 6.10.E. 2

F (x, y, z) = f(x, y, z) −r ( + + ) , g(x, y, z) = + + −1x2 y2 z2 x2 y2 z2 f

 Exercise 6.10.E. 3

+ + = 1
x2

a2

y2

b2

z2

c2
(6.10.E.1)

ux+vy+wz = 0.

= [f(x, y, z) = + +ρ2 ]2 x2 y2 z2 (6.10.E.2)

g = ( , ) = ,g1 g2 0
→

(x, y, z) = ux+vy+wz and  (x, y, z) = + + −1.g1 g2
x2

a2

y2

b2

z2

c2
(6.10.E.3)

a > b > c > 0 u, v,w = 0

( ) .
x/a2

u

y/b2

v

z/c2

z
(6.10.E.4)

2 ×2

/ + / + / = 0x2 a2 y2 b2 z2 c2

F (x, y, z) = + + +r( + + )+2s(ux+vy+wz).x2 y2 z2 x2

a2

y2

b2

z2

c2
(6.10.E.5)

dF 0 :

x+ +su = 0, y+ +sv= 0, z+ +sw = 0.
rx

a2

ry

b2

rz

c2
(6.10.E.6)

x, y, z, g = ,0
→

r = − ;ρ2 a, b, c ≠ ρ

x = , y = , z = .
−sua2

−a2 ρ2

−svb2

−b2 ρ2

−swc2

−c2 ρ2
(6.10.E.7)
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Find  then compare the -values at critical points.]

Find the least and the largest values of the quadratic form 

 
on the condition that . 
[Outline: Let  Equating  to  obtain 

 
Using Theorem 1(iv) in §6, derive the so-called characteristic equation of , 

 
of degree  in  If  is one of its  roots (known to be real), then equations (16) admit a nonzero solution for 

 by replacing  by  if necessary,  satisfies also the constraint equation 
(Explain!) Thus each root  of (17) yields a critical point  
Now, to find  multiply the th equation in (16) by  and add to get 

 
Hence . 
Thus the values of  at the critical points  are simply the roots of (17). The largest (smallest) root is also the largest (least)
value of  on  (Explain!)]

Use the method of Problem 4 to find the semiaxes of 

(i) the quadric curve in  centered at  given by  and 
(ii) the quadric surface  in  centered at (\overrightarrow{0}\). 
Assume . 
[Hint: Explore the extrema of  on the condition that 

s, x, y, z, ρ

 Exercise 6.10.E. 4

f( ) = ( = )x⃗  ∑
i,k=1

n

aikxixk aik aki (6.10.E.8)

g( ) = | −1 = 0 (f , g : → )x⃗  x⃗ |2 En E1

F ( ) = f( ) − t ( + +… + ) .x⃗  x⃗  x2
1

x2
2

x2
n dF 0,

( − t) + +… + = 0,a11 x1 a12x2 a1nxn

+( − t) +… + = 0,a21x1 a22 x2 a2nxn

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

+ +… +( − t) = 0.an1x1 an2x2 ann xn

(6.10.E.9)

f

= 0,

∣

∣

∣
∣
∣
∣

− ta11

a21

…

an1

a12

− ta22

…

a2n

…

…

…

…

a1n

a2n

…

− tann

∣

∣

∣
∣
∣
∣

(6.10.E.10)

n t. t n

= ( , … , ) ;x⃗  x1 xn x⃗  /| |x⃗  x⃗  x⃗  g( ) = | −1 = 0.x⃗  x⃗ |2

t = ( , … , ) .x⃗ t x1 xn
f ( ) ,x⃗ t k , k = 1, … ,n,xk

0 = − t = f ( ) − t.∑
i,k=1

n

aikxixk ∑
k=1

n

x2
k

x⃗ t (6.10.E.11)

f ( ) = tx⃗ t
f x⃗ t

f S = { ∈ || | = 1}x⃗  En x⃗ 

 Exercise 6.10.E. 5

,E2 ,0
→

= 1;∑2
i,k=1 aikxixk

= 1∑3
i,k=1 aikxixk ,E3

=aik akI

f( ) = |x⃗  x⃗ |2

g( ) = −1 = 0.]x⃗  ∑
i,k

aikxixk (6.10.E.12)
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Using Lagrange's method, redo Problems 4, 5, 6, 7, 11, 12, and 13 of §9.

In  find the shortest distance from  to the parabola .

In , find the shortest distance from  to the intersection line of two planes given by the formulas  and 

with  and  different from  (Rewrite all in coordinate form!)

In  find the largest value of  if  Use Lagrange's method.

(Hadamard's theorem.) If  then 

 
where . 
[Hints: Set  Treat  as a function of  variables. Using Lagrange's method, prove that, under the  constraints 

 cannot have an extremum unless  with  (if ) and \(y_{ii}=a_{i}^{2}.]

6.10.E: Further Problems on Maxima and Minima is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 6.10.E. 6

 Exercise 6.10.E. 7

,E2 0
→

= 2(x+a)y2

 Exercise 6.10.E. 8

E3 0
→

⋅ = au⃗  x⃗  ⋅ = bv ⃗  x⃗ 

u⃗  v ⃗  .0
→

 Exercise 6.10.E. 9

,En | ⋅ |a⃗  x⃗  | | = 1.x⃗ 

 Exercise 6.10.E. 10∗

A = det( )(i, k ≤ n),xik

|A| ≤ | | ,∏
i=1

n

x⃗ i (6.10.E.13)

= ( , , … , )x⃗ i xi1 xi2 xin
= | | .ai x⃗ i A n2 n

− = 0,A| |x⃗ i
2

a2
i = det( ),A2 yik = 0yIk i ≠ k
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CHAPTER OVERVIEW

7: Volume and Measure
I. Our theory of set families leads quite naturally to a generalization of metric spaces. As we know, in any such space  there
is a family  of open sets, and a family  of all closed sets. In Chapter 3, §12, we derived the following two properties.

(i)  is closed under any (even uncountable) unions and under finite intersections (Chapter 3, §12, Theorem 2). Moreover,

(ii)  has these properties, with "unions" and "intersections" interchanged (Chapter 3, §12, Theorem 3). Moreover, by definition,

Now, quite often, it is not so important to have distances (i.e., a metric) defined in  but rather to single out two set families,  and
 with properties (i) and (ii), in a suitable manner. For examples, see Problems 1 to 4 below. Once  and  are given, one does

not need a metric to define such notions as continuity, limits, etc. (See Problems 2 and 3.) This leads us to the following definition.

7.1: More on Intervals in Eⁿ. Semirings of Sets

7.1.E: Problems on Intervals and Semirings

7.2: \(\mathcal{C}_{\sigma}\)-Sets. Countable Additivity. Permutable Series

7.2.E: Problems on \(\mathcal{C}_{\sigma}\) -Sets, \(\sigma\) -Additivity, and Permutable Series

7.3: More on Set Families

7.3.E: Problems on Set Families

7.4: Set Functions. Additivity. Continuity

7.4.E: Problems on Set Functions

7.5: Nonnegative Set Functions. Premeasures. Outer Measures

7.5.E: Problems on Premeasures and Related Topics

7.6: Measure Spaces. More on Outer Measures

7.6.E: Problems on Measures and Outer Measures

7.7: Topologies. Borel Sets. Borel Measures

7.7.E: Problems on Topologies, Borel Sets, and Regular Measures

7.8: Lebesgue Measure

7.8.E: Problems on Lebesgue Measure

7.9: Lebesgue–Stieltjes Measures

7.9.E: Problems on Lebesgue-Stieltjes Measures

7.10: Generalized Measures. Absolute Continuity

7.10.E: Problems on Generalized Measures

7.11: Differentiation of Set Functions

7.11.E: Problems on Vitali Coverings

This page titled 7: Volume and Measure is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The
Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

(S, ρ),
G F

G

∅ ∈ G and S ∈ G. (7.1)

F

A ∈ F  iff  −A ∈ G. (7.2)

S, G

F , G F
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7.1: More on Intervals in Eⁿ. Semirings of Sets
I. As a prologue, we turn to intervals in  (Chapter 3, §7).

If  and  are intervals in  then

(i)  is an interval (  counts as an interval);

(ii)  is the union of finitely many disjoint intervals (but need not be an interval itself).

Proof

The easy proof for  is left to the reader.

An interval in  is the cross-product of two line intervals.

Let

where  and  are intervals in  Then (see Figure 29)

and

see Problem 8 in Chapter 1, §§1-3.

As the theorem holds in ,

are intervals in  while

are finite unions of disjoint line intervals. (In Figure 29 they are just intervals, but in general they are not.)

It easily follows that  is an interval in  while  splits into finitely many such intervals. (Verify!) Thus the
theorem holds in .

Finally, for  use induction. An interval in  is the cross-product of an interval in  by a line interval. Thus if the
theorem holds in  the same argument shows that it holds in  too. (Verify!)

This completes the inductive proof.

En

 Theorem 7.1.1

A B ,En

A ∩ B ∅

A −B

E1

E2

A = X ×Y  and B = × ,X ′ Y ′ (7.1.1)

X, Y , ,X ′ Y ′ .E1

A −B = [(X − ) ×Y ] ∪ [(X ∩ ) ×(Y − )] ;X ′ X ′ Y ′ (7.1.2)

E1

X ∩  and Y ∩X ′ Y ′ (7.1.3)

,E1

X −  and Y −Y ′ Y ′ (7.1.4)

A ∩ B ,E2 A −B

E2

,En En En−1

,En−1 ,En

□
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Actually, Theorem 1 applies to many other families of sets (not necessarily intervals or sets in  We now give such families a
name.

A family  of arbitrary sets is called a semiring iff

(i)  (  is a member), and

(ii) for any sets  and  from  we have  while  is the union of finitely many disjoint sets from 

Briefly:  is a semiring iff it satisfies Theorem 1.

Note that here  is not just a set, but a whole family of sets. Recall (Chapter §§1-3) that a set family (family of sets) is a set 
whose members are other sets. If  is a member of  we call  an -set and write  (not .

Sometimes we use index notation:

briefly

where the  are -sets distinguished from each other by the subscripts  varying over some index set 

A set family  and its union

are said to be disjoint iff

Notation:

In our case,  means that  is a -set (a member of the semiring .

The formula

means that the intersection of two -sets in a -set itself.

Henceforth, we will often speak of semirings  in general. In particular, this will apply to the case {intervals}. Always keep
this case in mind!

Note 1. By Theorem 1, the intervals in  form a semiring. So also do the half-open and the half-closed intervals separately (same
proof!), but not the open (or closed) ones. (Why?)

Caution. The union and difference of two -sets need not be a -set. To remedy this, we now enlarge 

We say that a set  (from  or not) is -simple and write

iff  is a finite union of disjoint -sets (such as  in Theorem 1).

Thus  is the family of all -simple sets.

Every -set is also a -set, i.e., a -simple one. (Why?) Briefly:

).En

 Definition 1

C

∅ ∈ C ∅

A B C, A ∩ B ∈ C, A −B C.

C

C M

A M, A M A ∈ M A ⊆M)

M= { |i ∈ I} ,Xi (7.1.5)

M= { } ,Xi (7.1.6)

Xi M i I.

M= { }Xi

⋃
i

Xi (7.1.7)

∩ = ∅ whenever i ≠ j.Xi Xj (7.1.8)

⋃  (disjoint).Xi (7.1.9)

A ∈ C A C C)

(∀A, B ∈ C) A ∩ B ∈ C (7.1.10)

C C

C C =

En

C C C.

 Definition 2

A C C

A ∈ C
′
s (7.1.11)

A C A −B

C
′
s C

C C′
s C
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If  is the set of all intervals, a -simple set may look as in Figure 30. 

If  is a semiring, and if  and  are -simple, so also are

In symbols,

Proof

We give a proof outline and suggest the proof as an exercise. Before attempting it, the reader should thoroughly review the
laws and problems of Chapter 1, §§1-3.

(1) To prove  let

with  Verify that

and so .

(2) Next prove that  if  and .

Indeed, if

then

Verify and use Definition 2.

(3) Prove that

we suggest the following argument.

C ⊆ .C
′
s (7.1.12)

C C

 Theorem 7.1.2

C A B C

A ∩ B, A −B,  and A ∪ B. (7.1.13)

(∀A, B ∈ ) A ∩ B ∈ , A −B ∈ ,  and A ∪ B ∈ .C′
s C′

s C′
s C′

s (7.1.14)

A ∩ B ∈ ,C
′
s

A = (disjoint) and B =  (disjoint),⋃
i=1

m

Ai ⋃
k=1

n

Bk (7.1.15)

, ∈ C.Ai Bk

A ∩ B = ( ∩ )  (disjoint),⋃
k=1

n

⋃
i=1

m

Ai Bk (7.1.16)

A ∩ B ∈ C
′
s

A −B ∈ C
′
s A ∈ C

′
s B ∈ C

A =  (disjoint),⋃
i=1

m

Ai (7.1.17)

A −B = −B = ( −B)  (disjoint).⋃
i=1

m

Ai ⋃
i=1

m

Ai (7.1.18)

(∀A, B ∈ ) A −B ∈ ;C
′
s C

′
s (7.1.19)
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Let

Then

by duality laws. But  is -simple by step (2). Hence so is

by step (1) plus induction.

(4) To prove  verify that

where  by (3).

Note 2. By induction, Theorem 2 extends to any finite number of -sets. It is a kind of "closure law."

We thus briefly say that  is closed under finite unions, intersections, and set differences. Any (nonempty) set family with these
properties is called a set ring (see also §3).

Thus Theorem 2 states that if  is a semiring, then  is a ring.

Caution. An infinite union of -simple sets need not be -simple. Yet we may consider such unions, as we do next.

In Corollary 1 below,  may be replaced by any set ring .

If  is a finite or infinite sequence of sets from a semiring  (or from a ring  such as ), then there is a disjoint
sequence of -simple sets (or -sets)  such that

Proof

Let  and for ,

By Theorem 2, the  are -simple (as are  and  Show that they are disjoint (assume the opposite and find
a contradiction) and verify that  If  take the least  for which  Then  and

or  and 

Note 3. In Corollary 1,  i.e.,  for some disjoint sets  Thus

B = , ∈ C.⋃
k=1

n

Bk Bk (7.1.20)

A −B = A − = (A − )⋃
k=1

n

Bk ⋂
k=1

n

Bk (7.1.21)

A −Bk C

A −B = (A − )⋂
k=1

m

Bk (7.1.22)

A ∪ B ∈ ,C
′
s

A ∪ B = A ∪ (B −A), (7.1.23)

B −A ∈ ,C
′
s

C
′
s

C′
s

C C
′
s

C C

C
′
s M

 Corollary 7.1.1

{ }An C M C
′
s

C M ⊆Bn An

= .⋃
n

An ⋃
n

Bn (7.1.24)

=B1 A1 n = 1, 2, …

= − , ∈ C.Bn+1 An+1 ⋃
k=1

n

Ak Ak (7.1.25)

Bn C An+1 ).⋃n
k=1 Ak

⋃ = ⋃ :An Bn x ∈ ⋃ ,An n x ∈ .An n > 1

x ∈ − = ,An ⋃
k=1

n−1

Ak Bn (7.1.26)

n = 1 x ∈ = . □A1 B1

∈ ,Bn C
′
s =Bn ⋃mn

i=1 Cni ∈ C.Cni

=⋃
n

An ⋃
n

⋃
i=1

mn

Cni (7.1.27)
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is also a countable disjoint union of -sets.

II. Recall that the volume of intervals is additive (Problem 9 in Chapter 3, §7). That is, if  is split into finitely many disjoint
subintervals, then  (the volume of  equals the sum of the volumes of the parts.

We shall need the following lemma.

Let  (intervals in  If the  are mutually disjoint, then

(i)  implies  and

(ii)  implies .

Proof

(i) By Theorem 2, the set

is -simple; so

for some disjoint intervals  Hence

Thus by additivity,

as claimed.

(ii) By set theory (Problem 9 in Chapter 1, §§1-3),

implies

If it happens that the  are mutually disjoint also, so certainly are the smaller intervals  so by additivity,

Hence

But by (i),

C

A ∈ C

vA A)

 lemma 1

, , … , ∈ CX1 X2 Xm ).En Xi

⊆ Y ∈ C⋃m
i=1 Xi v ≤ vY ;∑m

i=1 Xi

⊆ (with  ∈ C)⋃m
i=1 Xi ⋃p

k=1 Yk Yk v ≤ v∑m
i=1 Xi ∑p

k=1 Yk

Y −⋃
i=1

m

Xi (7.1.28)

C

Y − =⋃
i=1

m

Xi ⋃
j=1

q

Cj (7.1.29)

.Cj

Y =⋃ ∪⋃  (all disjoint).Xi Cj (7.1.30)

vY = v + v ≥ v ,∑
i=1

m

Xi ∑
j=1

q

Cj ∑
i=1

m

Xi (7.1.31)

⊆Xi ⋃
k=1

p

Yk (7.1.32)

= ∩ = ( ∩ ) .Xi Xi ⋃
k=1

p

Yk ⋃
k=1

p

Xi Yk (7.1.33)

Yk ∩ ;Xi Yk

v = v( ∩ ) .Xi ∑
k=1

p

Xi Yk (7.1.34)

v = v( ∩ ) = [ v( ∩ )] .∑
i=1

m

Xi ∑
i=1

m

∑
k=1

p

Xi Yk ∑
k=1

p

∑
i=1

m

Xi Yk (7.1.35)

v( ∩ ) ≤ v  (why?);∑
i=1

m

Xi Yk Yk (7.1.36)
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so

as required.

If, however, the  are not disjoint, Corollary 1 yields

with

By (i),

As

all reduces to the previous disjoint case.

Let  (  intervals in ). If

with  then

(Use part (ii) of the lemma twice.)

Thus we can (and do) unambiguously define  to be either of these sums.

This page titled 7.1: More on Intervals in Eⁿ. Semirings of Sets is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

v ≤ v ,∑
i=1

m

Xi ∑
k=1

p

Yk (7.1.37)

Yk

⋃ =⋃  (disjoint),Yk Bk (7.1.38)

⊇ = (disjoint), ∈ C.Yk Bk ⋃
j=1

mk

Ckj Ckj (7.1.39)

v ≤ v .∑
j=1

mk

Ckj Yk (7.1.40)

⊆ = =  (disjoint),⋃
i=1

m

Xi ⋃
k=1

p

Yk ⋃
k=1

p

Bk ⋃
k=1

p

⋃
j=1

mk

Ckj (7.1.41)

□

 Corollary 7.1.2

A ∈ C
′
s C = En

A = (disjoint) =  (disjoint)⋃
i=1

m

Xi ⋃
k=1

p

Yk (7.1.42)

, ∈ C,Xi Yk

v = v .∑
i=1

m

Xi ∑
k=1

p

Yk (7.1.43)

vA
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7.1.E: Problems on Intervals and Semirings

Complete the proof of Theorem 1 and Note 1.

Prove Theorem 2 in detail.

Fill in the details in the proof of Corollary 1.

Prove Corollary 2.

Show that, in the definition of a semiring, the condition  is equivalent to . 

Given a set  show that the following are semirings or rings. 
(a) ; 
(b) ; 
(c) ; 
(d) . 
Disprove it for . 
In  show that  Disprove it for .

Show that the cubes in  do not form a semiring.

Using Corollary 2 and the definition thereafter, show that volume is additive for  -simple sets. That is, 

Prove the lemma for -simple sets. 

 Exercise 7.1.E. 1

 Exercise 7.1.E. 1′

 Exercise 7.1.E. 2

 Exercise 7.1.E. 2′

 Exercise 7.1.E. 3

∅ ∈ C C ≠ ∅
 [Hint: Consider ∅ = A −A = (A, ∈ C)  to get ∅ = ∈ C. ]∪m

i=1 Ai Ai Ai

 Exercise 7.1.E. 4

S,
C = { all subsets of S}
C = { all finite subsets of S}
C = {∅}
C = {∅ and all singletons in S}

C = {∅ and all two−point sets in S}, S = {1, 2, 3, …}
(a) −(c), = C.C

′
s (d)

 Exercise 7.1.E. 5

(n > 1)En

 Exercise 7.1.E. 6

C

 if A = (disjoint) then vA = v (A, ∈ ) .⋃
i=1

m

Ai ∑
i=1

m

Ai Ai C
′
s (7.1.E.1)

 Exercise 7.1.E. 7

C

 [Hint: Use Problem 6 and argue as before. ]
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Prove that if  is a semiring, then  the family of all finite unions of  -sets (disjoint or not). 

7.1.E: Problems on Intervals and Semirings is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 7.1.E. 8

C (C -simple sets ) = ,C
′
s Cs C

 [Hint: Use Theorem 2. ]
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7.2: C σ Cσ -Sets. Countable Additivity. Permutable Series
We now want to further extend the definition of volume by considering countable unions of intervals, called -sets (  being the
semiring of all intervals in ).

We also ask, if  is split into countably many such sets, does additivity still hold? This is called countable additivity or -additivity
(the  is used whenever countable unions are involved).

We need two lemmas in addition to that of §1.

If  is a nonempty interval in  then given  there is an open interval  and a closed one  such that

and

Proof

Let the endpoints of  be

For each natural number , consider the open interval  with endpoints

Then  and

Making  we get

(Why?) Hence by the sequential limit definition, given  there is a natural  such that

or

As  is open and  it is the desired interval 

Similarly, one finds the closed interval  (Verify!)

Any open set  is a countable union of open cubes  and also a disjoint countable union of half-open intervals.

(See also Problem 2 below.)

Proof

If  take all .

If  every point  has a cubic neighborhood

Cσ C

En

A σ

σ

 lemma 1

B ,En ε > 0, C A

A ⊆ B ⊆ C (7.2.1)

vC −ε < vB < vA +ε. (7.2.2)

B

= ( , … , )  and  = ( , … , ) .ā̄̄ a1 an b
¯̄

b1 bn (7.2.3)

i ,Ci

( − , − , … , − )  and ( + , + , … , + ) .a1
1

i
a2

1

i
an

1

i
b1

1

i
b2

1

i
bn

1

i
(7.2.4)

B ⊆ Ci

v = [ + −( − )] = ( − + ) .Ci ∏
k=1

n

bk

1

i
ak

1

i
∏
k=1

n

bk ak

2

i
(7.2.5)

i → ∞,

v = ( − ) = vB.lim
i→∞

Ci ∏
k=1

n

bk ak (7.2.6)

ε > 0, i

v −vB < ε,Ci (7.2.7)

v −ε < vB.Ci (7.2.8)

Ci ⊇ B, C.

A ⊆ B. □

 lemma 2

G ⊆ En Ak

G = ∅, = ∅Ak

G ≠ ∅, p ∈ G
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centered at  (Problem 3 in Chapter 3, §12). By slightly shrinking this  one can make its endpoints rational, with  still
in it (but not necessarily its center), and make  open, half-open, or closed, as desired. (Explain!)

Choose such a cube  for every  so

But by construction,  contains all  so that

Moreover, because the coordinates of the endpoints of all  are rational, the set of ordered pairs of endpoints of the  is
countable, and thus, while the set of all  is uncountable, the set of distinct  is countable. Thus one can put the
family of all  in a sequence and rename it :

If, further, the  are half-open, we can use Corollary 1 and Note 3, both from §1, to make the union disjoint (half-open
intervals form a semiring!).

Now let  be the family of all possible countable unions of intervals in  such as  in Lemma 2 (we use  for all finite
unions). Thus  means that  is a -set, i.e.,

for some sequence of intervals  Such are all open sets in  but there also are many other -sets.

We can always make the sequence  infinite (add null sets or repeat a term!).

By Corollary 1 and Note 3 of §1, we can decompose any -set  into countably many disjoint intervals. This can be done in many
ways. However, we have the following result.

If

for some intervals  in  then

Thus we can (and do) unambiguously define either of these sums to be the volume  of the -set 

Proof

We shall use the Heine-Borel theorem (Problem 10 in Chapter 4, §6; review it!).

Seeking a contradiction, let (say)

so, in particular,

⊆ G,Cp (7.2.9)

p ,Cp p

Cp

Cp p ∈ G;

G ⊆ .⋃
p∈G

Cp (7.2.10)

G ,Cp

G = .⋃
p∈G

Cp (7.2.11)

Cp Cp

p ∈ G Cp

Cp { }Ak

G = .⋃
k=1

∞

Ak (7.2.12)

Ak

□

Cσ ,En G Cs

A ∈ Cσ A Cσ

A =⋃
i=1

∞

Ai (7.2.13)

{ } .Ai ,En
Cσ

{ }Ai

Cσ A

 Theorem 7.2.1

A =  (disjoint) =  (disjoint)⋃
i=1

∞

Ai ⋃
k=1

∞

Bk (7.2.14)

,Ai Bk ,En

v = v .∑
i=1

∞

Ai ∑
k=1

∞

Bk (7.2.15)

vA Cσ A.

v > v ,∑
i=1

∞

Ai ∑
k=1

∞

Bk (7.2.16)
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As

there is an integer  for which

We fix that  and set

Dropping "empties" (if any), we assume  and .

Then Lemma 1 yields open intervals  with

and closed ones  with

so

Thus

(Explain in detail!)

Now, as

each of the closed intervals  is covered by the open sets .

By the Heine-Borel theorem,  is already covered by a finite number of the  say,

The  are disjoint, for even the larger sets  are. Thus by Lemma 1(ii) in §1,

contrary to (1). This contradiction completes the proof.

v < +∞.∑
k=1

∞

Bk (7.2.17)

v = v ,∑
i=1

∞

Ai lim
m→∞

∑
i=1

m

Ai (7.2.18)

m

v > v .∑
i=1

m

Ai ∑
k=1

∞

Bk (7.2.19)

m

2ε = v − v > 0.∑
i=1

m

Ai ∑
k=1

∞

Bk (7.2.20)

≠ ∅Ai ≠ ∅Bk

⊇ ,Yk Bk

v > v − , k = 1, 2, … ,Bk Yk

ε

2k
(7.2.21)

⊆ ,Xi Ai

v + > v ;Xi

ε

m
Ai (7.2.22)

2ε = v − v∑
i=1

m

Ai ∑
k=1

∞

Bk < (v + )− (v − )∑
i=1

m

Xi

ε

m
∑
k=1

∞

Yk

ε

2k

= v − v +2ε.∑
i=1

m

Xi ∑
k=1

∞

Yk

v > v .∑
i=1

m

Xi ∑
k=1

∞

Yk (7.2.23)

⊆ ⊆ A = ⊆ ,Xi Ai ⋃
k=1

∞

Bk ⋃
k=1

∞

Yk (7.2.24)

Xi Yk

⋃m
i=1 Xi ,Yk

⊆ .⋃
i=1

m

Xi ⋃
k=1

p

Yk (7.2.25)

Xi Ai

v ≤ v ≤ v ,∑
i=1

m

Xi ∑
k=1

p

Yk ∑
k=1

∞

Yk (7.2.26)

□

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/19205?pdf


7.2.4 https://math.libretexts.org/@go/page/19205

If

for some intervals  then

Indeed, this is simply the definition of  contained in Theorem 1.

Note 1. In particular, Corollary 1 holds if  is an interval itself. We express this by saying that the volume of intervals is -additive
or countably additive. This also shows that our previous definition of volume (for intervals) agrees with the definition contained in
Theorem 1 (for -sets).

Note 2. As all open sets are -sets (Lemma 2), volume is now defined for any open set  (in particular, for ).

If  are intervals in  with

then provided the  are mutually disjoint,

Proof

The proof is as in Theorem 1 (but the  need not be disjoint here).

If

where  and the  are intervals in  then

Proof

Set

and use Corollary 2.

 Corollary 7.2.1

A =  (disjoint)⋃
k=1

∞

Bk (7.2.27)

,Bk

vA = v .∑
k=1

∞

Bk (7.2.28)

vA

A σ

Cσ

Cσ A ⊆ En A = En

 Corollary 7.2.2

,Ai Bk ,En

⊆ ,⋃
i=1

∞

Ai ⋃
k=1

∞

Bk (7.2.29)

Ai

v ≤ v .∑
i=1

∞

Ai ∑
k=1

∞

Bk (7.2.30)

Bk

 Corollary  (" -subadditivity" of the volume)7.2.3 σ

A ⊆ ,⋃
k=1

∞

Bk (7.2.31)

A ∈ Cσ Bk ,En

vA ≤ v .∑
k=1

∞

Bk (7.2.32)

A = ( disjoint ), ∈ C,⋃
i=1

∞

Ai Ai (7.2.33)

□
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If  with

then

("Larger sets have larger volumes.")

This is simply Corollary 3, with .

The volume of all of  is  (we write  for ).

Proof

We have  for any interval .

Thus, by Corollary 4, .

As  can be chosen arbitrarily large,  must be infinite.

For any countable set  In particular, .

Proof

First let  be a singleton. Then we may treat  as a degenerate interval  As all its edge lengths are  we have 
.

Next, if  is a countable set, then

so

by Corollary 1.

Finally,  is the degenerate open interval  so 

Note 3. Actually, all these propositions hold also if all sets involved are -sets, not just intervals (split each -set into disjoint
intervals!).

Permutable Series. Since -additivity involves countable sums, it appears useful to generalize the notion of a series.

We say that a series of constants,

is permutable iff it has a definite (possibly infinite) sum obeying the general commutative law:

Given any one-one map

 Corollary  ("monotonicity")7.2.4

A, B ∈ ,Cσ

A ⊆ B, (7.2.34)

vA ≤ vB. (7.2.35)

= B⋃k Bk

 Corollary 7.2.5

En ∞ ∞ +∞

A ⊆ En A

vA ≤ vEn

vA vEn
□

 Corollary 7.2.6

A ⊂ , vA = 0.En v∅ = 0

A = { }ā̄̄ A [ , ].ā̄̄ ā̄̄ 0,
vA = 0

A = { , , …}ā̄̄1 ā̄̄2

A = { } ;⋃
k

ā̄̄k (7.2.36)

vA = v{ } = 0∑
k

ā̄̄k (7.2.37)

∅ ( , );ā̄̄ ā̄̄ v∅ = 0. □

Cσ Cσ

σ

∑ ,an (7.2.38)

u : N N⟷

onto
(7.2.39)
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(  the naturals), we have

where .

(Such are all positive and all absolutely convergent series in a complete space  see Chapter 4, §13.) If the series is permutable,
the sum does not depend on the choice of the map 

Thus, given any  (where  is a countable index set) and a set

(where  is  or a normed space), we can define

if  is permutable.

In particular, if

(a countable set, by Theorem 1 in Chapter 1, §9), we call

a double series, denoted by symbols like

Note that

is always defined (being a positive series).

If

we say that  converges absolutely.

For a positive series, we obtain the following result.

(i) All positive series in  are permutable.

(ii) For positive double series in  we have

Proof

(i) Let

N =

= ,∑
n

an ∑
n

aun
(7.2.40)

= u(n)un

E;
u.

u : N J⟷
onto

J

{ |i ∈ J} ⊆ Eai (7.2.41)

E E∗

=∑
i∈J

ai ∑
n=1

∞

aun
(7.2.42)

∑n aun

J = N ×N (7.2.43)

∑
i∈J

ai (7.2.44)

(k, n ∈ N).∑
n,k

akn (7.2.45)

| |∑
i∈J

ai (7.2.46)

| | < ∞,∑
i∈J

ai (7.2.47)

∑i∈J ai

 Theorem 7.2.2

E∗

,E∗

= ( ) = ( ) .∑
n,k=1

∞

ank ∑
n=1

∞

∑
k=1

∞

ank ∑
k=1

∞

∑
n=1

∞

ank (7.2.48)

s =  and  = ( ≥ 0) .∑
n=1

∞

an sm ∑
n=1

m

an an (7.2.49)
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Then clearly

i.e., , and so

by Theorem 3 in Chapter 3, §15.

Hence  certainly does not exceed the lub of all possible sums of the form

where  is a finite subset of  (the partial sums  are among them). Thus

over all finite sets .

On the other hand, every such  is exceeded by, or equals, some . Hence in (4), the reverse inequality holds, too,
and so

But sup  clearly does not depend on any arrangement of the a_{i}. Therefore, the series  is permutable, and
assertion (i) is proved.

Assertion (ii) follows similarly by considering sums of the form  where  is a finite subset of  and showing
that the lub of such sums equals each of the three expressions in (3). We leave it to the reader.

A similar formula holds for absolutely convergent series (see Problems).

This page titled 7.2: -Sets. Countable Additivity. Permutable Series is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

= + ≥ ;sm+1 sm am+1 sm (7.2.50)

{ } ↑sm

s = =lim
m→∞

sm sup
m

sm (7.2.51)

s

,∑
i∈I

ai (7.2.52)

I N sm

s ≤ sup ,∑
i∈I

ai (7.2.53)

I ⊂ N

∑i∈I ai sm

s = sup .∑
i∈I

ai (7.2.54)

∑i∈I ai ∑ an

∑i∈I ai I N ×N ,
□

Cσ
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7.2.E: Problems on C σ Cσ -Sets, σ σ -Additivity, and Permutable Series

Fill in the missing details in the proofs of this section.

Prove Note 3.

Show that every open set  in  is a countable union of disjoint half-open cubes. 
[Outline: For each natural  show that  is split into such cubes of edge length  by the hyperplanes 

 
and that the family  of such cubes is countable. 
For  let  be the sequence of those cubes from  (if any) that lie in  but not in any cube  with 

 

Prove that any open set  is a countable union of disjoint (possibly infinite) open intervals. 
[Hint: By Lemma  If, say,  overlaps with some , replace both by their union. Continue
inductively.

Prove that  is closed under finite intersections and countable unions.

(i) Find  such that 
(ii) Show that  is not a semiring. 
[Hint: Try  (the rationals).] 
Note. In the following problems,  is countably infinite, 

Prove that 

 
iff for every  there is a finite set 

 
such that 

 Exercise 7.2.E. 1

 Exercise 7.2.E. 1′

 Exercise 7.2.E. 2

A ≠ ∅ En

m, En 2−m

= i = 0, ±1, ±2, … ; k = 1, 2, … , n,xk

i

2m (7.2.E.1)

Cm

m > 1, , , …Cm1 Cm2 Cm A Csj

s < m.
 As A is open, x ∈ A iff x ∈  some  . ]Cmj

 Exercise 7.2.E. 3

A ⊆ E1

2, A = ( , ) .⋃n an bn ( , )a1 b1 ( , )am bm

 Exercise 7.2.E. 4

Cσ

 Exercise 7.2.E. 5

A, B ∈ Cσ A −B ∉ Cσ

Cσ

A = , B = RE1

J ∈ E(E complete). ai

 Exercise 7.2.E. 6

| | < ∞∑
i∈J

ai (7.2.E.2)

ε > 0,

F ⊂ J (F ≠ ∅) (7.2.E.3)
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for every finite . 
[Outline: By Theorem 2, fix  with 

 
By Cauchy's criterion, 

 
iff 

 
Let  If  is as above, 

 
so 

Prove that if 

 
then for every  there is a finite  such that 

 
for each finite . 
[Hint: Proceed as in Problem  with  and  so large that 

Show that if 

| | < ε∑
i∈I

ai (7.2.E.4)

I ⊂ J −F

u : Nont Jo ⟺

| | = | | .∑
i∈J

ai ∑
n=1

∞

aun
(7.2.E.5)

| | < ∞∑
n=1

∞

aun
(7.2.E.6)

(∀ε > 0)(∃q)(∀n > m > q) | | < ε.∑
k=m

n

auk
(7.2.E.7)

F = { , … , } .u1 uq I

(∃n > m > q) { , … , } ⊇ I;um un (7.2.E.8)

| | ≤ | | < ε.]∑
i∈I

ai ∑
k=m

n

auk (7.2.E.9)

 Exercise 7.2.E. 7

| | < ∞,∑
i∈J

ai (7.2.E.10)

ε > 0, F ⊂ J(F ≠ ∅)

− < ε
∣

∣
∣
∣∑

i∈J

ai ∑
i∈K

ai

∣

∣
∣
∣ (7.2.E.11)

K ⊃ F (K ⊂ J)
6, I = K −F q

− < ε  and  < ε. ]
∣

∣
∣
∣∑

i∈J

ai ∑
i∈F

ai

∣

∣
∣
∣

1

2

∣

∣
∣
∣∑

i∈F

ai

∣

∣
∣
∣

1

2
(7.2.E.12)

 Exercise 7.2.E. 8
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then 

 
(Use Problem 8' below.)

Show that 

 
over all finite sets . 

Show that if  then 

 

Continuing Problem  prove that if 

 
then 

 
[Outline: By Problem 9, 

 
so 

J = (disjoint),⋃
n=1

∞

In (7.2.E.13)

| | = ,  where  = | | .∑
i∈J

ai ∑
n=1

∞

bn bn ∑
i∈In

ai (7.2.E.14)

 Exercise 7.2.E. 8′

| | = | |∑
i∈J

ai sup
F

∑
i∈F

ai (7.2.E.15)

F ⊂ J(F ≠ ∅)
 [Hint: Argue as in Theorem 2. ]

 Exercise 7.2.E. 9

∅ ≠ I ⊆ J,

| | ≤ | | .∑
i∈I

ai ∑
i∈J

ai (7.2.E.16)

 [Hint: Use Problem   and Corollary 2 of Chapter 2, §§8 −9. ]8′

 Exercise 7.2.E. 10

8,

| | = < ∞,∑
i∈J

ai ∑
n=1

∞

bn (7.2.E.17)

=  with  = .∑
i∈J

ai ∑
n=1

∞

cn cn ∑
i∈In

ai (7.2.E.18)

(∀n) | | < ∞;∑
i∈In

ai (7.2.E.19)

=cn ∑
i∈In

ai (7.2.E.20)
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and 

 
converge absolutely. 
Fix  and  as in Problem  Choose the largest  with 

 
(why does it exist?), and fix any  By Problem  

 
(Explain!) Let 

 
so 

 
and  By Problem 7, 

 
Deduce 

 

(Double series.) Prove that if one of the expressions 

 
is finite, so are the other two, and 

∑
n=1

∞

cn (7.2.E.21)

ε F 7. q ∈ N

F ∩ ≠ ∅Iq (7.2.E.22)

n > q. 7, (∀k ≤ n)

.

(∀k ≤ n) (∃ finite  |J ⊇ ⊇ F ∩ )Fk Fk Iq

(∀ finite  | ⊇ ⊇ )Hk Ik Hk Fk − < ε
∣

∣

∣
∣∑
i∈Hk

ai ∑
k=1

n

ck

∣

∣

∣
∣

1

2

K = ;⋃
k=1

n

Hk (7.2.E.23)

− < ε
∣

∣

∣
∣∑

k=1

n

ck ∑
i∈J

ai

∣

∣

∣
∣ (7.2.E.24)

K ⊃ F .

− < ε.
∣

∣

∣
∣∑
i∈K

ai ∑
i∈J

ai

∣

∣

∣
∣ (7.2.E.25)

− < 2ε.
∣

∣

∣
∣∑

k=1

n

ck ∑
i∈J

ai

∣

∣

∣
∣ (7.2.E.26)

 Let n → ∞;  then ε → 0. ]

 Exercise 7.2.E. 11

| | , ( | |) , ( | |)∑
n,k=1

∞

ank ∑
n=1

∞

∑
k=1

∞

ank ∑
k=1

∞

∑
n=1

∞

ank (7.2.E.27)
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with all series involved absolutely convergent. 
[Hint: Use Problems 8 and  with  

 
so 

 
Thus obtain 

 
Similarly,  

7.2.E: Problems on  -Sets,  -Additivity, and Permutable Series is shared under a CC BY 1.0 license and was authored, remixed, and/or curated
by LibreTexts.

= ( ) = ( ) ,∑
n,k

ank ∑
n

∑
k

ank ∑
k

∑
n

ank (7.2.E.28)

10, J = N ×N ,

= {(n, k) ∈ J|k = 1, 2, …} for each n;In (7.2.E.29)

= | |  and  = .bn ∑
k=1

∞

ank cn ∑
k=1

∞

ank (7.2.E.30)

= .∑
n,k

ank ∑
n

∑
k

ank (7.2.E.31)

= .]∑
n,k

ank ∑
k

∑
n

an,k (7.2.E.32)

Cσ σ
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7.3: More on Set Families
Lebesgue extended his theory far beyond -sets. For a deeper insight, we shall consider set families in more detail, starting with
set rings. First, we rephrase and supplement our former definition of that notion, given in §1.

A family  of subsets of a set  is a ring or set ring (in  iff

(i)  i.e., the empty set is a member; and

(ii)  is closed under finite unions and differences:

(For intersections, see Theorem 1 below.)

If  is also closed under countable unions, we call it a -ring (in  Then

whenever

If  itself is a member of a ring ( -ring)  we call  a set field ( -field), or a set algebra ( -algebra), in .

Note that  is only a member of  not to be confused with  itself.

The family of all subsets of  (the so-called power set of ) is denoted by  or 

(a) In any set  is a -field. (Why?)

(b) The family  consisting of  alone, is a -ring;  is a -field in  (Why?)

(c) The family of all finite (countable) subsets of  is a ring ( -ring) in .

(d) For any semiring  is a ring (Theorem 2 in §1). Not so for  (Problem 5 in §2).

Any set ring is closed under finite intersections.

A -ring is closed under countable intersections.

Proof

Let  be a -ring (the proof for rings is similar).

Given a sequence  we must show that .

Let

By Definition 1,

as  is closed under these operations. Hence

Cσ

 Definition 1

M S S)

∅ ∈M,

M

(∀X,Y ∈M) X∪Y ∈M and X−Y ∈M. (7.3.1)

M σ S).

∈M⋃
i=1

∞

Xi (7.3.2)

∈M for i = 1, 2, … .Xi (7.3.3)

S σ M, M σ σ S

S M,S ∈M, M

S S 2S P(S).

 Examples

S, 2S σ

{∅}, ∅ σ {∅,S} σ S.

S σ S

C, C′
s Cσ

 Theorem 7.3.1

σ

M σ

{ } ⊆M,An ∈M⋂n An

U = .⋃
n

An (7.3.4)

U ∈M and U − ∈M,An (7.3.5)

M
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and

or, by duality,

i.e.,

Any set ring (field, -ring, -field) is also a semiring.

Indeed, by Theorem 1 and Definition 1, if  is a ring, then  and

Here we may treat  as  a union of two disjoint -sets. Thus  has all properties of a semiring.

Similarly for -rings, fields, etc.

In §1 we saw that any semiring  can be enlarged to become a ring,  More generally, we obtain the following result.

For any set family  in a space  there is a unique "smallest" set ring  such that

("smallest" in the sense that

for any other ring  with ).

The  of Theorem 2 is called the ring generated by  Similarly for -rings, fields, and -fields in .

Proof

We give the proof for -fields; it is similar in the other cases.

There surely are -fields in  that contain  e.g., take  Let  be the family of all possible -fields in  such that 
 Let

We shall show that this  is the required "smallest" -field containing .

Indeed, by assumption,

We now verify the -field properties for .

(1) We have that

(U − ) ∈M⋃
n

An (7.3.6)

U − (U − ) ∈M,⋃
n

An (7.3.7)

[U −(U − )] ∈M,⋂
n

An (7.3.8)

∈M. □⋂
n

An (7.3.9)

 Corollary 7.3.1

σ σ

M ∅ ∈M

(∀A,B ∈M) A∩B ∈M and A−B ∈M. (7.3.10)

A−B (A−B) ∪ ∅, M M

σ

C .C′
s

 Theorem 7.3.2

M S (M⊆ ) ,2S R

R⊇M (7.3.11)

R⊆R
′ (7.3.12)

R′ ⊇MR′

R M. σ σ S

σ

σ S M; .2S { }Ri σ S

⊇M.Ri

R= .⋂
i

Ri (7.3.13)

R σ M

M⊆ =R.⋂
i

Ri (7.3.14)

σ R
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(for  is a -field, by assumption). Hence

Similarly,  Thus

(2) Suppose

Then  are in every  and so is  Hence  is in

Thus  is closed under differences.

(3) Take any sequence

Then all  are in each  is in each  so

Thus  is closed under countable unions.

We see that  is indeed a -field in  with  As  is the intersection of all (i.e., all -fields ), we have

so  is the smallest of such -fields.

It is unique; for if  is another such -field, then

(as both  and  are "smallest"); so

Note 1. This proof also shows that the intersection of any family  of -fields is a -field. Similarly for -rings, fields, and
rings.

The ring  generated by a semiring  coincides with

and with

Proof

By Theorem 2 in §1,  is a ring ; and

(∀i) ∅ ∈  and S ∈Ri Ri (7.3.15)

Ri σ

∅ ∈ =R.⋂
i

Ri (7.3.16)

S ∈R.

∅,S ∈R. (7.3.17)

X,Y ∈R= .⋂
i

Ri (7.3.18)

X,Y ,Ri X−Y . X−Y

=R.⋂
i

Ri (7.3.19)

R

{ } ⊆R= .An ⋂
i

Ri (7.3.20)

An .Ri ⋃n
An ;Ri

∈R.⋃
n

An (7.3.21)

R

R σ S, M⊆R. R Ri σ ⊇M

(∀i) R⊆ ;Ri (7.3.22)

R σ

R
′

σ

R⊆ ⊆RR′ (7.3.23)

R R
′

R= . □R′ (7.3.24)

{ }Ri σ σ σ

 Corollary 7.3.2

R C

= {all finite unions of C−sets}Cs (7.3.25)

= {disjoint finite unions of C−sets}.C
′
s (7.3.26)

C
′
s ⊇ C

⊆ ⊆RC
′
s Cs (7.3.27)
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(for  is closed under finite unions, being a ring ).

Moreover, as  is the smallest ring  we have

Hence

as claimed.

It is much harder to characterize the -ring generated by a semiring. The following characterization proves useful in theory and as
an exercise.

The -ring  generated by a semiring  coincides with the smallest set family  such that

(i) ;

(ii)  is closed under countable disjoint unions;

(iii)  whenever  and .

Proof

We give a proof outline, leaving the details to the reader.

(1) The existence of a smallest such  follows as in Theorem 2. Verify!

(2) Writing briefly  for  and  for  prove that

(3) For each  set

Then prove that if  the set family  has the properties (i)-(iii) specified in the theorem. (Use the set identity (2) for
property (iii).)

Hence by the minimality of  Therefore,

(4) Using this, show that  satisfies (i)-(iii) for any .

Deduce

so  is closed under finite intersections and differences.

Combining with property (ii), show that  is a -ring (see Problem 12 below).

By its minimality,  is the smallest -ring  (for any other such -ring clearly satisfies (i)-(iii)).

Thus  as claimed.

Given a set family  we define (following Hausdorff)

(a) all countable unions of -sets  (cf.  in §2);

(b) all countable intersections of -sets .

R ⊇ C

R ⊇ C,

R⊆ ⊆ ⊆R.C
′
s

Cs (7.3.28)

R= = ,C
′
s Cs (7.3.29)

□

σ

 Theorem 7.3.3

σ R C D

D⊇ C

D

J −X ∈ D X ∈ D, J ∈ C, X ⊆ J

D

AB A∩B A
′ −A,

(A−B)C = A−(A ∪BC) .C
′ (7.3.30)

I ∈ D,

= {A ∈ D|AI ∈ D,A−I ∈ D}.DI (7.3.31)

I ∈ C, DI

D,D⊆ .DI

(∀A ∈ D)(∀I ∈ C) AI ∈ D and A−I ∈ D. (7.3.32)

DI I ∈ D

D⊆ ;DI (7.3.33)

D

D σ

D σ ⊇ C σ

D=R, □

 Definition 2

M,

= {Mσ M } Cσ

= {Mδ M }
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We use  and  for similar notions, with "countable" replaced by "finite."

Clearly,

and

Why?

Note 2. Observe that  is closed under finite (countable) unions iff

 
Verify! Interpret  similarly.

In conclusion, we generalize Theorem 1 in §1.

The product

of two set families  and  is the family of all sets of the form

with  and .

(The dot in  is to stress that  is not really a Cartesian product.)

If  and  are semirings, so is .

The proof runs along the same lines as that of Theorem 1 in §1, via the set identities

and

Proof

The details are left to the reader.

Note 3. As every ring is a semiring (Corollary 1), the product of two rings (fields, -rings, -fields) is a semiring. However, see
Problem 6 below.

This page titled 7.3: More on Set Families is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The
Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

Ms Md

⊇ ⊇MMσ Ms (7.3.34)

⊇ ⊇M.Mδ Md (7.3.35)

M

M= (M= ) .Ms Mσ (7.3.36)

M= (M= )Md Mσ

 Definition 3

M N×̇ (7.3.37)

M N

A×B, (7.3.38)

A ∈M B ∈N

×̇ M N×̇

 Theorem 7.3.4

M N M N×̇

(X×Y ) ∩ ( × ) = (X∩ ) ×(Y ∩ )X
′

Y
′

X
′

Y
′ (7.3.39)

(X×Y ) −( × ) = [(X− ) ×Y ] ∪ [(X∩ ) ×(Y − )] .X
′

Y
′

X
′

X
′

Y
′ (7.3.40)

σ σ
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7.3.E: Problems on Set Families

1. Verify Examples (a),(b), and (c).

Prove Theorem 1 for rings.

Show that in Definition 1 " " may be replaced by " ."

[Hint: .]

 Prove that  is a field -field if  is closed under finite (countable) unions, and 

 
[Hint: .]

Prove Theorem 2 for set fields.

Does Note 1 apply to semirings?

Prove Note 2.

Prove Theorem 3 in detail.

Prove Theorem 4 and show that the product  of two rings need not be a ring. 
[Hint: Let  and  Take  as in Theorem 1 of §1. Verify that .]

 Let  be the rings -rings, fields, -fields) generated by  and , respectively. Prove the following. 
(i) If  then . 
(ii) If  then . 
(iii) If 

 Exercise 7.3.E. 1

 Exercise 7.3.E. 1′

 Exercise 7.3.E. 2

∅ ∈M M≠ ∅

∅ = A−A

 Exercise 7.3.E. 3

⇒ M (σ M≠ ∅,M

(∀A ∈M) −A ∈M. (7.3.E.1)

A−B = −(−A∪B);S = −∅

 Exercise 7.3.E. 4

 Exercise 7.3.E. ∗4′

 Exercise 7.3.E. 5

 Exercise 7.3.E. 5′

 Exercise 7.3.E. 6

M N×̇

S = E1 M=N = .2S A,B A−B ∉M,M N×̇

 Exercise 7.3.E. 7

⇒ R,R′ (σ σ M N

M⊆N , R⊆R′

M⊆N ⊆R, R=R′

M= {open intervals in  }En (7.3.E.2)
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and 

 
then . 
[Hint: Use Lemma 2 in §2 for (iii). Use the minimality of  and .]

Is any of the following a semiring, ring, -ring, field, or -field? Why? 
(a) All infinite intervals in . 
(b) All open sets in a metric space . 
(c) All closed sets in . 
(d) All "clopen" sets in . 
(e) . 
(f) .

 Prove that for any sequence  in a ring  there is 
(a) an expanding sequence  such that 

 
and 

 
(b) a contracting sequence  with 

 
(The latter holds in semirings, too.) 
[Hint: Set .]

 The symmetric difference,  of two sets is defined 

 
Inductively, we also set 

 
and 

 
Show that symmetric differences 

N = {all open sets in  } ,En (7.3.E.3)

R=R′

R R
′

 Exercise 7.3.E. 8

σ σ

E1

(S, ρ)
(S, ρ)

(S, ρ)
{X ∈ | −X finite}2S

{X ∈ | −X countable}2S

 Exercise 7.3.E. 9

⇒ { }An R,
{ } ⊆RBn

(∀n) ⊇Bn An (7.3.E.4)

= ;  and⋃
n

Bn ⋃
n

An (7.3.E.5)

⊆ ,Cn An

= .⋂
n

Cn ⋂
n

An (7.3.E.6)

= , =Bn ⋃n
1 Ak Cn ⋂n

1 Ak

 Exercise 7.3.E. 10

⇒ A△B,

A△B = (A−B) ∪ (B−A). (7.3.E.7)

=△1
k=1

Ak A1 (7.3.E.8)

= ( )△ .△
n+1
k=1Ak △

n
k=1Ak An+1 (7.3.E.9)
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(i) are commutative, 
(ii) are associative, and 
(iii) satisfy the distributive law: 

 
[Hint for (ii): Set  Expand  into an expression symmetric with respect to  and 

.]

Prove that  is a ring iff 
(i) ; 
(ii)  and  (see Problem 10); equivalently, 
(ii')  and . 
[Hint: Verify that 

 
and 

 
while 

Show that a set family  is a -ring iff one of the following conditions holds. 
(a)  is closed under countable unions and proper differences  with ; 
(b)  is closed under countable disjoint unions, proper differences, and finite intersections; or 
(c)  is closed under countable unions and symmetric differences (see Problem 10). 
[Hints: (a)  a proper difference. 
(b)  reduces any difference to a proper one; then 

 
shows that  is closed under all finite unions; so  is a ring. Now use Corollary 1 in §1 for countable unions. 
(c) Use Problem 11.]

From Problem 10, treating  as addition and  as multiplication, show that any set ring  is an algebraic ring with unity, i.e.,
satisfies the six field axioms (Chapter 2, §§1-4), except  (existence of multiplicative inverses).

A set family  is said to be hereditary iff 

 
Prove the following. 

(A△B) ∩C = (A∩C)△(B∩C). (7.3.E.10)

= −A,A−B = A∩ .A′ B′ (A△B)△C A,B,
C

 Exercise 7.3.E. 11

M

∅ ∈M
(∀A,B ∈M)A△B ∈M A∩B ∈M
A△B ∈M A∪B ∈M

A∪B = (A△B)△(A∩B) (7.3.E.11)

A−B = (A∪B)△B, (7.3.E.12)

A∩B = (A∪B)△(A△B). ] (7.3.E.13)

 Exercise 7.3.E. 12

M≠ ∅ σ

M (X−Y X ⊇ Y )
M

M

X−Y = (X∪Y ) −Y ,
X−Y = X−(X∩Y )

X∪Y = (X−Y ) ∪ (Y −X) ∪ (X∩Y ) (7.3.E.14)

M M

 Exercise 7.3.E. 13

△ ∩ M

V (b)

 Exercise 7.3.E. 14

H

(∀X ∈H)(∀Y ⊆ X) Y ∈ H. (7.3.E.15)
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(a) For every family , there is a "smallest" hereditary ring  (  is said to be generated by ). Similarly for -
rings, fields, and -fields. 
(b) The hereditary -ring generated by  consists of those sets which can be covered by countably many -sets.

Prove that the field -field in , generated by a ring -ring  consists exactly of all -sets and their complements in .

Show that the ring  generated by a set family  consists of all sets of the form 

 
(see Problem 10), where each  (finite intersection of -sets). 
[Outline: By Problem 11,  must contain the family (call it ) of all such . (Why?) It remains to show that  is a
ring . 
Write  for  and  for  so each -set is a "sum" of finitely many "products" 

 
By algebra, the "sum" and "product" of two such "polynomials" is such a polynomial itself. Thus 

 
Now use Problem 11.]

AUse Problem 16 to obtain a new proof of Theorem 2 in §1 and Corollary 2 in the present section. 
[Hints: For semirings,  (Why?) Thus in Problem 16,  
Also, 

 
where  and  are finite disjoint unions of -sets. (Why?) 
Deduce that  and, by induction, 

 
so  (Why?)]

Given a set  and a set family  let 
\[A \cap{\dot\} \mathcal{M}\] 
be the family of all sets  with  similarly,

 
Show that if  generates the ring  then  generates the ring 

M⊆ 2S H⊇M H M σ

σ

σ M M

 Exercise 7.3.E. 15

(σ S (σ R, R S

 Exercise 7.3.E. 16

R C≠ ∅

△n
k=1

Ak (7.3.E.16)

∈Ak Cd C

R M △
n
k=1Ak M

⊇ C
A+B A△B AB A∩B; M

⋯ .A1A2 An (7.3.E.17)

(∀X,Y ∈M) X△Y  and X∩Y ∈M. (7.3.E.18)

 Exercise 7.3.E. 17

C = .Cd ∈ C.Ak

(∀A,B ∈ C) A△B = (A−B) ∪ (B−A) (7.3.E.19)

A−B B−A C

A△B ∈ C′
s

∈ ;△n
k=1

Ak C′
s (7.3.E.20)

R⊆ ⊆R.C
′
s

 Exercise 7.3.E. 18

A M,

A∩X, X ∈M;

N (M A) = { all sets Y ∪ (X−A),  with Y ∈N ,X ∈M},  etc. ∪̇ −̇ (7.3.E.21)

M R, A \cap{\dot} \mathcal{M}

\mathcal{R}^{\prime}=A \cap{\dot} \mathcal{R}.
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Similarly for -rings, fields, -fields. 
[Hint for rings: Prove the following. 
(i)  is a ring. 
(ii)  with  as above. 
(iii) . 
(iv) By (ii),  so  
(v) . 
Hence .]

7.3.E: Problems on Set Families is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

σ σ

A∩R
M⊆ ∪ (R±A),R′ R′

R∪ (R÷A) is a ring (call it N )
R⊆N , A \cap \mathcal{R} \subseteq A \cap \mathcal{N} \subseteq \mathcal{R}^{\prime}\right.

A∩R⊇ ( for A∩R⊇ A∩M)R′

= A∩RR′
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7.4: Set Functions. Additivity. Continuity
I. The letter " " in  may be treated as a certain function symbol that assigns a numerical value (called "volume") to the set  So
far we have defined such "volumes" for all intervals, then for -simple sets, and even for -sets in .

Mathematically this means that the volume function  has been defined first on  (the intervals), then on  ( -simple sets), and
finally on 

Thus we have a function  which assigns values ("volumes") not just to single points, as ordinary "point functions" do, but to
whole sets, each set being treated as one thing.

In other words, the domain of the function  is not just a set of points, but a set family ( , or ).

The "volumes" assigned to such sets are the function values (for  and -sets they are real numbers; for -sets they may reach 
).This is symbolized by

or

more precisely,

since volume is nonnegative.

It is natural to call  a set function (as opposed to ordinary point functions). As we shall see, there are many other set functions.
The function values need not be real; they may be complex numbers or vectors. This agrees with our general definition of a
function as a certain set of ordered pairs (Definition 3 in Chapter 1, §§4-7); e.g.,

Here the domain consists of certain sets . This leads us to the following definition.

A set function is a mapping

whose domain is a set family .

The range space  is assumed to be  (the complex field), , or another normed space. Thus  may be real,
extended real, complex, or vector valued.

To each set  the function  assigns a unique function value denoted  or  (which is an element of the range
space 

We say that  is finite on a set family  iff

briefly,  on . (This is automatic if  is complex or vector valued.)

We call s semifinite if at least one of  is excluded as function value, e.g., if  on  i.e.,

(The symbol  stands for  throughout).

v vA A.
C Cσ En

v C C
′
s C

.Cσ

v

v C, C′
s Cσ

C C
′
s Cσ

+∞

v : C→ E1 (7.4.1)

v : → ;Cσ E∗ (7.4.2)

v : → [0, ∞],Cσ (7.4.3)

v

v =( ) .
A

vA

B

vB

C

vC

⋯

⋯
(7.4.4)

A, B, C, …

 Definition 1

s : M→ E (7.4.5)

M

E , , CE1 E∗ En s

X ∈M, s s(X) sX

E).

s N ⊆M

(∀X ∈N ) |sX| < ∞; (7.4.6)

|s| < ∞ N s

±∞ s ≥ 0 M;

s : M→ [0, ∞]. (7.4.7)

∞ +∞
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A set function

is called additive (or finitely additive) on  iff for any finite disjoint union  we have

provided  and all the  are -sets.

If this also holds for countable disjoint unions,  is called -additive (or countably additive or completely additive) on .

If  here, we simply say that  is additive ( -additive, respectively).

Note 1. As  is independent of the order of the -additivity pre-supposes and implies that the series

is permutable (§2) for any disjoint sequence

(The partial sums do exist, by our conventions (2*) in Chapter 4, §4.)

The set functions in the examples below are additive;  is even -additive (Corollary 1 in §2).

Examples (b)-(d) show that set functions may arise from ordinary "point functions."

(a) The volume function  on  (= intervals in ), discussed above, is called the Lebesgue premeasure (in ).

(b) Let all finite intervals .

Given  set

the total variation of  on the closure of  (Chapter 5, §7).

Then  is additive by Theorem 1 of Chapter 5, §7.

(c) Let  and  be as in Example (b).

Suppose  has an antiderivative (Chapter 5, §5) on  For each interval  with endpoints  set

This yields a set function  (real, complex, or vector valued), additive by Corollary 6 in Chapter 5, §5.

(d) Let all finite intervals in .

Suppose

has finite one-sided limits

at each  The Lebesgue-Stieltjes  function

 Definition 2

s : M→ E (7.4.8)

N ⊆M ,⋃k Ak

s = s( ) ,∑
k

Ak ⋃
k

Ak (7.4.9)

⋃k Ak Ak N

s σ N

N =M s σ

⋃Ak , σAk

∑sAk (7.4.10)

{ } ⊆N .Ak (7.4.11)

v σ

 Examples

v : C→ E1 C En En

M= { I ⊂ }E1

f : → E,E1

(∀I ∈M) sI = [ ],Vf I
¯̄̄

(7.4.12)

f I

s : M→ [0, ∞]

M f

f .E1 X a, b ∈ (a ≤ b),E1

sX = f .∫
b

a

(7.4.13)

s : M→ E

C= { }E1

α : →E1 E1 (7.4.14)

α(p+) and α(p−) (7.4.15)

p ∈ .E1 (LS)

: C→sα E1 (7.4.16)
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(important for Lebesgue-Stieltjes integration) is defined as follows.

Set  For nonvoid intervals, including  set

For the properties of  see Problem 7ff. , below.

(e) Let  be the mass concentrated in the part  of the physical space . Then  is a nonnegative set function defined on

If instead  were the electric load of  then  would be sign changing.

II. The rest of this section is redundant for a "limited approach."

Let  be additive on  Let

Then we have the following.

(1) If  and  then

(2) If  then  provided  for at least one .

(3) If  is a semiring, then  implies  Hence

If further  is semifinite then

(same sign).

Proof

(1) As  we have

so by additivity,

If  we may transpose to get

as claimed.

(2) Hence

if  and .

(3) If  is a semiring, then

∅ = 0.sα [a, a] = {a},

[a, b]sα

(a, b]sα

[a, b)sα

(a, b)sα

= α(b+) −α(a−),

= α(b+) −α(a+),

= α(b−) −α(a−),  and 

= α(b−) −α(a+).

sα

mX X S m

= { all subsets X ⊆ S} (§3).2S (7.4.17)

mX X, m

 lemmas

s : M→ E N ⊆M.

A, B ∈N , A ⊆ B. (7.4.18)

|sA| < ∞ B −A ∈N ,

s(B −A) = sB −sA ("subtractivity"). (7.4.19)

∅ ∈N , s∅ = 0 |sX| < ∞ X ∈N

N sA = ±∞ |sB| = ∞.

|sB| < ∞ ⇒ |sA| < ∞. (7.4.20)

s

sA = ±∞ ⇒ sB = ±∞ (7.4.21)

B ⊇ A,

B = (B −A) ∪ A (disjoint); (7.4.22)

sB = s(B −A) +sA. (7.4.23)

|sA| < ∞,

sB −sA = s(B −A), (7.4.24)

s∅ = s(X −X) = sX −sX = 0 (7.4.25)

X, ∅ ∈N , |sX| < ∞

N
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for some -sets  so

By additivity,

so by our conventions,

If, further,  is semifinite, one of  is excluded. Thus  and  if infinite, must have the same sign. This completes
the proof.

In §§1 and 2, we showed how to extend the notion of volume from intervals to a larger set family, preserving additivity. We now
generalize this idea.

If

is additive on  an arbitrary semiring, there is a unique set function

additive on  with  on  i.e.,

We call  the additive extension of  to  (Corollary 2 in §3).

Proof

If  proceed as in Lemma 1 and Corollary 2, all of §1.

The general proof (which may be omitted or deferred) is as follows.

Each  has the form

Thus if  is to be additive, the only way to define it is to set

This already makes  unique, provided we show that

does not depend on the particular decomposition

B −A =  (disjoint)⋃
k=1

n

Ak (7.4.26)

N ;Ak

B = A ∪  (disjoint).⋃
k=1

n

Ak (7.4.27)

sB = sA + s ;∑
k=1

n

Ak (7.4.28)

|sA| = ∞ ⇒ |sB| = ∞. (7.4.29)

s ±∞ sA sB,
□

 Theorem 7.4.1

s : C→ E (7.4.30)

C,

: → E,s̄̄̄ Cs (7.4.31)

,Cs = ss̄̄̄ C,

X = sX for X ∈ C.s̄̄̄ (7.4.32)

s̄̄̄ s =Cs C
′
s

s ≥ 0(s : C→ [0, ∞]),

X ∈ C′
s

X = (disjoint), ∈ C.⋃
i=1

m

Xi Xi (7.4.33)

s̄̄̄

X = s .s̄̄̄ ∑
i=1

m

Xi (7.4.34)

s̄̄̄

s∑
i=1

m

Xi (7.4.35)
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(otherwise, all is ambiguous).

Then take any other decomposition

Additivity implies

(Verify!) Hence

Thus, indeed, it does not matter which particular decomposition we choose, and our definition of  is unambiguous.

If  we may choose (say)

so

i.e.,  on  as required.

Finally, for the additivity of  let

Here we may set

Then

so by our definition of ,

as required.

Continuity. We write  to mean that

and  i.e.,

X =⋃
i=1

m

Xi (7.4.36)

X =  (disjoint), ∈ C.⋃
k=1

n

Yk Yk (7.4.37)

(∀i, k) s = s ( ∩ )  and s = s ( ∩ ) .Xi ∑
k=1

n

Xi Yk Yk ∑
i=1

m

Xi Yk (7.4.38)

s = s ( ∩ ) = s .∑
i=1

m

Xi ∑
i,k

Xi Yk ∑
k=1

n

Yk (7.4.39)

s̄̄̄

X ∈ C,

X = , = X;⋃
i=1

1

Xi X1 (7.4.40)

X = s = sX;s̄̄̄ X1 (7.4.41)

= ss̄̄̄ C,

,s̄̄̄

A =  (disjoint), A, ∈ .⋃
k=1

m

Bk Bk C
′
s (7.4.42)

=  (disjoint), ∈ C.Bk ⋃
i=1

nk

Cki Cki (7.4.43)

A =  (disjoint);⋃
k,i

Cki (7.4.44)

s̄̄̄

A = s = ( s ) = ,s̄̄̄ ∑
k,i

Cki ∑
k=1

m

∑
i=1

nk

Cki ∑
k=1

m

s̄̄̄Bk (7.4.45)

□

↗ XXn

X = ⋃
n=1

∞

Xn (7.4.46)

{ } ↑,Xn
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Similarly,  iff

and  i.e.,

In both cases, we set

This suggests the following definition.

A set function  is said to be

(i) left continuous (on  iff

whenever  and ;

(ii) right continuous iff

whenever  with  and .

Thus in case (i),

if all  and  are -sets.

In case (ii),

if all  and  are in  and .

Note 2. The last restriction applies to right continuity only. (We choose simply to exclude from consideration sequences 
with  see Problem 4.)

If  is -additive and semifinite on  semiring, then  is both left and right continuous (briefly, continuous).

Proof

We sketch the proof for rings; for semirings, see Problem 1.

Left continuity. Let  with  and

If  for some  then (Lemma 3)

⊆ , n = 1, 2, … .Xn Xn+1 (7.4.47)

↘ XXn

X = ⋂
n=1

∞

Xn (7.4.48)

{ } ↓,Xn

⊇ , n = 1, 2, … .Xn Xn+1 (7.4.49)

X = .lim
n→∞

Xn (7.4.50)

 Definition 3

s : M→ E

M)

sX = slim
n→∞

Xn (7.4.51)

↗ XXn X, ∈MXn

sX = slim
n→∞

Xn (7.4.52)

↘ X,Xn X, ∈MXn |s | < ∞Xj

s = slim
n→∞

Xn ⋃
n=1

∞

Xn (7.4.53)

Xn ⋃∞
n=1 Xn M

s = slim
n→∞

Xn ⋂
n=1

∞

Xn (7.4.54)

Xn ⋂∞
n=1 Xn M, |s | < ∞X1

{ } ↓,Xn

|s | = ∞;X1

 Theorem 7.4.2

s : C→ E σ C, a s

↗ XXn , X ∈ CXn

X = .⋃
n=1

∞

Xn (7.4.55)

s = ±∞Xn n,
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since  so

as claimed.

Thus assume all  finite; so  by Lemma 2.

Set  As is easily seen,

and

Also,

(Verify!) Thus by additivity,

and by the assumed -additivity,

as claimed.

Right continuity. Let  with ,

and

As  Lemma 3 yields that

and .

As

we have

(Verify!) Thus by -additivity,

sX = s = ±∞ for m ≥ n,Xm (7.4.56)

X ⊇ ⊇ ;Xm Xn

lims = ±∞ = sX,Xm (7.4.57)

sXn s∅ = 0,

= ∅.X0

X = = ( − )  (disjoint),⋃
n=1

∞

Xn ⋃
n=1

∞

Xn Xn−1 (7.4.58)

(∀n) − ∈ C (a ring).Xn Xn−1 (7.4.59)

(∀m ≥ n) = ( − )  (disjoint).Xm ⋃
n=1

m

Xn Xn−1 (7.4.60)

s = s ( − ) ,Xm ∑
n=1

m

Xn Xn−1 (7.4.61)

σ

sX = s ( − )⋃
n=1

∞

Xn Xn−1 = s ( − )∑
n=1

∞

Xn Xn−1

= s ( − ) = s ,lim
m→∞

∑
n=1

m

Xn Xn−1 lim
m→∞

Xm

↘ XXn X, ∈ CXn

X = ,⋂
n=1

∞

Xn (7.4.62)

|s | < ∞.X1 (7.4.63)

X ⊆ ⊆ ,Xn X1

(∀n) |s | < ∞Xn (7.4.64)

|sX| < ∞

X = ,⋂
k=1

∞

Xk (7.4.65)

(∀n) = X ∪ ( − )  (disjoint).Xn ⋃
k=n+1

∞

Xk−1 Xk (7.4.66)

σ
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with  (see above).

Hence the sum

is finite. Therefore, it tends to  as  (being the "remainder term" of a convergent series). Thus  yields

as claimed.

This page titled 7.4: Set Functions. Additivity. Continuity is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

(∀n) s = sX + s ( − ) ,Xn ∑
k=n+1

∞

Xk−1 Xk (7.4.67)

|sX| < ∞, |s | < ∞Xn

s ( − ) = s −sX∑
k=n+1

∞

Xk−1 Xk Xn (7.4.68)

0 n → ∞ n → ∞

s = sX +lim s ( − ) = sX,lim
n→∞

Xn ∑
k=n+1

∞

Xk−1 Xk (7.4.69)

□
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7.4.E: Problems on Set Functions

Prove Theorem 2 in detail for semirings. 
[Hint: We know that 

 
for some  so 

 
with  as in Theorem 1.]

Let  be additive on  a ring. Prove that  is also -additive provided  is either 
(i) left continuous, or 
(ii) finite on  and right-continuous at  i.e., 

 
when  . 
[Hint: Let 

 
Set 

 
Verify that . 
In case (i), 

 
(Why?) 
For (ii), use the .]

Let 

 Exercise 7.4.E. 1

− =  (disjoint)Xn Xn−1 ⋃
i=1

mn

Yni (7.4.E.1)

∈ C,Yni

( − ) = s ,s̄̄̄ Xn Xn−1 ∑
i=1

mn

Yni (7.4.E.2)

s̄̄̄

 Exercise 7.4.E. 2

s M, s σ s

M ∅;

s = 0lim
n→∞

Xn (7.4.E.3)

↘ ∅Xn ( ∈M)Xn

A =  (disjoint), A, ∈M.⋃
n

An An (7.4.E.4)

= , = A − .Xn ⋃
k=1

n

Ak Yn Xn (7.4.E.5)

, ∈M, ↗ A, ↘ ∅Xn Yn Xn Yn

sA = lim s = s .Xn ∑
k=1

∞

Ak (7.4.E.6)

Yn

 Exercise 7.4.E. 3

M= {all intervals in the rational field R ⊂ } .E1 (7.4.E.7)
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Let 

 
if  are the endpoints of   Prove that 
(i)  is a semiring; 
(ii)  is continuous; 
(iii)  is additive but not -additive; thus Problem 2 fails for semirings. 
[Hint:  is countable. Thus each  is a countable union of singletons  hence  if  were -
additive.]

Let  {naturals}. Let 

 
If  let  if  is finite, and  otherwise. Show that 
(i)  is a set field; 
(ii)  is right continuous and additive, but not -additive. 
Thus Problem 2 (ii) fails if  is not finite.

Let 

 
If  are the endpoints of an interval   set 

 
Show that  is -additive on  a semiring. 
Let 

 
so  and  (Verify!) Yet 

 
Does this contradict Theorem 2?

Fill in the missing proof details in Theorem 1.

sX = b −a (7.4.E.8)

a, b X ∈M (a, b ∈ R, a ≤ b).
M

s

s σ

R X ∈M {x} = [x, x]; sX = 0 s σ

 Exercise 7.4.E. 3′

N =

M= {all finite subsets of N  and their complements in N}. (7.4.E.9)

X ∈M, sX = 0 X sX = ∞
M

s σ

s

 Exercise 7.4.E. 4

C= {finite and infinite intervals in  } .E1 (7.4.E.10)

a, b X (a, b ∈ , a < b) ,E∗

sX = {
b −a,

0,

a < b,

a = b.
(7.4.E.11)

s σ C,

= (n, ∞);Xn (7.4.E.12)

s = ∞ −n = ∞Xn ↘ ∅.Xn

lim s = ∞ ≠ s∅.Xn (7.4.E.13)

 Exercise 7.4.E. 5
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Let  be additive on  Prove the following. 
(i) If  is a ring or semiring, so is 

 
if . 
(ii) If  is generated by a set family  with  on  then  on  
[Hint: Use Problem 16 in §3.]

 (Lebesgue-Stieltjes set functions.) Let  and  be as in Example (d). Prove the following. 
(i)  on  iff  on  (see Theorem 2 in Chapter 4, §5). 
(ii)  iff  is continuous at . 
(iii)  is additive. 
[Hint: If 

 
the intervals  must be adjacent. For two such intervals, consider all cases like 

 
Then use induction on .] 
(iv) If  is right continuous at  and  then 

 
If  is continuous at  and  then 

 
(v) If  on , then  satisfies Lemma 1 and Corollary 2 in §1 (same proof), as well as Lemma 1, Theorem 1, Corollaries
1-4, and Note 3 in §2 (everything except Corollaries 5 and 6). 
[Hint: Use (i) and (iii). For Lemma 1 in §2, take first a half-open  use the definition of a right-side limit along with
Theorems 1 and 2 in Chapter 4, §5, to prove 

 
then set  Similarly for  etc. and for the closed interval .] 
(vi) If  then  the volume (or length) function in .

Construct LS set functions (Example (d)), with  (see Problem 7(v)), so that 
(i) ; 
(ii)  (after extending  to ); 
(ii')  for a fixed ; 
(iii)  and . 

 Exercise 7.4.E. 6

s M.
M

N = {X ∈M||sX| < ∞} (7.4.E.14)

N ≠ ∅
M C, |s| < ∞ C, |s| < ∞ M.

 Exercise 7.4.E. 7

⇒ α sα

≥ 0sα C α ↑ E1

{p} = [p, p] = 0sα sα α p

sα

A =  (disjoint),⋃
i=1

n

Ai (7.4.E.15)

,Ai−1 Ai

(a, b] ∪ (b, c), [a, b) ∪ [b, c],  etc. (7.4.E.16)

n

α a b,

(a, b] = α(b) −α(b).sα (7.4.E.17)

α a b,

[a, b] = (a, b] = [a, b) = (a, b).sα sα sα sα (7.4.E.18)

α ↑ E1 sα

B = (a, b];

(∀ε > 0)(∃c > b) 0 ≤ α(c−) −α(b+) < ε; (7.4.E.19)

C = (a, c). B = [a, b), A ⊆ B

α(x) = x = v,sα E1

 Exercise 7.4.E. 8

α ↑
[0, 1] ≠ [1, 2]sα sα

= 1sαE1 sα −setsin\(Cσ E1

= csαE1 c ∈ (0, ∞)
{0} = 1sα [0, 1] > (0, 1]sα sα
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Describe  if  (the integral part of ). 
[Hint: See Figure 16 in Chapter 4, §1.]

For an arbitrary  define  by 

 
(the original Stieltjes method). Prove that  is additive but not -additive unless  is continuous (for Theorem 2 fails).

7.4.E: Problems on Set Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

sα α(x) = [x] x

 Exercise 7.4.E. 9

α : → ,E1 E1 : C→σα E1

[a, b] = (a, b] = [a, b) = (a, b) = α(b) −α(a)σα σα σσ σα (7.4.E.20)

σα σ α
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7.5: Nonnegative Set Functions. Premeasures. Outer Measures
We now concentrate on nonnegative set functions

(we mostly denote them by  or ). Such functions have the advantage that

exists and is permutable (Theorem 2 in §2) for any sets  since   Several important notions apply to such
functions (only). They "mimic" §§1 and 2.

A set function

is said to be

(i) monotone (on ) iff

whenever

(ii) (finitely) subadditive (on ) iff for any finite union

we have

whenever  and

(iii) -subadditive (on ) iff (1) holds for countable unions, too.

Recall that  is called a covering of  iff

We call it an -covering of  if all  are -sets. We now obtain the following corollary.

Subadditivity implies monotonicity.

Take  in formula (1).

m : M→ [0, ∞] (7.5.1)

m μ

m∑
n=1

∞

Xn (7.5.2)

∈M,Xn m ≥Xn 0.

 Definition 1

m : M→ [0, ∞] (7.5.3)

M

mX ≤ mY (7.5.4)

X ⊆ Y  and X, Y ∈M; (7.5.5)

M

,⋃
k=1

n

Yk (7.5.6)

mX ≤ m∑
k=1

m

Yk (7.5.7)

X, ∈MYk

X ⊆  (disjoint or not);⋃
k=1

n

Yk (7.5.8)

σ M

{ }Yk X

X ⊆ .⋃
k

Yk (7.5.9)

M X Yk M

 Corollary 7.5.1

n = 1
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If  is additive ( -additive) on , a semiring, then  is also subadditive ( -subadditive, respectively), hence
monotone, on .

Proof

The proof is a mere repetition of the argument used in Lemma 1 in §1.

Taking  in formula (ii) there, we obtain finite subadditivity.

For -subadditivity, one only has to use countable unions instead of finite ones.

Note 1. The converse fails: subadditivity does not imply additivity.

Note 2. Of course, Corollary 2 applies to rings, too (see Corollary 1 in §3).

A premeasures is a set function

such that

(  may, but need not, be a semiring.)

A premeasure space is a triple

where  is a family of subsets of  (briefly,  and

is a premeasure. In this case, -sets are also called basic sets.

If

with  the sequence  is called a basic covering of  and

is a basic covering value of  may be finite or infinite.

(a) The volume function  on  (= intervals in ) is a premeasure, as  and  ( ) is the Lebesgue
premeasure space.

(b) The LS set function  is a premeasure if  (see Problem 7 in §4). We call it the -induced Lebesgue-Stieltjes 
premeasure in .

We now develop a method for constructing -subadditive premeasures. (This is a first step toward achieving -additivity; see §4.)

 Corollary 7.5.2

m : C→ [0, ∞] σ C m σ

C

n = 1

σ

 Definition 2

μ : C→ [0, ∞] (7.5.10)

∅ ∈ C and μ∅ = 0. (7.5.11)

C

(S, C, μ), (7.5.12)

C S C⊆ )2S

μ : C→ [0, ∞] (7.5.13)

C

A ⊆ ,⋃
n

Bn (7.5.14)

∈ C,Bn { }Bn A,

μ∑
n

Bn (7.5.15)

A; { }Bn

 Examples

v C En v ≥ 0 v∅ = 0. , C, vEn

sα α ↑ α (LS)
E1

σ σ
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For any premeasure space  we define the -induced outer measure  on  (= all subsets of ) by setting, for each 
,

i.e.,  (called the outer measure of ) is the glb of all basic covering values of 

If  is called the Lebesgue outer measure in .

Note 3. If  has no basic coverings, we set  More generally, we make the convention that inf .

Note 4. By the properties of the glb, we have

If  then  is a basic covering; so

In particular, .

The set function  so defined is -subadditive on .

Proof

Given

we must show that

This is trivial if  for some  Thus assume

and fix .

By Note 3, each  has a basic covering

(otherwise, ) By properties of the glb, we can choose the  so that

(Explain from (2)). The sets  (for all  and all  form a countable basic covering of all  hence of  Thus by
Definition 3,

As  is arbitrary, we can let  to obtain the desired result.

 Definition 3

(S, C, μ), μ m∗ 2S S

A ⊆ S

A = inf{ μ |A ⊆ , ∈ C} ,m∗ ∑
n

Bn ⋃
n

Bn Bn (7.5.16)

Am∗ A A.

μ = v, m∗ En

A A = ∞.m∗ ∅ = +∞

(∀A ⊆ S) 0 ≤ A.m∗ (7.5.17)

A ∈ C, {A}

A ≤ μA.m∗ (7.5.18)

∅ = μ∅ = 0m∗

 Theorem 7.5.1

m∗ σ 2S

A ⊆ ⊂ S,⋃
n

An (7.5.19)

A ≤ .m∗ ∑
n

m∗An (7.5.20)

= ∞m∗An n.

(∀n) < ∞m∗An (7.5.21)

ε > 0

An

{ } , k = 1, 2, …Bnk (7.5.22)

= ∞.m∗An Bnk

(∀n) μ < + .∑
k

Bnk m∗An

ε

2n (7.5.23)

Bnk n k) ,An A.

A ≤ ( μ ) ≤ ( + )≤ +ε.m∗ ∑
n

∑
k

Bnk ∑
n

m∗An

ε

2n
∑

n

m∗An (7.5.24)

ε ε → 0 □
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Note 5. In view of Theorem 1, we now generalize the notion of an outer measure in  to mean any -subadditive premeasure
defined on all of .

By Note 4,  on  not  in general. However, we obtain the following result.

With  as in Definition 3, we have  on  iff  is -subadditive on  Hence, in this case,  is an extension of 

Proof

Suppose  is -subadditive and fix any  By Note 4,

We shall show that

too, and hence .

Now, as  surely has basic coverings, e.g.,  Take any basic covering:

As  is -subadditive,

Thus  does not exceed any basic covering values of  so it cannot exceed their glb,  Hence  indeed.

Conversely, if  on  then the -subadditivity of  (Theorem 1) implies that of  (on ). Thus all is proved.

Note 6. If, in (2), we allow only finite basic coverings, then the -induced set function is called the -induced outer content,  It
is only finitely subadditive, in general.

In particular, if  (Lebesgue premeasure), we speak of the Jordan outer content in  (It is superseded by Lebesgue theory
but still occurs in courses on Riemann integration.)

We add two more definitions related to the notion of coverings.

A set function  is called -finite iff every  can be covered by a sequence of -sets  with

Any set  which can be so covered is said to be -finite with respect to  (briefly, ( ) -finite).

If the whole space  can be so covered, we say that  is totally -finite.

For example, the Lebesgue premeasure  on  is totally -finite.

A set function  is said to be regular with respect to a set family  (briefly, -regular) iff for each ,

that is,  is the glb of all  with  and .

These notions are important for our later work. At present, we prove only one theorem involving Definitions 3 and 5.

S σ

2S

≤ μm∗ C, = μm∗

 Theorem 7.5.2

m∗ = μm∗ C μ σ C. m∗ μ.

μ σ A ∈ C.

A ≤ μA.m∗ (7.5.25)

μA ≤ A,m∗ (7.5.26)

μA = Am∗

A ∈ C, A {A}.

A ⊆ , ∈ C.⋃
n

Bn Bn (7.5.27)

μ σ

μA ≤ μ .∑
n

Bn (7.5.28)

μA A; A.m∗ μ = ,m∗

μ = m∗ C, σ m∗ μ C □

μ μ .c∗

μ = v .En

 Definition 4

s : M→ E (M⊆ )2S σ X ∈M M ,Xn

|s | < ∞ (∀n).Xn (7.5.29)

A ⊆ S σ s s σ

S s σ

v En σ

 Definition 5

s : M→ E∗ A A A ∈M

sA = inf{sX|A ⊆ X, X ∈A}; (7.5.30)

sA sX, A ⊆ X X ∈A
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For any premeasure space  the -induced outer measure  is -regular whenever

Thus in this case,

Proof

As  is monotone,  is surely a lower bound of

We must show that there is no greater lower bound.

This is trivial if .

Thus let  so  has basic coverings (Note 3). Now fix any .

By formula (2), there is a basic covering  such that

and

(  is -subadditive!)

Let

Then  is in  hence in  and  Also,

Thus  is not a lower bound of

This proves (4).

This page titled 7.5: Nonnegative Set Functions. Premeasures. Outer Measures is shared under a CC BY 3.0 license and was authored, remixed,
and/or curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of
the LibreTexts platform; a detailed edit history is available upon request.

 Theorem 7.5.3

(S, C, μ), μ m∗ A

⊆A ⊆ .Cσ 2S (7.5.31)

(∀A ⊆ S) A = inf { X|A ⊆ X, X ∈A} .m∗ m∗ (7.5.32)

m∗ Am∗

{ X|A ⊆ X, X ∈A} .m∗ (7.5.33)

A = ∞m∗

A < ∞;m∗ A ε > 0

{ } ⊆ CBn

A ⊆⋃
n

Bn (7.5.34)

A +ε > μ ≥ ≥ .m∗ ∑
n

Bn ∑
n

m∗Bn m∗⋃
n

Bn (7.5.35)

m∗ σ

X = .⋃
n

Bn (7.5.36)

X ,Cσ A, A ⊆ X.

A +ε > X.m∗ m∗ (7.5.37)

A +εm∗

{ X|A ⊆ X, X ∈A} .m∗ (7.5.38)

□
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7.5.E: Problems on Premeasures and Related Topics

Fill in the missing details in the proofs, notes, and examples of this section.

Describe  on  induced by a premeasure  such that each of the following hold. 
(a) . 
(b) . 
(c)  as in (b), with  uncountable;  and  otherwise. 
(d)  when .

Show that the premeasures 

 
induce one and the same (Lebesgue) outer measure  in  with  (volume, as in §2): 
(a) ; 
(b) ; 
(c) ; 
(d) ; 
(e) ; 
(f) ;
[Hints: (a) Let  be the -induced outer measure; let  As  (Why?) Also, 

 
(Why?) By Lemma 1 in §2, 

 
Deduce that . Similarly for (b) and (c). For (d), use Corollary 1 and Note 3 in §1. For (e), use Lemma
2 in §2. For (f), use Problem 2 in §2.]

Do Problem 3(a)-(c), with  replaced by the Jordan outer content  (Note 6).

Do Problem 3, with  and  replaced by the LS premeasure and outer measure. (Use Problem 7 in §4.)

Show that a set  is bounded iff its outer Jordan content is finite.

 Exercise 7.5.E. 1

 Exercise 7.5.E. 2

m∗ 2S μ : C → E∗

C = {S, ∅},μS = 1
C = {S, ∅, and all singletons};μS = ∞,μ{x} = 1
C S μS = 1, μX = 0
C = {all proper subsets of S};μX = 1 ∅ ⊂ X ⊂ S;μ∅ = 0

 Exercise 7.5.E. 3

: → [0, ∞]v′ C′ (7.5.E.1)

m∗ ,En = vv′

= {open intervals}C
′

= {half-open intervals}C
′

= {closed intervals}C
′

=C
′

Cσ

= {open sets}C
′

= {half-open cubes}C
′

m′ v′ C = {all intervals}. ⊆ C, A ≥ A.C
′ m′ m∗

(∀ε > 0) (∃{ } ⊆ C) A ⊆  and ∑v ≤ A+ε.Bk ⋃
k

Bk Bk m∗ (7.5.E.2)

(∃{ } ⊆ ) ⊆  and v + > .Ck C′ Bk Ck Bk

ε

2k
v′Ck (7.5.E.3)

A ≥ A, =m∗ m′ m∗ m′

 Exercise 7.5.E. 3′

m∗ c∗

 Exercise 7.5.E. 4

v m∗

 Exercise 7.5.E. 5

A ⊆ En
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Find a set  such that 
(i) its Lebesgue outer measure is   while its Jordan outer content ; 
(ii)  (see Corollary 6 in §2).

Let 

 
be two premeasures in  and let  and  be the outer measures induced by them. 
Prove that if  on  then  on all of .

With the notation of Definition 3 and Note 6, prove the following. 
(i) If  and  then  similarly for . 
[Hint: Use monotonicity.] 
(ii) The set family 

 
is a hereditary set ring, i.e., a ring  such that 

 
(iii) The set family 

 
is a hereditary -ring. 
(iv) So also is 

 
thus  is the hereditary -ring generated by  (see Problem 14 in §3).

Continuing Problem 8(iv), prove that if  is -finite (Definition 4), so is  when restricted to 
Show, moreover, that if  is a semiring, then each  has a basic covering  with  and with all 
disjoint. 
[Hint: Show that 

 
for some sets  with  Then use Note 4 in §5 and Corollary 1 of §1.]

 Exercise 7.5.E. 6

A ⊆ E1

0 ( A = 0) ,m∗ A = ∞c∗

A = 0, A = 1m∗ c∗

 Exercise 7.5.E. 7

, : C → [0, ∞]μ1 μ2 (7.5.E.4)

S m∗
1 m∗

2

=m∗
1 m∗

2 C, =m∗
1 m∗

2 2S

 Exercise 7.5.E. 8

A ⊆ B ⊆ S B = 0,m∗ A = 0;m∗ c∗

{X ⊆ S| A = 0}c∗ (7.5.E.5)

R

(∀B ∈ R)(∀A ⊆ B) A ∈ R. (7.5.E.6)

{X ⊆ S| X = 0}m∗ (7.5.E.7)

σ

H= {those X ⊆ S that have basic coverings}; (7.5.E.8)

H σ C

 Exercise 7.5.E. 9

μ σ m∗ H.
C X ∈ H { } ,Yn < ∞m∗Yn Yn

X ⊆⋃
n=1

∞

⋃
k=1

∞

Bnk (7.5.E.9)

∈ C,Bnk μ < ∞.Bnk
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Show that if 

 
is -finite and additive on  a semiring, then the -ring  generated by  equals the -ring  generated by 

 
(cf. Problem 6 in §4). 
[Hint: By -finiteness, 

 
so 

 
(Use Lemma 3 in §4.) 
Thus  is a countable union of -sets; so  Deduce . Proceed.]

With all as in Theorem 3, prove that if  has basic coverings, then 

 
[Hint: By formula (4), 

 
(Explain!) Set 

 
Proceed. For  see Definition 2(b) in §3.]

Let  and  be as in Definition 3. Show that if  is a -field in  then 

 
[Hint: Use Problem 11 and Note 3.]

 Exercise 7.5.E. 10

s : C → E∗ (7.5.E.10)

σ C, σ R C σ R′

= {X ∈ C||sX| < ∞}C
′ (7.5.E.11)

σ

(∀X ∈ C) (∃{ } ⊆ C||s | < ∞) X ⊆ ;An An ⋃
n

An (7.5.E.12)

X = (X∩ ) , X∩ ∈ .⋃
n

An An C′ (7.5.E.13)

(∀X ∈ C)X C
′

C ⊆ .R′ R⊆R′

 Exercise 7.5.E. 11

A

(∃B ∈ ) A ⊆ B and  A = B.Aδ m∗ m∗ (7.5.E.14)

(∀n ∈ N) (∃ ∈ A|A ⊆ ) A ≤ m ≤ A+ .Xn Xn m∗ Xn m∗ 1

n
(7.5.E.15)

B = ∈ .⋂
n=1

∞

Xn Aδ (7.5.E.16)

,Aδ

 Exercise 7.5.E. 12

(S, C,μ) m∗ C σ S,

(∀A ⊆ S)(∃B ∈ C) A ⊆ B and  A = μB.m∗ (7.5.E.17)
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 Show that if 

 
is -finite and -additive on  a semiring, then  has at most one -additive extension to the -ring  generated by  
(Note that  is automatically -finite if it is finite, e.g., complex or vector valued.) 
[Outline: Let 

 
be two -additive extensions of  By Problem 10,  is also generated by 

 
Now set 

 
Show that  satisfies properties (i)-(iii) of Theorem 3 in §3, with  replaced by  so .]

Let  be outer measures in  such that 

 
Set 

 
Show that  is an outer measure in  (see Note 5).

An outer measure  in a metric space  is said to have the Carathéodory property (CP) iff 

 
whenever  where 

 
For such  prove that 

 
if  and 

 Exercise 7.5.E. 13

⇒∗

s : C → E (7.5.E.18)

σ σ C, s σ σ R C.
s σ

, : R→ Es′ s′′ (7.5.E.19)

σ s. R

= {X ∈ C||sX| < ∞}.C
′ (7.5.E.20)

= {X ∈ R| X = X} .R
∗ s′ s′′ (7.5.E.21)

R∗ C ;C′
R=R∗

 Exercise 7.5.E. 14

(n = 1, 2, …)m∗
n S

(∀X ⊆ S)(∀n) X ≤ X.m∗
n m∗

n+1 (7.5.E.22)

= .μ∗ lim
n→∞

m∗
n (7.5.E.23)

μ∗ S

 Exercise 7.5.E. 15

m∗ (S, ρ)

(X∪Y ) ≥ X+ Ym∗ m∗ m∗ (7.5.E.24)

ρ(X,Y ) > 0,

ρ(X,Y ) = inf{ρ(x, y)|x ∈ X, y ∈ Y }. (7.5.E.25)

,m∗

( ) =m∗ ⋃
k

Xk ∑
k

m∗Xk (7.5.E.26)

{ } ⊆Xk 2S

ρ ( , ) > 0 (i ≠ k).Xi Xk (7.5.E.27)
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[Hint: For finite unions, use the CP, subadditivity, and induction. Deduce that 

 
Let  Proceed.]

Let  and  be as in Definition 3, with  a metric for  Let  be the restriction of  to the family  of all 
of diameter

 
Let  be the -induced outer measure in  
Prove that 
(i)  as in Problem 14; 
(ii) the outer measure 

 
has the CP (see Problem 15), and 

 
[Outline: Let . 
If for some  has no basic covering from  then 

 
and the CP follows. (Explain!) 
Thus assume 

 
One can choose the  so that 

 
(Why?) As 

 
some  cover  only, others  only. (Why?) Deduce that 

(∀n) ≤ .∑
k=1

n

m∗Xk m∗ ⋃
k=1

∞

Xk (7.5.E.28)

n → ∞.

 Exercise 7.5.E. 16

(S, C,μ) m∗ ρ S. μn μ Cn X ∈ C

dX ≤ .
1

n
(7.5.E.29)

m∗
n μn S.

{ } ↑m∗
n

=μ∗ lim
n→∞

m∗
n (7.5.E.30)

≥  on  .μ∗ m∗ 2S (7.5.E.31)

ρ(X,Y ) > ε > 0(X,Y ⊆ S)
n,X∪Y ,Cn

(X∪Y ) ≥ (X∪Y ) = ∞ ≥ X+ Y ,μ∗ m∗
n μ∗ μ∗ (7.5.E.32)

(∀n > ) (∀k) (∃ ∈ ) X∪Y ⊆ .
1

ε
Bnk Cn ⋃

k=1

∞

Bnk (7.5.E.33)

Bnk

μ ≤ (X∪Y ) +ε.∑
k=1

∞

Bnk m∗
n (7.5.E.34)

d ≤ < ε,Bnk

1

n
(7.5.E.35)

Bnk X Y

(∀n > ) X+ Y ≤ ≤ (X∪Y ) +ε.
1

ε
m∗

n m∗
n ∑

k=1

∞

μnBnk m∗
n (7.5.E.36)
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Let  and then . 
Also,  (Why?)]

Continuing Problem 16, suppose that 
 

 
Show that 

 
so  itself has the CP. 
[Hints: It suffices to prove that  if  (Why?) 
Now, given  has a covering 

 
such that 

 
(Why?) By assumption, 

 
Deduce that 

 
Let  then .]

Using Problem 17, show that the Lebesgue and Lebesgue-Stieltjes outer measures have the CP.

7.5.E: Problems on Premeasures and Related Topics is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

ε → 0 n → ∞
≤ ≤ .m∗ m∗

n μ∗

 Exercise 7.5.E. 17

(∀ε > 0)(∀n, k)(∀B ∈ C) (∃ ∈ )Bnk Cn

B ⊆  and μB+ε ≥ μ .⋃
k=1

∞

Bnk ∑
k=1

∞

Bnk (7.5.E.37)

= = ,m∗ lim
n→∞

μ∗
n μ∗ (7.5.E.38)

m∗

A ≥ Am∗ μ∗ A < ∞.m∗

ε > 0,A

{ } ⊆ cBi (7.5.E.39)

A+ε ≥∑μ .m∗ Bi (7.5.E.40)

(∀n) ⊆ ∈  and μ + ≥ μ .Bi ⋃
k=1

∞

Bi
nk Cn Bi

ε

2i
∑
k=1

∞

Bi
nk (7.5.E.41)

A+ε >∑μ ≥ ( μ − ) = μ −ε ≥ A−ε.m∗ Bi ∑
i=1

∞

∑
k=1

∞

Bi
nk

ε

2i
∑
i,k

Bi
nk

m∗
n (7.5.E.42)

ε → 0; n → ∞

 Exercise 7.5.E. 18
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7.6: Measure Spaces. More on Outer Measures
I. In §5, we considered premeasure spaces, stressing mainly the idea of -subadditivity (Note 5 in §5). Now we shall emphasize -
additivity.

A premeasure

is called a measure (in ) iff  is a -ring (in ), and  is -additive on 

If so, the system

is called a measure space;  is called the measure of ; -sets are called -measurable sets.

Note that  is nonnegative and  as  is a premeasure (Definition 2 in §5).

Measures are -additive, -subadditive, monotone, and continuous.

Proof

Use Corollary 2 in §5 and Theorem 2 in §4, noting that  is a -ring.

In any measure space  the union and intersection of any sequence of -measurable sets is -measurable itself. So
also is  if 

This is obvious since  is a -ring.

As measures and other premeasures are understood to be  we often write

for

We also briefly say "measurable" for " -measurable."

Note that  but not always .

(a) The volume of intervals in  is a -additive premeasure, but not a measure since its domain (the intervals) is not a -ring.

(b) Let  Define

Then  is trivially a measure (the zero-measure). Here each set  is measurable, with .

(c) Let again  Let  be the number of elements in  if finite, and  otherwise.

Then  is a measure ("counting measure"). Verify!

(d) Let  Fix some  Let

σ σ

 Definition 1

m : M→ [0, ∞] (7.6.1)

S M σ S m σ M.

(S,M, m) (7.6.2)

mX X ∈ M M m

m m∅ = 0, m

 Corollary 7.6.1

σ σ

M σ □

 Corollary 7.6.2

(S,M, m), m m

X −Y X, Y ∈ M.

M σ

≥ 0,

m : M→ E∗ (7.6.3)

m : M→ [0, ∞]. (7.6.4)

m

∅ ∈ M, S ∈ M

 Examples

En σ σ

M= .2S

(∀X ⊆ S) mX = 0. (7.6.5)

m X ⊆ S mX = 0

M= .2S mX X, mX = ∞

m

M= .2S p ∈ S.
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Then  is a measure (it describes a "unit mass" concentrated at ).

(e) A probability space is a measure space ), with

In probability theory, measurable sets are called events;  is called the probability of  often denoted by  or similar
symbols.

In Examples (b), (c), and (d),

More often, however,

i.e., there are nonmeasurable sets  for which  is not defined.

Of special interest are sets  with  and their subsets. We call them -null or null sets. One would like them to be
measurable, but this is not always the case for subsets of 

This leads us to the following definition.

A measure  is called complete iff all null sets (subsets of sets of measure zero) are measurable.

We now develop a general method for constructing complete measures.

II. From §5 (Note 5) recall that an outer measure in  is a -subadditive premeasure defined on all of  (even if it is not derived
via Definition 3 in §5). In Examples (b), (c), and (d),  is both a measure and an outer measure. (Why?)

An outer measure

need not be additive; but consider this fact:

It also splits any other set  into  and  indeed,

We want to single out those sets  for which  behaves "additively," i.e., so that

This motivates our next definition.

Given an outer measure  and a set  we say that  is -measurable iff all sets  are split
"additively" by  that is,

As is easily seen (see Problem 1), this is equivalent to

The family of all -measurable sets is usually denoted by  The system  is called an outer measure space.

mX = {
1

0

 if p ∈ X,

 otherwise .
(7.6.6)

m p

(S,M, m

S ∈ M and mS = 1. (7.6.7)

mX X, pX

M=  (all subsets of S).2S (7.6.8)

M≠ ,2S (7.6.9)

X ⊆ S mX

X ∈ M, mX = 0, m

X.

 Definition 2

m : M→ E∗

S σ 2S

m

: →m∗ 2S E∗ (7.6.10)

 Any set A ⊆ S splits S into two parts: A itself and  −A. (7.6.11)

X X ∩ A X −A;

X = (X ∩ A) ∪ (X −A) (disjoint). (7.6.12)

A m∗

X = (X ∩ A) + (X −A).m∗ m∗ m∗ (7.6.13)

 Definition 3

: →m∗ 2S E∗ A ⊆ S, A m∗ X ⊆ S

A;

(∀X ⊆ S) X = (X ∩ A) + (X −A).m∗ m∗ m∗ (7.6.14)

(∀X ⊆ A)(∀Y ⊆ −A) (X ∪ Y ) = X + Y .m∗ m∗ m∗ (7.6.15)

m∗ .M
∗ (S, , )M

∗ m∗
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Note 1. Definition 3 applies to outer measures only. For measures, " -measurable" means simply "member of the domain of "
(Definition 1).

Note 2. In (1) and (2), we may equivalently replace the equality sign  by  Indeed,  is covered by

and  is covered by  so the reverse inequality  anyway holds, by subadditivity.

Our main objective is to prove the following fundamental theorem.

In any outer measure space

the family  of all -measurable sets is a -field in  and  when restricted to  is a complete measure (denoted by
 and called the -induced measure; so  on ).

Proof

We split the proof into several steps (lemmas).

 is closed under complementation:

Indeed, the measurability criterion (2) is same for  and  alike.

 and  are  sets. So are all sets of outer measure 0.

Proof

Let  To prove  use (2) and Note 2.

Thus take any  and  Then by monotonicity,

and

Thus

as required.

In particular, as  is -measurable .

So is  (the complement of  by Lemma 1.

 is closed under finite unions:

m m

(=) (≥). X

{X ∩ A, X −A}, (7.6.16)

X ∪ Y {X, Y }; (≤)

 Theorem 7.6.1

(S, , ) ,M
∗ m∗ (7.6.17)

M∗ m∗ σ S, ,m∗ ,M∗

m m∗ = mm∗ M∗

 lemma 1

M
∗

(∀A ∈ ) −A ∈ .M
∗

M
∗ (7.6.18)

A −A

 lemma 2

∅ S M∗

A = 0.m∗ A ∈ ,M
∗

X ⊆ A Y ⊆ −A.

X ≤ A = 0m∗ m∗ (7.6.19)

Y ≤ (X ∪ Y ).m∗ m∗ (7.6.20)

X + Y = 0 + Y ≤ (X ∪ Y ),m∗ m∗ m∗ m∗ (7.6.21)

∅ = 0, ∅m∗ m∗ (∅ ∈ )M
∗

S ∅) □

 lemma 3

M
∗

(∀A, B ∈ ) A ∪ B ∈ .M
∗

M
∗ (7.6.22)
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Proof

This time we shall use formula (1). By Note 2, it suffices to show that

Fix any  as  we have

Similarly, as  we have (replacing  by  in (1))

since

and

Combining (4) with (3), we get

Now verify that

As  is subadditive, this yields

Combining with (5), we get

so that  indeed.

Induction extends Lemma 3 to all finite unions of -sets.

Note that by Problem 3 in §3,  is a set field, hence surely a ring. Thus Corollary 1 in §1 applies to it. (We use it below.)

Let

with all  pairwise disjoint.

Let  for  (  and the  need not be -sets.) Then

Proof

We start with two sets,  and  so

As  we have  hence also .

since  we use formula (2), with

(∀X ⊆ S) X ≥ (X ∩ (A ∪ B)) + (X −(A ∪ B)).m∗ m∗ m∗ (7.6.23)

X ⊆ S; A ∈ ,M∗

X = (X ∩ A) + (X −A).m∗ m∗ m∗ (7.6.24)

B ∈ ,M
∗ X X −A

(X −A)m∗ = ((X −A) ∩ B) + (X −A −B)m∗ m∗

= (X ∩ −A ∩ B) + (X −(A ∪ B)),m∗ m∗

X −A = X ∩ −A (7.6.25)

X −A −B = X −(A ∪ B). (7.6.26)

X = (X ∩ A) + (X ∩ −A ∩ B) + (X −(A ∪ B)).m∗ m∗ m∗ m∗ (7.6.27)

(X ∩ A) ∪ (X ∩ −A ∩ B) ⊇ X ∩ (A ∪ B). (7.6.28)

m

(X ∩ A) + (X ∩ −A ∩ B) ≥ (X ∩ (A ∪ B)).m∗ m∗ m∗ (7.6.29)

X ≥ (X ∩ (A ∪ B)) + (X −(A ∪ B)),m∗ m∗ m∗ (7.6.30)

A ∪ B ∈ ,M∗
□

M∗

M
∗

 lemma 4

⊆ ⊆ S, k = 0, 1, 2, … ,Xk Ak (7.6.31)

Ak

∈Ak M∗ k ≥ 1. A0 Xk M∗

( ) = .m∗ ⋃
k=0

∞

Xk ∑
k=0

∞

m∗Xk (7.6.32)

A0 ;A1

∈ , ∩ = ∅, ⊆ ,  and  ⊆ .A1 M
∗ A0 A1 X0 A0 X1 A1 (7.6.33)

∩ = ∅,A0 A1 ⊆ − ;A0 A1 ⊆ −X0 A1

∈ ,A1 M
∗
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to obtain

Thus (6) holds for two sets.

Induction now easily yields

by monotonicity of  Now let  and pass to the limit to get

As  is covered by the  the -subadditivity of  yields the reverse inequality as well. Thus (6) is proved.

Proof of Theorem 1. As we noted,  is a field. To show that it is also closed under countable unions (a -field), let

We have to prove that  or by (2) and Note 2,

We may safely assume that the  are disjoint. (If not, replace them by disjoint sets  as in Corollary 1 §1.)

To prove (7), fix any  and  and let

 and  satisfying all assumptions of Lemma 4. Thus by (6), writing the first term separately, we have

But

(as  Also, by -subadditivity,

Therefore, (8) implies (7); so  is a -field.

Moreover,  is -additive on  as follows from Lemma 4 by taking

Thus  acts as a measure on .

By Lemma 2,  is complete; for if  is "null" (  and ), then  so  as required.

Thus all is proved.

We thus have a standard method for constructing measures: From a premeasure

X = ⊆  and Y = ⊆ −A,X1 A1 X0 (7.6.34)

( ∪ ) = + .m∗ X0 X1 m∗X0 m∗X1 (7.6.35)

(∀n) = ( ) ≤ ( )∑
k=0

n

m∗Xk m∗ ⋃
k=0

n

Xk m∗ ⋃
k=0

∞

Xk (7.6.36)

.m∗ n → ∞

≤ ( ) .∑
k=0

∞

m∗Xk m∗ ⋃
k=0

∞

Xk (7.6.37)

⋃ Xk ,Xk σ m∗
□

M
∗ σ

U = , ∈ .⋃
k=1

∞

Ak Ak M∗ (7.6.38)

U ∈ ;M
∗

(∀X ⊆ U)(∀Y ⊆ −U) (X ∪ Y ) ≥ X + Y .m∗ m∗ m∗ (7.6.39)

Ak ∈ ,Bk M
∗

X ⊆ U Y ⊆ −U,

= X ∩ ⊆ ,Xk Ak Ak (7.6.40)

= −U,A0 = Y ,X0

(Y ∪ ) = Y + .m∗ ⋃
k=1

∞

Xk m∗ ∑
k=1

∞

m∗Xk (7.6.41)

= (X ∩ ) = X ∩ = X ∩ U = X⋃
k=1

∞

Xk ⋃
k=1

∞

Ak ⋃
k=1

∞

Ak (7.6.42)

X ⊆ U). σ

∑ ≥ ⋃ = X.m∗Xk m∗ Xk m∗ (7.6.43)

M
∗ σ

m∗ σ ,M
∗

= ∈ , = ∅.Xk Ak M∗ A0 (7.6.44)

m∗ M
∗

m∗ X X ⊆ A A = 0m∗ X = 0;m∗ X ∈ ,M∗

□

μ : C → E∗ (7.6.45)
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in  we obtain the -induced outer measure

this, in turn, induces a complete measure

But we need more: We want  to be an extension of  i.e.,

with  (meaning that all -sets are -measurable). We now explore this question.

Let  and  be as in Definition 3 of §5. Then for a set  to be -measurable, it suffices that

Proof

We must show that (9) holds for any  even not a -set.

This is trivial if  Thus assume  and fix any .

By Note 3 in §5,  must have a basic covering  so that

and

(Explain!)

Now, as  we have

Similarly,

Hence, as  is -subadditive and monotone, we get

But by assumption, (9) holds for any -set, hence for each  Thus

and (11) yields

Therefore, by (10),

Making  we prove (10) for any  so that  as required.

S, μ

: →  (§5);m∗ 2S E∗ (7.6.46)

m : → .M
∗ E∗ (7.6.47)

m μ,

m = μ on C, (7.6.48)

C ⊆M
∗

C m∗

 lemma 5

(S, C, μ) m∗ A ⊆ S m∗

X ≥ (X ∩ A) + (x −A) for all X ∈ C.m∗ m∗ m∗ (7.6.49)

X ⊆ S, C

X = ∞.m∗ X < ∞m∗ ε > 0

X { } ⊆ CBn

X ⊆⋃
n

Bn (7.6.50)

X +ε >∑μ ≥∑ .m∗ Bn m∗Bn (7.6.51)

X ⊆ ∪ ,Bn

X ∩ A ⊆⋃ ∩ A =⋃ ( ∩ A) .Bn Bn (7.6.52)

X −A = X ∩ −A ⊆⋃ ( −A) .Bn (7.6.53)

m∗ σ

(X ∩ A) + (X −A)m∗ m∗ ≤ (⋃ ( ∩ A))+ (⋃ ( −A))m∗ Bn m∗ Bn

≤∑ [ ( ∩ A) + ( −A)] .m∗ Bn m∗ Bn

C .Bn

( ∩ A) + ( −A) ≤ ,m∗ Bn m∗ Bn m∗Bn (7.6.54)

(X ∩ A) + (X −A) ≤∑ [ ( ∩ A) + ( −A)] ≤∑ .m∗ m∗ m∗ Bn m∗ Bn m∗Bn (7.6.55)

(X ∩ A) + (X −A) ≤ X +ε.m∗ m∗ m∗ (7.6.56)

ε → 0, X ⊆ S, A ∈ ,M
∗

□
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Let the premeasure

be -additive on  semiring in  Let  be the -induced outer measure, and

be the -induced measure. Then

(i)  and

(ii)  on .

Thus  is a -additive extension of  (called its Lebesgue extension) to .

Proof

By Corollary 2 in §5,  is also -subadditive on the semiring  Thus by Theorem 2 in §5,  on 

To prove that  we fix  and show that  satisfies (9), so that 

Thus take any  As  is a semiring,  and

for some sets  Hence

As

the additivity of  and the equality  on  yield

Hence by (12),

so by Lemma 5,  as required.

Also, by definition,  on  hence on  Thus

as claimed.

Note 3. In particular, Theorem 2 applies if

is a measure (so that  is even a -ring).

Thus any such  can be extended to a complete measure  (its Lebesgue extension) on a -field

 Theorem 7.6.2

μ : C → E∗ (7.6.57)

σ C, a S. m∗ μ

m : →M
∗ E∗ (7.6.58)

m∗

C ⊆M
∗

μ = = mm∗ C

m σ μ M∗

μ σ C. μ = m∗ C.

C ⊆ ,M
∗ A ∈ C A A ∈ .M

∗

X ∈ C. C X ∩ A ∈ C

X −A =  (disjoint)⋃
k=1

n

Ak (7.6.59)

∈ C.Ak

(X ∩ A) + (X −A)m∗ m∗ = (X ∩ A) +m∗ m∗ ⋃
k=1

n

Ak

≤ (X ∩ A) + .m∗ ∑
k=1

n

m∗Ak

X = (X ∩ A) ∪ (X −A) = (X ∩ A) ∪⋃  (disjoint),Ak (7.6.60)

μ μ = m∗ C

X = (X ∩ A) + .m∗ m∗ ∑
k=1

n

m∗Ak (7.6.61)

X ≥ (X ∩ A) + (X −A);m∗ m∗ m∗ (7.6.62)

A ∈ ,M
∗

m = m∗ ,M
∗

C.

μ = = m on C,m∗ (7.6.63)

□

μ : M→ E∗ (7.6.64)

C =M σ

μ m σ

⊇MM
∗ (7.6.65)

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/19209?pdf


7.6.8 https://math.libretexts.org/@go/page/19209

via the -induced outer measure (call it  this time), with

Moreover,

(see Note 2 in §3); so  is -regular and -regular (Theorem 3 of §5).

Note 4. A reapplication of this process to  does not change  (Problem 16).

This page titled 7.6: Measure Spaces. More on Outer Measures is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

μ μ∗

= m = μ on M.μ∗ (7.6.66)

⊇M⊇M
∗

Mσ (7.6.67)

μ∗ M M
∗

m m
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7.6.E: Problems on Measures and Outer Measures

Show that formulas (1) and (2) are equivalent. 
[Hints: (i) Assume (1) and let  
As  in (1) is arbitrary, we may replace it by  Simplifying, obtain (2) on noting that 

 and . 
(ii) Assume (2). Take any  and substitute  and  for  and  in (2).]

Given an outer measure space  and  set 

(SYMBOL!) 
(all sets of the form  with ). 
Prove that  is a -field in  and  is -additive on it. (SYMBOL!) 
[Hint: Use Lemma 4, with .] (SYMBOL!)

Prove Lemmas 1 and 2, using formula (1).

Prove Corollary 1.

Verify Examples (b),(c), and (d). Why is  an outer measure as well? 
[Hint: Use Corollary 2 in §5.]

Fill in all details (induction, etc.) in the proofs of this section.

Verify that  is an outer measure and describe  under each of the following conditions. 
(a)  if . 
(b)  if . 
(c)  if  is countable;  otherwise (  is uncountable). 
(d)  (naturals);  if  is infinite;  if  has  elements.

Prove the following. 
(i) An outer measure  is -regular (Definition 5 in §5) iff 

 Exercise 7.6.E. 1

X ⊆ A, Y ⊆ −A.
X X ∪ Y .

X ∩ A = X, X ∩ −A = ∅, Y ∩ A = ∅, Y ∩ −A = Y

X X ∩ A X −A X Y

 Exercise 7.6.E. 2

(S, , )M∗ m∗ A ⊆ S,

A ∩ = {A ∩ X|X ∈ }M
∗

M
∗ (7.6.E.1)

A ∩ X X ∈M∗

A ∩M∗ σ A, m∗ σ

= A ∩ ∈ A ∩Xk Ak M∗

 Exercise 7.6.E. 3

 Exercise 7.6.E. 3′

 Exercise 7.6.E. 4

m

 Exercise 7.6.E. 5

 Exercise 7.6.E. 6

m∗ M
∗

A = 1m∗ ∅ ⊂ A ⊆ S; ∅ = 0m∗

A = 1m∗ ∅ ⊂ A ⊂ S; S = 2; ∅ = 0m∗ m∗

A = 0m∗ A ⊆ S A = 1m∗ S

S = N A = 1m∗ A A =m∗ n
n+1

A n

 Exercise 7.6.E. 7

m∗ M
∗

(∀A ⊆ S) (∃B ∈ ) A ⊆ B and  A = mB.M
∗ m∗ (7.6.E.2)
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 is called a measurable cover of . 

[Hint: If 

 
then 

 
Set .] 
(ii) If  is as in Definition 3 of §5, with  then  is -regular.

Show that if  is -regular (Problem 7), it is left continuous. 
[Hints: Let  let  be a measurable cover of  set 

 
Verify that  and . 
By the left continuity of  (Theorem 2 in §4), 

 
Prove the reverse inequality as well.]

Continuing Problems 6-8, verify the following. 
(i) In 6(a), with  is -regular, but not right continuous. 
Hint: Take . 
(ii) In 6(b), with  is neither -regular nor left continuous. 
(iii) In 6(d),  is not -regular; yet it is left continuous. (Thus Problem 8 is not a necessary condition.)

In Problem 2, let  be the restriction of  to  Prove the following. 
(a)  is an outer measure in . 
(b) . (SYMBOL!) 
(c)  if  or if  is -regular (see Problem 7) and finite. (SYMBOL!) 
(d)  is -regular if  is -regular.

Show that if  is -regular and finite, then  is -measurable iff 

B A

A = inf {mX|A ⊆ X ∈ } ,m∗ M∗ (7.6.E.3)

(∀n) (∃ ∈ ) A ⊆  and m ≤ A + .Xn M∗ Xn Xn m∗ 1

n
(7.6.E.4)

B =⋂∞
n=1 Xn

m∗ C⊆ ,M
∗ m∗ M

∗

 Exercise 7.6.E. 8

m∗ M
∗

{ } ↑;An Bn ;An

= .Cn ⋂
k=n

∞

Bk (7.6.E.5)

{ } ↑, ⊇ ⊇ ,Cn Bn Cn An m =Cn m∗An

m

lim = lim m = m ≥ .m∗An Cn ⋃
n=1

∞

Cn m∗ ⋃
n=1

∞

An (7.6.E.6)

 Exercise 7.6.E. 9

S = N , m∗ M
∗

= {x ∈ N |x ≥ n}An

S = N , m∗ M
∗

m∗ M
∗

 Exercise 7.6.E. 10

n∗ m∗ .2A

n∗ A

A ∩ ⊆ = { -measurable sets}M
∗

N
∗

n∗

A ∩ =M
∗

N
∗

A ∈ ,M
∗ m∗ M

∗

n∗ N
∗

m∗ M
∗

 Exercise 7.6.E. 11

m∗ M∗ A ⊆ S m∗

mS = A + (−A).m∗ m∗ (7.6.E.7)
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[Hint: Assume the latter. By Problem 7, 

 
so 

 
Similarly for  Deduce that 

 
hence 

 
so .]

Using Problem 15 in §5, prove that if  has the CP then each open set  is in . 
[Outline: Show that 

 
assuming  (Why?) Set 

 
and 

 
Prove that 

 
and 

 
so by Problem 15 in §5, 

 
Similarly, 

(∀X ⊆ S) (∃B ∈ , B ⊇ X) X = mB;M∗ m∗ (7.6.E.8)

A = (A ∩ B) + (A −B).m∗ m∗ m∗ (7.6.E.9)

−A.

(A ∩ B) + (A −B) + (B −A) + (−A −B) = mS = mB +m(−B);m∗ m∗ m∗ m∗ (7.6.E.10)

X = mB ≥ (B ∩ A) + (B −A) ≥ (X ∩ A) + (X −A),m∗ m∗ m∗ m∗ m∗ (7.6.E.11)

A ∈M∗

 Exercise 7.6.E. 12

m∗ G ⊆ S M∗

(∀X ⊆ G)(∀Y ⊆ −G) (X ∪ Y ) ≥ X + Y ,m∗ m∗ m∗ (7.6.E.12)

X < ∞.m∗

= {x ∈ X|ρ(x, −G) ≥ 1}D0 (7.6.E.13)

={x ∈ X| ≤ ρ(x, −G) < } , k ≥ 1.Dk

1

k +1

1

k
(7.6.E.14)

X =⋃
k=0

∞

Dk (7.6.E.15)

ρ ( , ) > 0;Dk Dk+2 (7.6.E.16)

= ≤ = X < ∞.∑
n=0

∞

m∗D2n m∗ ⋃
n=0

∞

D2n m∗ ⋃
n=0

∞

Dn m∗ (7.6.E.17)
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Hence 

 
so 

 
(Why?) Thus 

 
Also, 

 
so 

 
Adding  on both sides, get 

 
Moreover, 

 
for  and 

 
Hence by the CP, 

 
(Why?) Combining with (iii), obtain 

≤ X < ∞.∑
n=0

∞

m∗D2n+1 m∗ (7.6.E.18)

< ∞;∑
n=0

∞

m∗Dn (7.6.E.19)

= 0.lim
n→∞

∑
k=n

∞

m∗Dk (7.6.E.20)

(∀ε > 0)(∃n) < ε.∑
k=n

∞

m∗Dk (7.6.E.21)

X = = ∪ ;⋃
k=0

∞

Dk ⋃
k=0

n−1

Dk ⋃
k=n

∞

Dk (7.6.E.22)

X ≤ + < +ε.m∗ m∗ ⋃
k=0

n−1

Dk ∑
k=n

∞

m∗Dk m∗ ⋃
k=0

n−1

Dk (7.6.E.23)

Ym∗

X + Y ≤ + Y +ε.m∗ m∗ m∗ ⋃
k=0

n−1

Dk m∗ (7.6.E.24)

ρ( , Y) > 0,⋃
k=0

n−1

Dk (7.6.E.25)

Y ⊆ −G

ρ ( , −G) ≥ .Dk

1

k +1
(7.6.E.26)

Y + = (Y ∪ ) < (Y ∪ X).m∗ ∑
k=0

n−1

m∗Dk m∗ ⋃
k=0

n−1

Dk m∗ (7.6.E.27)
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Now let .]

 Show that if  is a measure, there is  with 

 
[Hint: Let 

 
in  As  there is a sequence  (If  set  if  By lub properties, 

 
with  (Problem 9 in §3). Set 

 
Show that 

 Given a measure  let 

 
Prove that  is a -ring . 
[Hint: To prove that 

 
suppose first  and  is "null," i.e., . 
Show that 

 
with  and -null (  is shaded in Figure 31). 

X + Y ≤ (X ∪ Y ) +ε.m∗ m∗ m∗ (7.6.E.28)

ε → 0

 Exercise 7.6.E. 13

⇒ m : M→ E∗ P ∈M,

mP = max{mX|X ∈M}. (7.6.E.29)

k = sup{mX|X ∈M} (7.6.E.30)

.E∗ k ≥ 0, ↗ k, < k.rn rn k = ∞, = n;rn k < ∞, = k − . )rn
1
n

(∀n) (∃ ∈M) < m ≤ k,Xn rn Xn (7.6.E.31)

{ } ↑Xn

P = .⋃
n=1

∞

Xn (7.6.E.32)

mP = m = k. ]lim
n→∞

Xn (7.6.E.33)

 Exercise 7.6.E. 14

⇒∗ m : M→ ,E∗

= {all sets of the form X ∪ Z where X ∈M and Z is m-null}.M
¯ ¯¯̄¯̄

(7.6.E.34)

M
¯ ¯¯̄¯̄

σ ⊇M

(∀A, B ∈ ) A −B ∈ ,M
¯ ¯¯̄¯̄

M
¯ ¯¯̄¯̄

(7.6.E.35)

A ∈M B B ⊆ U ∈M, mU = 0

A −B = X ∪ Z, (7.6.E.36)

X = A −U ∈M Z = A ∩ U −Bm Z
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Next, if  let   where  and  are -null. Hence 

 
where 

 
is -null. Also,  implies 

 
by the first part of the proof. 
Deduce that 

 
(after checking closure under unions).]

 Continuing Problem 14, define  by setting  whenever  with  and  -
null. (Show that  does not depend on the particular representation of  as .) 
Prove the following. 
(i)  is a complete measure (called the completion of ), with  on  
(ii)  is the least complete extension of  that is, if  is another complete measure, with  and  on

 then  and  on  
(iii)  iff  is complete.

Show that if  is induced by an -regular outer measure  then  equals its Lebesgue extension  and
completion  (see Problem 15). 
[Hint: By Definition 3 in §5,  induces an outer measure  By Theorem 3 in §5, 

A, B ∈ ,M
¯ ¯¯̄¯̄

A = X ∪ Z B = ∪ ,X ′ Z ′ X, ∈MX ′ Z, Z ′ m

A −B = (X ∪ Z) −B

= (X −B) ∪ (Z −B)

= (X −B) ∪ ,Z ′′

= Z −BZ ′′ (7.6.E.37)

m B = ∪X ′ Z ′

X −B = (X − ) − ∈ ,X ′ Z ′
M
¯ ¯¯̄¯̄

(7.6.E.38)

A −B = (X −B) ∪ ∈Z ′′ M
¯ ¯¯̄¯̄

(7.6.E.39)

 Exercise 7.6.E. 15

⇒∗ : →m̄̄̄̄̄ M
¯ ¯¯̄¯̄

E∗ A = mXm̄̄̄̄̄ A = X ∪ Z, X ∈M Z m

Am̄̄̄̄̄ A X ∪ Z

m̄̄̄̄̄ m = mm̄̄̄̄̄ M.
m̄̄̄̄̄ m; n : N → E∗ M⊆N n = m

M, ⊆NM
¯ ¯¯̄¯̄

n = m̄̄̄̄̄ .M
¯ ¯¯̄¯̄

m = m̄̄̄̄̄ m

 Exercise 7.6.E. 16∗

m : →M∗ E∗ M∗ ,μ∗ m m′

m̄̄̄̄̄

m .m∗
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(for  is -regular). 
As  we get  Also,  by Problem 15(iii).]

Prove that if a measure  is -finite (Definition 4 in §5), with  then its Lebesgue extension 
 equals its completion  (see Problem 15). 

[Outline: It suffices to prove  (Why?) 
To start with, let  By Problem 12 in §5, 

 
so 

 
Also, 

 
Thus  is -null; so  (Why?) Deduce that 

 
Thus  contains any  with  Use the -finiteness of  to show 

7.6.E: Problems on Measures and Outer Measures is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

A = inf {mX|A ⊆ X ∈ } = Am∗ M∗ μ∗ (7.6.E.40)

μ∗ M
∗

= ,m∗ μ∗ = m.m′ m = ,m̄̄̄̄̄

 Exercise 7.6.E. 17∗

μ : M→ E∗ σ S ∈M,
m : →M

∗ E∗ μ̄̄̄

⊆ .M∗ M
¯ ¯¯̄¯̄

A ∈ , mA < ∞.M∗

(∃B ∈M) A ⊆ B and  A = mA = mB < ∞;m∗ (7.6.E.41)

m(B −A) = mB −mA = 0. (7.6.E.42)

(∃H ∈M) B −A ⊆ H and μH = m(B −A) = 0. (7.6.E.43)

B −A μ B −A ∈ .M
¯ ¯¯̄¯̄

A = B −(B −A) ∈ .M
¯ ¯¯̄¯̄

(7.6.E.44)

M
¯ ¯¯̄¯̄

A ∈M∗ mA < ∞. σ μ

(∀x ∈ ) (∃{ } ⊆ ) m < ∞ and X = ∈ .]M
∗ An M

∗ An ⋃
n

An M
¯ ¯¯̄¯̄

(7.6.E.45)
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7.7: Topologies. Borel Sets. Borel Measures
I. Our theory of set families leads quite naturally to a generalization of metric spaces. As we know, in any such space  there
is a family  of open sets, and a family  of all closed sets. In Chapter 3, §12, we derived the following two properties.

(i)  is closed under any (even uncountable) unions and under finite intersections (Chapter 3, §12, Theorem 2). Moreover,

(ii)  has these properties, with "unions" and "intersections" interchanged (Chapter 3, §12, Theorem 3). Moreover, by definition,

Now, quite often, it is not so important to have distances (i.e., a metric) defined in  but rather to single out two set families,  and
 with properties (i) and (ii), in a suitable manner. For examples, see Problems 1 to 4 below. Once  and  are given, one does

not need a metric to define such notions as continuity, limits, etc. (See Problems 2 and 3.) This leads us to the following definition.

A topology for a set  is any set family  with properties (i).

The pair  then is called a topological space. If confusion is unlikely, we simply write  for 

-sets are called open sets; their complements form the family  (called cotopology) of all closed sets in  satisfies (ii)
(the proof is as in Theorem 3 of Chapter 3, §12).

Any metric space may be treated as a topological one (with  defined as in Chapter 3, §12), but the converse is not true. Thus 
 is more general.

Note 1. By Problem 15 in Chapter 4, §2, a map

is continuous iff  is open in  whenever  is open in .

We adopt this as a definition, for topological spaces .

Many other notions (neighborhoods, limits, etc.) carry over from metric spaces by simply treating  as "an open set containing 
" (See Problem 3.)

Note 2. By (i),  is surely closed under countable unions. Thus by Note 2 in §3,

Also,  and

but not

in general.

 and  need not be rings or -rings (closure fails for differences). But by Theorem 2 in §3,  and  can be "embedded" in a
smallest -ring. We name it in the following definition.

The -ring  generated by a topology  in  is called the Borel field in  (It is a -field, as 

Equivalently,  is the least -ring  (Why?)

-sets are called Borel sets in .

(S, ρ),
G F

G

∅ ∈ G and S ∈ G, (7.7.1)

F

A ∈ F  iff  −A ∈ G. (7.7.2)

S, G

F , G F

 Definition 1

S G ⊆ ,2S

(S,G) S (S,G).

G F S;F

G

(S,G)

f : (S, ρ) → (T , )ρ′ (7.7.3)

[B]f−1 S B T

S,T

Gp

p.

G

G = .Gσ (7.7.4)

G = Gd

=F = ,Fδ Fs (7.7.5)

G =  or F =Gδ Fσ (7.7.6)

G F σ G F

σ

 Definition 2

σ B G S S. σ S ∈ G ⊆ B. )

B σ ⊇F .

B (S,G)
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As  is closed under countable unions and intersections, we have not only

but also

Note that

II. Special notions apply to measures in metric and topological spaces.

A measure  in  is called topological iff  i.e., all open sets are measurable;  is a Borel measure
iff .

Note 3. If  (a -ring), then also  since  is, by definition, the least -ring 

Thus  is topological iff  (hence surely , etc.).

It also follows that any topological measure can be restricted to  to obtain a Borel measure, called its Borel restriction.

A measure  in  is called regular iff it is regular with respect to  the measurable open sets; i.e.,

If  is topological  this simplifies to

i.e.,  is -regular (Definition 5 in §5).

A measure  is strongly regular iff for any  and  there is an open set  and a closed set  such that

thus  can be "approximated" by open supersets and closed subsets, both measurable. As is easily seen, this implies regularity.

A kind of converse is given by the following theorem.

If a measure  in  is regular and -finite (see Definition 4 in §5), with  then  is also strongly
regular.

Proof

Fix  and let .

By regularity,

so there is a set  (measurable and open), with

Then

B

B ⊇ G and B ⊇F , (7.7.7)

B ⊇ ,B ⊇ ,B ⊇ [ i.e. , ] ,B ⊇ ,  etc.Gδ Fσ Gδσ ( )Gδ σ Fσδ (7.7.8)

= , = ,  etc. (Why?)Gδδ Gδ Fσσ Fσ (7.7.9)

 Definition 3

m : M→ E∗ (S,G) G ⊆M, m

M= B

G ⊆M σ B ⊆M B σ ⊇ G.

m B ⊆M F ⊆M, ⊆M, ⊆MGδ Fσ

B

 Definition 4

m : M→ E∗ (S,G) M∩G,

(∀A ∈ M) mA = inf{mX|A ⊆ X ∈ M∩G}. (7.7.10)

m (G ⊆M),

mA = inf{mX|A ⊆ X ∈ G}, (7.7.11)

m G

 Definition 5

m A ∈ M ε > 0, G∈ M F ∈ M

F ⊆ A ⊆ G,  with m(A−F ) < ε and m(G−A) < ε; (7.7.12)

A

 Theorem 7.7.1

m : M→ E∗ (S,G) σ S ∈ M, m

ε > 0 mA < ∞

mA = inf{mX|A ⊆ X ∈ M∩G}; (7.7.13)

X ∈ M∩G

A ⊆ X and mX < mA+ε. (7.7.14)
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and  is the open set  required in (2).

If, however,  use -finiteness to obtain

for some sets  so

Put

(Why?) Then

and

Now, by what was proved above, for each  there is an open measurable  with

Set

Then  and  Moreover,

(Verify!) Thus by -subadditivity,

as required.

To find also the closed set  consider

As shown above, there is an open measurable set  with

Then

is the desired closed set, with 

m(X−A) = mX−mA < ε, (7.7.15)

X G

mA = ∞, σ

A ⊆⋃
k=1

∞

Xk (7.7.16)

∈ M,m < ∞;Xk Xk

A = (A∩ ) .⋃
k

Xk (7.7.17)

= A∩ ∈ M.Ak Xk (7.7.18)

A = ,⋃
k

Ak (7.7.19)

m ≤ m < ∞.Ak Xk (7.7.20)

Ak ⊇ ,Gk Ak

m ( − ) < ,Gk Ak

ε

2k
(7.7.21)

G= .⋃
k=1

∞

Gk (7.7.22)

G∈ M∩G G⊇ A.

G−A = − ⊆ ( − ) .⋃
k

Gk ⋃
k

Ak ⋃
k

Gk Ak (7.7.23)

σ

m(G−A) ≤ m ( − ) < = ε,∑
k

Gk Ak ∑
k=1

∞ ε

2k
(7.7.24)

F ,

−A = S−A ∈ M. (7.7.25)

⊇ −A,G′

ε > m ( −(−A)) = m ( ∩A) = m (A−(− )) .G′ G′ G′ (7.7.26)

F = − ⊆ AG′ (7.7.27)

m(A−F ) < ε. □
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If  is a strongly regular measure in  then for any  there are measurable sets  and 
such that

hence

Proof

Let  By strong regularity, given  one finds measurable sets

such that

and

Let

Then  and

Also,  and .

Hence

so by (4),

Finally,

and similarly .

Thus all is proved.

This page titled 7.7: Topologies. Borel Sets. Borel Measures is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

 Theorem 7.7.2

m : M→ E∗ (S,G), A ∈ M, H ∈ Fσ K ∈ Gδ

H ⊆ A ⊆ K and m(A−H) = 0 = m(K−A); (7.7.28)

mA = mH = mK. (7.7.29)

A ∈ M. = 1/n,εn

∈ G and  ∈ F , n = 1, 2, … ,Gn Fn (7.7.30)

⊆ A ⊆Fn Gn (7.7.31)

m (A− ) <  and m ( −A) < , n = 1, 2, … .Fn

1

n
Gn

1

n
(7.7.32)

H =  and K = .⋃
n=1

∞

Fn ⋂
n=1

∞

Gn (7.7.33)

H,K ∈ M,H ∈ ,K ∈ ,Fσ Gδ

H ⊆ A ⊆ K. (7.7.34)

⊆ HFn ⊇ KGn

A−H ⊆ A−  and K−A ⊆ −A;Fn Gn (7.7.35)

m(A−H) < → 0 and m(K−A) < → 0.
1

n

1

n
(7.7.36)

mA = m(A−H) +mH = mH, (7.7.37)

mA = mK

□
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7.7.E: Problems on Topologies, Borel Sets, and Regular Measures

Show that  is a topology in  (in  describe  also), given 
(a) ; 
(b) ; 
(c)  or 
(d)  consists of all possible unions of sets of the form  and  with 

 is called a pseudometric space (and  is a pseudometric) iff the metric laws (i)-(iii) of Chapter 3, s 11 hold, but (i) is
weakened to 

 
(so that  may be  even if ). 
(a) Define "globes," "interiors," and "open sets" (i.e.,  as in Chapter 3, §12; then show that  is a topology for  
(b) Let  and 

 
where  and  Show that  is a pseudometric but not a metric (the Hausdorff properly fails!).

Define "neighborhood," "interior, "cluster point," "closure," and "function limit" for topological spaces. Specify some notions
(e.g., "diameter," "uniform continuity") that do not carry over (they involve distances).

In a topological space  detine 

 
and 

 
(Give an inductive definition.) Then prove by induction that 
(a) ; 
(b) ; 
(c)  iff ; 
(d)  same for ; 
(e)  and . 
[Hint: .]

 Exercise 7.7.E. 1

G S (a) −(c), B

G = 2S

G = {∅, S}
G = {∅ and all sets in S,  containing a fixed point p};
S = ;GE∗ (a, b), (a, ∞], [−∞, b), a, b ∈ .E1

 Exercise 7.7.E. 2

(S, ρ) ρ

ρ(x, x) = 0 (7.7.E.1)

ρ(x, y) 0 x ≠ y

G) G S.
S = E2

ρ( , ) = | − | ,x̄̄̄ ȳ̄̄ x1 y1 (7.7.E.2)

= ( , )x̄̄̄ x1 x2 = ( , ) .ȳ̄̄ y1 y2 ρ

 Exercise 7.7.E. 3

 Exercise 7.7.E. 4

(S,G),

= G, = , = , …G0 G1 Gδ G
2 Gδσ (7.7.E.3)

=F , = , = , = ,  etc.F 0 F 1 Fσ F 2 Fσδ F
3 Fσδσ (7.7.E.4)

⊆ B, ⊆ BGn F n

⊆ , ⊆Gn−1 Gn F n−1 F n

(∀X ⊆ S)X ∈ F n −X ∈ Gn

(∀X, Y ∈ ) X ∩ Y ∈ , X ∪ Y ∈ ;F n F n F n Gn

(∀X ∈ ) (∀Y ∈ ) X −Y ∈Gn F n Gn Y −X ∈ F n

X −Y = X ∩ −Y
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For metric and pseudometric spaces (see Problem 2 ) prove that 

 
(cf. Problem 4). 
[Hint for  Let  Set 

 
so 

 
Hence 

 
Also, 

 
by Theorem 3 in Chapter 3, §16. Hence deduce that 

 
so  hence  by Problem 4(c). Now use induction.]

If  is as in Definition 5, then prove the following. 
(i)  is regular. 
(ii) . 
(iii) The latter implies strong regularity if  and .

Let  be a Borel measure in a metric space  Set 

 
Prove that 
(i)  is an outer measure in ; 
(ii)  on ; 
(iii) the -induced measure,  is topological (so ); 
(iv)  on ; 
(v)  and . 
[Hints: (iii) Using Problem 15 in §5 and Problem 12 in §6, let 

 Exercise 7.7.E. 5

⊆  and  ⊆F n Gn+1 Gn F n+1 (7.7.E.5)

F ⊆ :Gδ F ∈ F .

= ( ) ;Gn ⋃
p∈F

Gp

1

n
(7.7.E.6)

(∀n) F ⊆ ∈ G.Gn (7.7.E.7)

F ⊆ ∈ .⋂
n

Gn Gδ (7.7.E.8)

= = F⋂
n

Gn F¯ ¯¯̄ (7.7.E.9)

(∀F ∈ F ) F ∈ ,Gδ (7.7.E.10)

F ⊆ ;Gδ G ⊆Fσ

 Exercise 7.7.E. 6

m

m

(∀A ∈M)mA = sup{mX|A ⊇ X ∈M∩F}
m < ∞ S ∈M

 Exercise 7.7.E. 7

μ : B → E∗ (S, ρ).

(∀A ⊆ S) A = inf{μX|A ⊆ X ∈ G}.n∗ (7.7.E.11)

n∗ S

= μn∗ G

n∗ n : → ,N
∗

E∗ B ⊆N
∗

n ≥ μ B

(∀A ⊆ S) (∃H ∈ ) A ⊆ HGδ μH = An∗
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Verify that . 
By the definition of , 

 
also,  and  Thus by (ii), 

 
Hence 

 
Let  to get the . 
(iv) We have  

 
(Why?) 
(v) Use the hint to Problem 11 in §5.]

From Problem 7 with  prove that if 

 
with  and  then . 
[Hint:  and  By Problem 7(iii),  and  is additive on ; so by Problem 7(ii)(iv), 

 
Thus  Explain all!]

Let  and  be as in Problems 7 and 8. Suppose 

 
with  and  (this is called -finiteness). 
Prove that 
(i)  on  and 
(ii)  and  are strongly regular. 
[Hints: Fix  Show that 

ρ(X, Y ) > ε > 0, U = ( ε) , V = ( ε) .⋃
x∈X

Gx

1

2
⋃
y∈Y

Gy

1

2
(7.7.E.12)

U, V ∈ G, U ⊇ X, V ⊇ Y , U ∩ V = ∅
n∗

(∃G ∈ G) G ⊇ X ∪ Y  and  G ≤ (X ∪ Y ) +ε;n∗ n∗ (7.7.E.13)

X ⊆ G∩ U Y ⊆ G∩ V .

X ≤ μ(G∩ U) and  Y ≤ μ(G∩ V ).n∗ n∗ (7.7.E.14)

X + Y ≤ μ(G∩ U) +μ(G∩ V ) = μ((G∩ U) ∪ (G∩ V )) ≤ μG = G ≤ (X ∪ Y ) +ε.n∗ n∗ n∗ n∗ (7.7.E.15)

ε → 0 CP : X + Y ≤ (X ∪ Y )n∗ n∗ n∗

(∀A ∈ B)

nA = A = inf{μX|A ⊆ X ∈ G} ≥ inf{μX|A ⊆ X ∈ B} = μA.n∗ (7.7.E.16)

 Exercise 7.7.E. 8

m = μ,

A ⊆ G ∈ G, (7.7.E.17)

mG < ∞ A ∈ B, mA = nA

A, G, (G−A) ∈ B. B ⊆ N ∗ n B

nA = nG−n(G−A) ≤ mG−m(G−A) = mA ≤ nA. (7.7.E.18)

mA = nA.

 Exercise 7.7.E. 9

m, n, n∗

S = ,⋃
n=1

∞

Gn (7.7.E.19)

∈ GGn m < ∞Gn σ0

m = n B,
m n

A ∈ B.

A =⋃  (disjoint)An (7.7.E.20)
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for some Borel sets  (use Corollary 1 in §1). By Problem 8,  since 

 
and  Now use -additivity to find .
(ii) Use -regularity, part (i), and Theorem 1.]

Continuing Problems 8 and 9, show that  is the Lebesgue extension of  (see Theorem 2 in §6 and Note 3 in §6). 
Thus every -finite Borel measure  in  and its Lebesgue extension are strongly regular. 
[Hint:  induces an outer measure  with  on  It suffices to show that  on  (Why?) 
So let  By Problem 7(v), 

 
Also, 

 
(Problem 12 in §5). Deduce that 

 
and 

.]

7.7.E: Problems on Topologies, Borel Sets, and Regular Measures is shared under a CC BY 1.0 license and was authored, remixed, and/or curated
by LibreTexts.

⊆An Gn m = nAn An

⊆ ∈ GAn Gn (7.7.E.21)

m < ∞.Gn σ mA = nA

G

 Exercise 7.7.E. 10

n m

σ0 m (S, ρ)
m ,m∗ = mm∗ B. =m∗ n∗ .2S

A ⊆ S.

(∃H ∈ B)A ⊆ H and  A = mH = H.n∗ m∗ (7.7.E.22)

(∃K ∈ B)A ⊆ K and  A = mKm∗ (7.7.E.23)

A ≤ n(H ∩ K) = m(H ∩ K) ≤ mH = An∗ n∗ (7.7.E.24)

A = m(H ∩ K) = An∗ m∗
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7.8: Lebesgue Measure
We shall now consider the most important example of a measure in  due to Lebesgue. This measure generalizes the notion of
volume and assigns "volumes" to a large set family, the "Lebesgue measurable" sets, so that "volume" becomes a complete
topological measure. For "bodies" in  this measure agrees with our intuitive idea of "volume."

We start with the volume function  ("Lebesgue premeasure") on the semiring  of all intervals in  (§1). As we saw
in §§5 and 6, this premeasure induces an outer measure  on all subsets of  and  in turn, induces a measure  on the -
field  of -measurable sets. These sets are, by definition, the Lebesgue-measurable (briefly -measurable) sets;  and  so
defined are the ( -dimensional) Lebesgue outer measure and Lebesgue measure.

Lebesgue premeasure  is -additive on  the intervals in . Hence the latter are Lebesgue measurable  and the
volume of each interval equals its Lebesgue measure:

This follows by Corollary 1 in §2 and Theorem 2 of §6

Note 1. As  is a ( -field §6), it is closed under countable unions, countable intersections, and differences. Thus

i.e., any countable union of intervals is -measurable. Also, .

Any countable set  is -measurable, with .

Proof

The proof is as in Corollary 6 of §2.

The Lebesgue measure of  is .

Proof

Prove as in Corollary 5 of §2.

(a) Let

Then  is countable (Corollary 3 of Chapter 1, §9); so  by Corollary 1. Similarly for  (rational points in .

(b) The measure of an interval with endpoints  in  is its length, 

Let

so  As  and  are in  (a -field), so is

the irrationals in  By Lemma 1 in §4, if  then

,En

,E3

v : C → E1 C En

m∗ ;En ,m∗ m σ

M
∗ m∗ L m∗ m

n

 Theorem 7.8.1

v σ C, En (C ⊆ ) ,M∗

v = = m on C.m∗ (7.8.1)

M
∗ σ

C ⊆  implies  ⊆ ;M
∗

Cσ M
∗ (7.8.2)

L ∈En M
∗

 Corollary 7.8.1

A ⊂ En L mA = 0

 Corollary 7.8.2

En ∞

 Examples

R = {rationals in  } .E1 (7.8.3)

R mR = 0 Rn )En

a, b E1 b −a.

= { all rationals in [a, b]};Ro (7.8.4)

m = 0.Ro [a, b] Ro M
∗ σ

[a, b] − ,Ro (7.8.5)

[a, b]. b > a,

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/21650?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/07%3A_Volume_and_Measure/7.08%3A_Lebesgue_Measure


7.8.2 https://math.libretexts.org/@go/page/21650

This shows again that the irrationals form a "larger" set than the rationals (cf. Theorem 3 of Chapter 1, §9).

(c) There are uncountable sets of measure zero (see Problems 8 and 10 below).

Lebesgue measure in  is complete, topological, and totally -finite. That is,

(i) all null sets (subsets of sets of measure zero) are -measurable;

(ii) so are all open sets  hence all Borel sets  in particular, 
 etc.;

(iii) each  is a countable union of disjoint sets of finite measure.

Proof

(i) This follows by Theorem 1 in §6.

(ii) By Lemma 2 in §2, each open set is in  hence in  (Note 1). Thus  But by definition, the Borel field  is
the least -ring  Hence .

(iii) As  is open, it is a countable union of disjoint half-open intervals,

with  (Lemma 2 §2). Hence

so

If, further,  then  and

Note 2. More generally, a -finite set  in a measure space  is a countable union of disjoint sets of finite measure
(Corollary 1 of §1).

Note 3. Not all -measurable sets are Borel sets. On the other hand, not all sets in  are -measurable (see Problems 6 and 9
below.)

(a) Lebesgue outer measure  in  is -regular; that is,

(  open sets in ).

(b) Lebesgue measure  is strongly regular (Definition 5 and Theorems 1 and 2, all in §7).

Proof

By definition,  is the glb of all basing covering values of  Thus given  there is a basic covering  of
nonempty sets  such that

m ([a, b] − ) = m([a, b]) −m = m([a, b]) = b −a > 0 = m .Ro Ro Ro (7.8.6)

 Theorem 7.8.2

En σ

L

( ⊇ G) ,M∗ ( ⊇ B) ;M∗

⊇F , ⊇ , ⊇ , ⊇ ,M∗ M∗ Gδ M
∗ Fσ M∗ Fσδ

A ∈ M
∗

,Cσ M∗ ⊇ G.M∗ B

σ ⊇ G. ⊇M∗ B∗

En

=  (disjoint),En ⋃
k=1

∞

Ak (7.8.7)

m < ∞Ak

(∀A ⊆ ) A ⊆⋃ ;En Ak (7.8.8)

A = (A ∩ )  (disjoint).⋃
k

Ak (7.8.9)

A ∈ ,M∗ A ∩ ∈ ,Ak M∗

m (A ∩ ) ≤ m < ∞.  (Why?) □Ak Ak (7.8.10)

σ A ∈ M (S,M, μ)

L En L

 Theorem 7.8.3

m∗ En G

(∀A ⊆ ) A = inf{mX|A ⊆ X ∈ G}En m∗ (7.8.11)

G = En

m

Am∗ A. ε > 0, { } ⊆ CBk

Bk
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(Why? What if ?)

Now, by Lemma 1 in §2, fix for each  an open interval  such that

Then (2) yields

so by -subadditivity,

Let

Then  is open (as the  are). Also,  and by (3),

Thus, indeed,  is the  of all  proving (a).

In particular, if  (1) shows that  is regular (for  is -finite, and 
 so (b) follows by Theorem 1 in §7.

This page titled 7.8: Lebesgue Measure is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The
Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a detailed
edit history is available upon request.

A ⊆⋃  and  A + ε ≥ v .Bk m∗ 1

2
∑

k

Bk (7.8.12)

A = ∞m∗

Bk ⊇Ck Bk

v − < v .Ck

ε

2k+1
Bk (7.8.13)

A + ε ≥ (v − ) = v − ε;m∗ 1

2
∑

k

Ck

ε

2k+1
∑

k

Ck

1

2
(7.8.14)

σ

m ≤ m = v ≤ A +ε.⋃
k

Ck ∑
k

Ck ∑
k

Ck m∗ (7.8.15)

X = .⋃
k

Ck (7.8.16)

X Ck A ⊆ X,

mX ≤ A +ε.m∗ (7.8.17)

Am∗ glb mX, A ⊆ X ∈ G,

A ∈ ,M
∗ m A = mA). Also, byT heorem2, \(mm∗ σ

∈ ;En M
∗

□
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7.8.E: Problems on Lebesgue Measure

Fill in all details in the proof of Theorems 3 and 4.

Prove Note 2.

From Theorem 3 deduce that 

 
[Hint: See the hint to Problem 7 in §5.]

Review Problem 3 in §5.

Consider all translates 

 
of 

 
Prove the following. 
(i) Any two such translates are either disjoint or identical. 
(ii) Each  contains at least one element of . 
[Hint for (ii): Fix a rational  so  Then , and .]

Continuing Problem 4, choose one element  from each  Let  be the set of all  so chosen. 
Call a translate of  "good" iff  and  Let  be the union of all "good" translates of  
Prove the following. 
(a) There are only countably many "good" . 
(b) All of them lie in . 
(c) Any two of them are either disjoint or identical. 
(d)  hence . 
[Hint for (c): Suppose 

 
Then 

 Exercise 7.8.E. 1

 Exercise 7.8.E. 1′

 Exercise 7.8.E. 2

(∀A ⊆ ) (∃B ∈ ) A ⊆ B and  A = mB.En Gδ m∗ (7.8.E.1)

 Exercise 7.8.E. 3

 Exercise 7.8.E. 4

R +p (p ∈ )E1 (7.8.E.2)

R = {rationals in  } .E1 (7.8.E.3)

R +p [0, 1]
y ∈ (−p, 1 −p), 0 < y +p < 1. y +p ∈ R +p y +p ∈ [0, 1]

 Exercise 7.8.E. 5

q ∈ [0, 1] R +p. Q q

Q, Q +r, r ∈ R |r| < 1. U Q.

Q +r

[−1, 2]

[0, 1] ⊆ U ⊆ [−1, 2]; 1 ≤ U ≤ 3m∗

y ∈ (Q +r) ∩ (Q + ) .r′ (7.8.E.4)
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so  with . 
Thus  and  Deduce that  and  hence .]

Show that  in Problem 5 is not L-measurable. 
[Hint: Otherwise, by Theorem 4, each  is L-measurable, with  By 5(a)(c),  is a countable disjoint
union of "good" translates. 
Deduce that  if  or  contrary to 5(d).]

Show that if  is continuous, then  is a Borel set in  whenever  in . 
[Hint: Using Note 1 in §7, show that 

 
is a -ring in  As  is the least -ring  (the Borel field in .]

Prove that every degenerate interval in  has Lebesgue measure  even if it is uncountable. Give an example in  Prove
uncountability. 
[Hint: Take  Define  by  Show that  is one-to-one and that  is the -
image of  Use Problem 2 of Chapter 1, §9.]

Show that not all L-measurable sets are Borel sets in . 
[Hint for  With  and  as in Problem 8, show that  is continuous (use the sequential criterion). As  all
subsets of  are in  (Theorem 2(i)), hence in  if we assume . But then by Problem 7 , the same would apply
to subsets of  contrary to Problem 6.
Give a similar proof for . 
Note: In  too,  but a different proof is necessary. We omit it.]

Show that Cantor's set  (Problem 17 in Chapter 3, 14 ) has Lebesgue measure zero, even though it is uncountable. 
[Outline: Let 

 
so  is the union of open intervals removed from  Show that 

 
and use Lemma 1 in §4.]

y = q +r = + (q, ∈ Q, r, ∈ R) ;q ′ r′ q ′ r′ (7.8.E.5)

q = +( −r) ,q ′ r′ ( −r) ∈ Rr′

q ∈ R +q ′ = 0 + ∈ R + .q ′ q ′ q ′ q = q ′ r = =;r′ Q +r = Q +r′

 Exercise 7.8.E. 6

Q

Q +r m(Q +r) = mQ. U

mU = 0 mQ = 0, mU = ∞,

 Exercise 7.8.E. 7

f : S → T [X]f −1 S X ∈ B T

R= {X ⊆ T | [X] ∈ B in S}f −1 (7.8.E.6)

σ T . B σ ⊇ G,R⊇ B T

 Exercise 7.8.E. 8

En 0, .E2

= (0, 0), = (0, 1).ā̄̄ b
¯̄

f : →E1 E2 f(x) = (0, x). f [ , ]ā̄̄ b
¯̄

f

[0, 1].

 Exercise 7.8.E. 9

En

:E2 [ , ]ā̄̄ b
¯̄

f f m[ , ] = 0,ā̄̄ b
¯̄

[ , ]ā̄̄ b
¯̄

M
∗

B = BM
∗

[0, 1],
(n > 1)En

,E1 B ≠ ,M
∗

 Exercise 7.8.E. 10

P

U = [0, 1] −P ; (7.8.E.7)

U [0, 1].

mU = = 1
1

2
∑
n=1

∞

( )
2

3

n

(7.8.E.8)
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Let  be the Borel restriction of Lebesgue measure  in  (§7). Prove that 
(i)  in incomplete; 
(ii)  is the Lebesgue extension (* and completion, as in Problem 15 of §6) of  
[Hints: (i) By Problem 9, some -null sets are not in  (ii) See the proof (end) of Theorem 2 in §9 (the next section).]

Prove the following. 
(i) All intervals in  are Borel sets. 
(ii) The -ring generated by any one of the families  or  in Problem 3 of §5 coincides with the Borel field in  
[Hints: (i) Any interval arises from a closed one by dropping some "faces" (degenerate closed intervals). (ii) Use Lemma 2
from §2 and Problem 7 of §3.]

Show that if a measure  in  agrees on intervals with Lebesgue measure  then the following
are true. 
(i)  on  the Borel field in . 
(ii) If  is also complete, then  on . 
[Hint: (i) Use Problem 13 of §5 and Problem 12 above.]

Show that globes of equal radius have the same Lebesgue measure. 
[Hint: Use Theorem 4.]

Let  with 

 
Prove the following. 
(i)  ( Lebesgue outer measure). 
(ii)  iff . 
[Hint: If, say,  then  (Why?) Proceed as in Theorem 4, using  also.]

From Problems 14 and 15 show that 
(i) ; 
(ii) ; 
(iii)  where  is the cube inscribed in  and 

 
[Hints: (i)  (ii) Prove that 

 Exercise 7.8.E. 11

μ : B → E∗ m En

μ

m μ.
μ B.

 Exercise 7.8.E. 12

En

σ C C
′ .En

 Exercise 7.8.E. 13∗

: →m′ M
′ E∗ En m : → ,M

∗ E∗

= mm′ B, En

m′ = mm′ M
∗

 Exercise 7.8.E. 14

 Exercise 7.8.E. 15

f : → ,En En

f( ) = c (0 < c < ∞).x̄̄̄ x̄̄̄ (7.8.E.9)

(∀A ⊆ ) f [A] = AEn m∗ cnm∗ =m∗

A ∈ M∗ f [A] ∈ M∗

A = ( , ],ā̄̄ b
¯̄

f [A] = (c , c ].ā̄̄ b
¯̄

f −1

 Exercise 7.8.E. 16

m (cr) = ⋅ m (r)Gp̄̄̄ cn Gp̄̄̄

m (r) = m (r)Gp̄̄̄ G
¯ ¯¯̄

p̄̄̄

m (r) = a ⋅ mI,Gp̄̄̄ I (r)Gp̄̄̄

a = ⋅ m (1).( )
1

2
n−−√

n

G
0¯̄̄

(7.8.E.10)

f [ (r)] = (cr).G
0
¯̄̄ G

0
¯̄̄

m ≤ m ≤ mGp̄̄̄ G
¯ ¯¯̄

p̄̄̄ cn Gp̄̄̄ (7.8.E.11)
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if  Let .]

Given  in  let  be the sequence of all rationals in   
Set  

 
and 

 
Let 

 
Prove the following. 
(i) . 
(ii)  is closed;  yet . 
(iii) The  can be made disjoint (see Problem 3 in §2), with  still  

(iv) Construct such a  of prescribed measure .

Find an open set  with  
[Hint:  with  as in Problem 17.]

If  is open and convex, then . 
[Hint: Let first  Argue as in Problem 16.]

7.8.E: Problems on Lebesgue Measure is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

c > 1. c → 1

 Exercise 7.8.E. 17

a < b ,E1 { }rn A = [a, b].
(∀n)

=δn

b −a

2n+1
(7.8.E.12)

= ( , ) = (a, b) ∩( − , + ) .Gn an bn rn

1

2
δn rn

1

2
δn (7.8.E.13)

P = A − .⋃
n=1

∞

Gn (7.8.E.14)

= (b −a) = mA∑∞
n=1 δn

1
2

1
2

P = ∅,P o mP > 0
Gn mP > 0.

P ⊆ A(P = , = ∅)P
¯ ¯¯̄

P o mP = ε > 0

 Exercise 7.8.E. 18

G ⊂ ,E1 mG < m < ∞.G
¯ ¯¯̄

G = ∪∞
n=1Gn Gn

 Exercise 7.8.E. 19∗

A ⊆ En mA = mA
¯ ¯¯̄

∈ A.0¯̄̄
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7.9: Lebesgue–Stieltjes Measures
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7.9.E: Problems on Lebesgue-Stieltjes Measures

Do Problems 7 and 8 in §4 and Problem 3' in §5, if not done before.

Prove in detail Theorems 1 to 3 in §8 for LS measures and outer measures.

Do Problem 2 in §8 for LS-outer measures in .

Prove that  is right (left) continuous at  iff 

 
[Hint: Modify the proof of Theorem 1 in Chapter 4, §2.]

Fill in all proof details in Theorem 2. 
[Hint: Use Problem 4.]

In Problem 8(iv) of §4, describe  and .

Show that if constant on an open interval  then 

 
Disprove it for nonopen intervals  (give a counterexample).

Let  be a topological, translation-invariant measure in , with  Prove the following. 
(i)  on the Borel field  (Here  is Lebesgue measure in .) 
*(ii) If  is also complete, then  on . 
(iii) If  some set  is not -measurable. 
*(iv) If  then  is the completion of  (Problem 15 in §6). 
[Outline: (i) By additivity and translation invariance, 

 
for rational 

 Exercise 7.9.E. 1

 Exercise 7.9.E. 2

 Exercise 7.9.E. 3

E1

 Exercise 7.9.E. 4

f : → (S, ρ)E1 p

f ( ) = f(p) as  ↘ p ( ↗ p) .lim
n→∞

xn xn xn (7.9.E.1)

 Exercise 7.9.E. 5

 Exercise 7.9.E. 6

m∗
α M ∗

α

 Exercise 7.9.E. 7

α = c I ⊆ E1

(∀A ⊆ I) (A) = 0.m∗
α (7.9.E.2)

I

 Exercise 7.9.E. 8

: M →m′ E∗ E1 (0, 1] = c < ∞.m′

= cmm′ B. m : →M
∗ E∗ E1

m′ = cmm′ M
∗

0 < c < ∞, Q ⊂ [0, 1] m′

= B,M
′ cm m′

(0, r] = cm(0, r]m′ (7.9.E.3)
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(first take  then  then ). 
By right continuity (Theorem 2 in §4), prove it for real  (take rationals ). 
By translation,  on half-open intervals. Proceed as in Problem 13 of §8. 
(iii) See Problems 4 to 6 in §8. Note that, by Theorem 2, one may assume  (a translation-invariant  measure). As 

 on half-open intervals, Lemma 2 in §2 yields  on  (open sets). Use -regularity to prove 
and .]

(LS measures in ) Let 

 
For any  and any  set 

 
Given  set 

 
For example, in , 

 
Show that  is additive on . Check that the order in which the  are applied is immaterial. Set up a formula for  in . 
[Hint: First take two disjoint intervals 

 
as in Figure 2 in Chapter 3, §7. Then use induction, as in Problem 9 of Chapter 3, §7.]

If  in Problem 9 is nonnegative, and  is right continuous in each variable  separately, we call  a distribution function,
and  is called the -induced  premeasure in  the  outer measure  and measure 

 
in  (obtained from  as shown in } §§5 and 6) are said to be induced by  
For  and  so defined, redo Problems 1-3 above.

7.9.E: Problems on Lebesgue-Stieltjes Measures is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

r = , n, k ∈ N
n

k
(7.9.E.4)

r = n, r = ,1
k

r = n

k

r > 0 ↘ rri

= cmm′

=m′ mα LS

= cmmα = cmmα G G = cm∗
α m∗

=M∗
α M∗

 Exercise 7.9.E. 9∗

.En

= {alf-open intervals in  } .C∗ En (7.9.E.5)

mapG : →En E1 ( , ] ∈ ,ā̄̄ b¯̄ C∗

G( , ]Δk ā̄̄ b
¯̄

= G( , … , , , , … , )x1 xk−1 bk xk+1 xn

−G( , … , , , , … , ) , 1 ≤ k ≤ n.x1 xk−1 ak xk+1 xn

α : → ,En E1

( , ] = ( (⋯ ( α( , ])⋯)) .sα ā̄̄ b
¯̄

Δ1 Δ2 Δn ā̄̄ b
¯̄

(7.9.E.6)

E2

(a, b] = α ( , ) −α ( , ) −[α ( , ) −α ( , )] .sα b1 b2 b1 a2 a1 b2 a1 a2 (7.9.E.7)

sα C
∗ Δk sα E3

( , ] ∪ ( , ] = ( , ],ā̄̄ q̄̄ p̄̄̄ b
¯̄

ā̄̄ b
¯̄

(7.9.E.8)

 Exercise 7.9.E. 10∗

sα α xk α

sα α LS ;En LS m∗
α

: →mα M
∗
α E∗ (7.9.E.9)

En sα α.

, ,sα m∗
α mα
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7.10.E: Problems on Generalized Measures

Complete the proofs of Theorems 1,4, and 5.

Do it also for the lemmas and Corollary 3.

Verify the following. 
(i) In Definition 2, one can equivalently replace "countable " by "finite ." 
(ii) If  is a ring, Note 1 holds for finite sequences . 
(iii) If  is additive on  a semiring, so is . 
[Hint: Use Theorem 1 from §4.]

For any set functions  on  prove that 
(i)  and 
(ii)  provided  is defined and 

Given  show that 
(i) ; 
(ii)  ((\k\) as in Corollary 2); and 
(iii) if  and

 
then 

 
[Hints: (i) If 

 
with  verify that 

 
(ii) is analogous. 

 Exercise 7.10.E. 1

 Exercise 7.10.E. 1′

 Exercise 7.10.E. 2

{ }Xi { }Xi

M { }Xi

s : M→ E M, vs

 Exercise 7.10.E. 3

s, t M,

= ,v|s| vs

≤ a ,vst vt st

a = sup{|sX||X ∈M}. (7.10.E.1)

 Exercise 7.10.E. 4

s, t : M→ E,

≤ +vs+t vs vt

= |k|vks vs

E = ( )En C n

s = ,∑
k=1

n

sk ē̄̄k (7.10.E.2)

≤ ≤ .vsk
vs ∑

k=1

n

vsk (7.10.E.3)

A ⊇⋃  (disjoint),Xi (7.10.E.4)

, ∈M,Ai Xi

|(s + t) | ≤ |s | + |t | ,Xi Xi Xi

∑ |(s + t) | ≤ A + A,  etc.;Xi vs vt

(7.10.E.5)
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(iii) Use (ii) and (i), with .]

If  and  on , can one define the signed LS measure  by simply setting  (assuming 
)? 

[Hint: the domains of  and  may be different. Give an example. How about taking their intersection?]

Find an LS measure  such that  is continuous and one-to-one, but  is not -finite ( Lebesgue measure). 
[Hint: Take 

 
and

Construct complex and vector-valued LS measures  in 

Show that if  is additive and bounded on  a ring, so is . 
[Hint: By Problem 4(iii), reduce all to the real case. 
Use Problem 2. Given a finite disjoint sequence  let  be the union of those  for which 

 respectively). Show that 

For any  and  set 

 
and 

 
Prove that if  is additive and bounded on  a ring, so are  and  furthermore, 

| | = 1ē̄̄k

 Exercise 7.10.E. 5

g ↑, h ↑, α = g −h E1 sα = −sα mg mh

< ∞mh

mg mh

 Exercise 7.10.E. 6

mα α mα m m =

α(x) ={
,x3

|x|

0,

x ≠ 0,

x = 0,
(7.10.E.6)

A = (n, n + ] .]⋃
n=1

∞ 1

n2
(7.10.E.7)

 Exercise 7.10.E. 7

: → ( )sα M∗
α En C n .E1

 Exercise 7.10.E. 8

s : M→ ( )En C n M, vs

{ } ⊆M,Xi ( )U + U − Xi

s ≥ 0(s < 0,Xi Xi

∑s = s −s ≤ 2 sup|s| < ∞. ]Xi U + U − (7.10.E.8)

 Exercise 7.10.E. 9

s : M→ E∗ A ∈M,

A = sup{sX|A ⊇ X ∈M}s+ (7.10.E.9)

A = sup{−sX|A ⊇ X ∈M}.s− (7.10.E.10)

s M, s+ ;s−

s+

s−

s

vs

= ( +s) ≥ 0,
1

2
vs

= ( −s) ≥ 0,
1

2
vs

= − ,  and s+ s−

= + .s+ s−
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[Hints: Use Problem 8. Set 

 
Then  

 
Deduce that . 
To prove also that  let  By Problems 2 and 8, fix , with 

 
and 

 
Show that 

 
and 

Let 

 
(adopt Theorem 2 in Chapter 4, §7, as a definition). Given 

 
we call  compact regular (CR) iff

 
Prove the following. 
(i) If  are  so are  and  (  as in Corollary 2). 
(ii) If  is additive and CR on  a semiring, so is its extension to the ring  (Theorem 1 in §4 and Theorem 4 of §3). 
(iii) If  and  on  a ring, then  is CR iff its components  are, or in the case  iff  and 
are (see Problem 9). 
[Hint for (iii): Use (i) and Problem 4(iii). Consider .]

= ( +s) .s′ 1

2
vs (7.10.E.11)

(∀X ∈M|X ⊆ A)

2sX = sA +sX −s(A −X) ≤ sA +(|sX| + |s(A −X)|)

≤ sA + A = 2 A.vs s′

A ≤ As+ s′

A ≤ A,s′ s+ ε > 0. { } ⊆MXi

A =  (disjoint)⋃
i=1

n

Xi (7.10.E.12)

A −ε < |s | .vs ∑
i=1

n

Xi (7.10.E.13)

2 A −ε = A +sA −ε ≤ s −s +s = 2ss′ vs U + U − ⋃
i=1

n

Xi U + (7.10.E.14)

2 A ≥ 2s ≥ 2 A −ε. ]s+ U + s′ (7.10.E.15)

 Exercise 7.10.E. 10

K= {compact sets in a topological space (S,G)} (7.10.E.16)

s : M→ E, M⊆ ,2S (7.10.E.17)

s

(∀ε > 0)

F , G

(∀A ∈M)(∃F ∈ K)(∃G ∈ G)

∈M, F ⊆ A ⊆ G,  and  G−ε ≤ A ≤ F +ε.vs vs vs

s, t : M→ E CR, s ± t ks k

s M, Ms

E = ( )En C n < ∞vs M, s sk E = ,E1 s+ s−

(G−F )vs
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(Aleksandrov.) Show that if  is CR (see Problem 10) and additive on  a ring in a topological space  and if 
 on , then  and  are -additive, and  has a unique -additive extension  to the -ring  generated by  

The latter holds for  too, if  and . 
[Proof outline: The -additivity of  results as in Theorem 1 of §2 (first check Lemma 1 in §1 for ). 
For the -additivity of  let 

 
then 

 
as  for 

 
(Explain!) Now, Theorem 2 of §6 extends  to a measure on a -field 

 
(use the minimality of ). Its restriction to  is the desired  (unique by Problem 15 in §6). 
A similar proof holds for  too, if  The case  results via Theorem 5 and Problem 10(iii)
provided  for then by Corollary 1,  ensures the finiteness of  and  even on .]

Do Problem 11 for semirings . 
[Hint: Use Problem 10(ii).]

7.10.E: Problems on Generalized Measures is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

 Exercise 7.10.E. 11

s : M→ E M, S,

< ∞vs M vs s σ vs σ v̄̄̄s σ N M.

s, S ∈M E = ( )En C n

σ vs vs

σ s,

A =  (disjoint), A, ∈M;⋃
i=1

∞

Ai Ai (7.10.E.18)

sA − s ≤ → 0
∣

∣
∣ ∑

i=1

r−1

Ai

∣

∣
∣ ∑

i=r

∞

vsAi (7.10.E.19)

r → ∞,

= < ∞.∑
i=1

∞

vsAi vs⋃
i=1

∞

Ai (7.10.E.20)

vs σ

⊇N ⊇MM∗ (7.10.E.21)

N N v̄̄̄s

s, s : M→ [0, ∞). s : M→ ( )En C n

S ∈M; S < ∞vs , ,vs s+ s− N

 Exercise 7.10.E. 12

M
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7.11.E: Problems on Vitali Coverings

Prove Theorem 1 for globes, filling in all details. 
[Hint: Use Problem 16 in §8.]

 Show that any (even uncountable) union of globes or nondegenerate cubes  is L-measurable. 
[Hint: Include in  each globe (cube) that lies in some  Then Theorem 1 represents  as a countable union plus a null
set.]

Supplement Theorem 1 by proving that 

 
and 

 
here  interior of .

Fill in all proof details in Lemmas 1 and 2. Do it also for {globes}.

Given  and  prove that there are open globes 

 
with 

 
and 

 
[Hint: Use Problem 3(f) in §5 and Problem 16(iii) from §8.]

 Exercise 7.11.E. 1

 Exercise 7.11.E. 2

⇒ ⊂Ji En

K .Ji ∪JI

 Exercise 7.11.E. 3

(A−⋃ )= 0m∗ I ok (7.11.E.1)

A = (A∩⋃ ) ;m∗ m∗ I ok (7.11.E.2)

=I o I

 Exercise 7.11.E. 4

=K
¯ ¯¯̄

 Exercise 7.11.E. 5

mZ = 0 ε > 0,

⊆ ,G∗
k

En (7.11.E.3)

Z ⊂ ⋃
k=1

∞

G∗
k

(7.11.E.4)

m < ε.∑
k=1

∞

G∗
k

(7.11.E.5)
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Do Problem 3 in §5 for 
(i)  and 
(ii) . 
[Hints for (i): Let  outer measure induced by  From Problem 3(e) in §5, show that 

 
To prove  also, fix  and an open set  with 

 
Globes inside  cover  in the -sense (why?); so 

 
for some globes  and null set  With  as in Problem 5, 

Suppose  is an isometry, i.e., satisfies 

 
Prove that 
(i)  and 
(ii)  iff . 
[Hints: If  is a globe of radius  so is  (verify!); thus Problems 14 and 16 in §8 apply. In the general case, argue as in
Theorem 4 of §8 , replacing intervals by globes (see Problem 6). Note that  is an isometry, too.]

From Problem 7 infer that Lebesgue measure in  is rotation invariant. (A rotation about  is an isometry  such that 
.)

A -covering  of  is called normal iff 
(i)  and 
(ii) for every  there is some  and a sequence 

 
such that 

 
(We then say that  and  are normal; specifically, -normal.) 
Prove Theorems 1 and 2 for any normal . 

 Exercise 7.11.E. 6

= {open globes},C′

= {all globes in  }C′ En

=m′ : → .v′ C′ E1

(∀A ⊆ ) A ≥ A.En m′ m∗ (7.11.E.6)

A ≤ Am′ m∗ ε > 0 G⊇ A

A+ε ≥ mG (Theorem 3 of §8).m∗ (7.11.E.7)

G A V

A ⊆ Z∪⋃  (disjoint)Gk (7.11.E.8)

Gk Z. G∗
k

A ≤∑(m +m ) ≤ mG+ε ≤ A+2ε. ]m′ Gk G∗
k m∗ (7.11.E.9)

 Exercise 7.11.E. 7

f : En
⟷

 onto 
En

|f( ) −f( )| = | − |  for  , ∈ .x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ x̄̄̄ ȳ̄̄ En (7.11.E.10)

(∀A ⊆ ) A = f [A],En m∗ m∗

A ∈ M∗ f [A] ∈ M∗

A r, f [A]

f−1

 Exercise 7.11.E. 7′

En p̄̄̄ f

f( ) =p̄̄̄ p̄̄̄

 Exercise 7.11.E. 8

V K A ⊆ En

(∀I ∈ K)0 < m = m ,I
¯̄̄

I o

∈ A,p̄̄̄ c ∈ (0, ∞)

→ ({ } ⊆K)Ik p̄̄̄ Ik (7.11.E.11)

(∀k) (∃ cube  ⊇ ) c ⋅ ≥ m .Jk Ik m∗Ik Jk (7.11.E.12)

p̄̄̄ { }Ik c

K
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[Hints: By Problem 21 of Chapter 3, §16, . 
First, suppose  is uniformly normal, i.e., all  are -normal for the same  
In the general case, let 

 
so  is uniform for  Verify that . 
Then select, step by step, as in Theorem 1, a disjoint sequence  and naturals  such that 

 
Let 

 
Then 

 
and 

 
(Why?) Thus by Problems 7 and 8 in §6, 

A -covering  of  is called universal iff 
(i)  and 
(ii) whenever a subfamily  covers a set  in the -sense, we have 

 
for a disjoint sequence 

 
Show the following. 
(a) . 

(b) Lemmas 1 and 2 are true with  replaced by any universal  (In this case, write  and  for the analogues of 
and .) 
(c)  a.e. 
[Hints: (a) By (i),  minus a null set . 
(c) Argue as in Lemma 2, but set 

dI = dI¯̄̄

K ∈ Ap̄̄̄ c c.

= { ∈ A|  is i-normal}, i = 1, 2, … ;Ai x̄̄̄ x̄̄̄ (7.11.E.13)

K .Ai ↗ AAi

{ } ⊆KIk < < ⋯ < < ⋯n1 n2 ni

(∀i) ( − ) < .m∗ Ai ⋃
k=1

ni

Ik
1

i
(7.11.E.14)

U = .⋃
k=1

∞

Ik (7.11.E.15)

(∀i) ( −U) <m∗ Ai

1

i
(7.11.E.16)

−U ↗ A−U.Ai (7.11.E.17)

(A−U) ≤ = 0.]m∗ lim
i→∞

1

i
(7.11.E.18)

 Exercise 7.11.E. 9

V K
¯ ¯¯̄¯∗

En

(\forall I \in \overline{\mathcal{K}}^{*}\right) 0<m \overline{I}=m I^{o}<\infty,

K⊆K
¯ ¯¯̄ ∗

A ⊆ En V

(A−⋃ )= 0m∗ Ik (7.11.E.19)

{ } ⊆K.Ik (7.11.E.20)

⊆K
¯ ¯¯̄ ∗

M∗

K
¯ ¯¯̄

.K
¯ ¯¯̄ ∗

sD––
∗ sD

¯ ¯¯̄ ∗
sD––

D
¯ ¯¯̄

s

= s = s = sDs– –– D––
∗ D

¯ ¯¯̄ ∗
D
¯ ¯¯̄

I = I¯̄̄ Z ⊆ −I¯̄̄ I o
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and 

 
to prove a.e. that  similarly for . 

Throughout assume that  is a measure in  finite on .]

Continuing Problems 8 and 9, verify that 
(a) \(\overline{\mathcal{K}}=\{\text {nondegenerate cubes \}\}\) is a normal and universal -covering of ;
(b) so also is ; 
(c)  is normal. 
Note that  is not universal.

Continuing Definition 3, we call  a derivate of  and write  iff 

 
for some sequence  with . 
Set 

 
and prove that 

Let  be a normal -covering of  (see Problem 8). Given a measure  in  finite on  write 

 
iff 

 
for some normal sequence  with . 
Set 

 
and then 

Q = J ( s > u > v> s)D
––

∗ D
––

(7.11.E.21)

={I ∈ |I ⊆ , > v}K
′

K
¯ ¯¯̄ ∗

G′ sI

mI
(7.11.E.22)

s ≤ s;D––
∗ D–– s ≤ sD–– D∗

s : → ( ⊇ ∪ )M
′ E∗ M

′
K
¯ ¯¯̄

K
¯ ¯¯̄ ∗

,En ∪K
¯ ¯¯̄

K
¯ ¯¯̄ ∗

 Exercise 7.11.E. 10

V En

= {all globes in }K
¯ ¯¯̄ o

En

= {nondegenerate intervals}C
¯̄̄

C
¯̄̄

 Exercise 7.11.E. 11

q s, q ∼ Ds( ),p̄̄̄

q = lim
k→∞

sIk

mIk
(7.11.E.23)

→ ,Ik p̄̄̄ ∈Ik K
¯ ¯¯̄

= {q ∈ |q ∼ Ds( )}Dp̄̄̄ E∗ p̄̄̄ (7.11.E.24)

s( ) = min  and  s( ) = max .D–– p̄̄̄ Dp̄̄̄ D
¯ ¯¯̄

p̄̄̄ Dp̄̄̄ (7.11.E.25)

 Exercise 7.11.E. 12

K∗ V En s ,En ∪ ,K∗ K
¯ ¯¯̄

q ∼ s( )D∗ p̄̄̄ (7.11.E.26)

q = lim
k→∞

sIk

mIk
(7.11.E.27)

→ ,Ik p̄̄̄ ∈Ik K
∗

= {q ∈ |q ∼ s( )} ,D∗
p̄̄̄

E∗ D∗ p̄̄̄ (7.11.E.28)
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Prove that 

 
[Hint:  where 

 
On each  is uniformly normal. To prove  a.e. on  "imitate" Problem 9(c). Proceed.]

7.11.E: Problems on Vitali Coverings is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

s( ) = inf  and  s( ) = sup .D––
∗ p̄̄̄ D∗

p̄̄̄
D
¯ ¯¯̄ ∗

p̄̄̄ D∗
p̄̄̄

(7.11.E.29)

s = s = s = s a.e. on  .D–– D––
∗ D

¯ ¯¯̄ ∗
D
¯ ¯¯̄

En (7.11.E.30)

= ,En ⋃∞
i=1 Ei

= { ∈ |  is i-normal} .Ei x̄̄̄ En x̄̄̄ (7.11.E.31)

,Ei K
∗ s = sD–– D––

∗ ,Ei
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8.1: Elementary and Measurable Functions
From set functions, we now return to point functions

whose domain  consists of points of a set  The range space  will mostly be  i.e.,  or another normed
space. We assume  unless defined otherwise. (In a general metric space  we may take some fixed element  for  )
Thus  is all of , always.

We also adopt a convenient notation for sets:

Thus

A measurable space is a set  together with a set ring  of subsets of  denoted .

Henceforth,  is fixed.

An M-partition of a set  is a countable set family  such that

with .

We briefly say "the partition "

An -partition  is a refinement of   or  is finer than  iff

i.e., each  is contained in some .

The intersection  of  and  is understood to be the family of all sets of the form

It is an  -partition that refines both  and .

A map (function)  is elementary, or -elementary, on a set  iff there is an M-partition  of  such
that  is constant  on each 

If  is finite, we say that  is simple, or -simple, on 

If the  are intervals in  we call  a step function; it is a simple step function if  is finite.

The function values  are elements of  (possibly vectors). They may be infinite if  Any simple map is also elementary,
of course.

f : S → (T , )ρ′ (8.1.1)

Df S. T E, , ,C, ,E1 E∗ En

f(x) = 0 T , q 0.
Df S

" A(P ) "  for  " {x ∈ A|P (x)}. " (8.1.2)

A(f ≠ a)

A(f = g)

A(f > g)

= {x ∈ A|f(x) ≠ a},

= {x ∈ A|f(x) = g(x)},

= {x ∈ A|f(x) > g(x)},  etc. 

 Definition

S ≠ ∅ M S, (S,M)

(S,M)

 Definition

A P = { }Ai

A = (disjoint),⋃
i

Ai (8.1.3)

A, ∈MAi

A = ⋃ .Ai

M = { }P ′ Bik P = { } ( or   refines Ai P ′ P, P ′ P)

(∀i) =Ai ⋃
k

Bik (8.1.4)

Bik Ai

∩P
′
P

′′ = { }P
′ Ai = { }P

′′ Bk

∩ , i, k = 1, 2, …Ai Bk (8.1.5)

M P ′ P ′′

 Definition

f : S → T M A ∈M P = { }Ai A

f (f = )ai .Ai

P = { , … , }A1 Aq f M A.

Ai ,En f P

ai T T = .E∗
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A map  is said to be measurable (or  -measurable  on a  in  iff

for some sequence of functions  all elementary on  (See Chapter 4, §12 for "pointwise.")

Note 1. This implies  as follows from Definitions 2 and 

If  is elementary on  it is measurable on 

Proof

Set  in Definition  Then clearly  on . 

If  is simple, elementary, or measurable on  in  it has the same property on any subset  with .

Proof

Let  be simple on  so  on  for some finite  -partition, .

If  then

is a finite  -partition of  and  on  so  is simple on .

For elementary maps, use countable partitions.

Now let  be measurable on  i.e.,

for some elementary maps  on  As shown above, the  are elementary on  too, and  on  so  is
measurable on 

If  is elementary or measurable on each of the (countably many  sets  in  it has the same property on their union 
.

Proof

Let  be elementary on each  (so  by Note 1 .

By Corollary 1 of Chapter 7, §1,

for some disjoint sets .

By Corollary  is elementary on each  i.e., constant on sets of some  -partition  of .

All  combined (for all  and all  form an -partition of ,

 Definition

f : S → (T , )ρ′ M ) setA (S,M)

f = ( pointwise ) on Alim
m→∞

fm (8.1.6)

: S → T ,fm A.

A ∈M, 3. (Why ? )

 Corollary 8.1.1

f : S → (T , )ρ′ A, A.

= f ,m = 1, 2, … ,fm 4. → ffm A square

 Corollary 8.1.2

f A (S,M), B ⊆ A B ∈M

f A; f = ai , i = 1, 2, … ,n,Ai M A = ⋃n
i=1 Ai

A ⊇ B ∈M,

{B∩ } , i = 1, 2, … ,n,Ai (8.1.7)

M B( why? ), f = ai B∩ ;Ai f B

f A,

f = lim
m→∞

fm (8.1.8)

fm A. fm B, → ffm B; f

B. □

 Corollary 8.1.3

f ) An (S,M),
A = ⋃n An

f An ∈MAn )

A =⋃ =⋃An Bn (8.1.9)

⊆ ( ∈M)Bn An Bn

2, f ;Bn M { }Bni Bi

Bni n i) M A

A = = .⋃
n

Bn ⋃
n,i

Bni (8.1.10)
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As  is constant on each  it is elementary on 

For measurable functions  slightly modify the method used in Corollary 

If  is measurable on  in  so is the composite map  provided  is relatively
continuous on .

Proof

By assumption,

for some elementary maps  on .

Hence by the continuity of ,

i.e.,  (pointwise) on .

Moreover, all  are elementary on  (for  is constant on any partition set, if  is).

Thus  is measurable on  as claimed. 

If the maps  are simple, elementary, or measurable on  in  so are  (for real 
 and  (if  on 

Similarly for vector-valued  and  and scalar-valued .

Proof

First, let  and  be elementary on  Then there are two -partitions,

such that  on  and  on  say.

The sets  (for all  and  then form a new  -partition of , such that both  and  are constant on each
.

Thus  is elementary on  Similarly for simple functions.

Next, let  and  be measurable on  so

for some elementary maps .

By what was shown above,  is elementary for each  Also,

Thus  is measurable on .

The rest of the theorem follows quite similarly. 

If the range space is  then  has  real (complex) components  as in Chapter 4,§3 (Part II). This yields the
following theorem.

f ,Bni A.

f , 2. □

 Corollary 8.1.4

f : S → (T , )ρ′ A (S,M), g∘ f , g : T → (U, )ρ′′

f [A]

f =  (pointwise) lim
m→∞

fm (8.1.11)

fm A

g

g ( (x)) → g(f(x)),fm (8.1.12)

g∘ → g∘ ffm A

g∘ fm A g∘ fm fm

g∘ f A, □

 Theorem 8.1.1

f , g,h : S → (C)E1 A (S,M), f ±g, fh, |f |a

a ≠ 0) f/h h ≠ 0 A).

f g h

f g A. M

A =⋃ =⋃ ,Ai Bk (8.1.13)

f = ai Ai g = bk ,Bk

∩Ai Bk i k) M A( why? ) f g

∩ ( why?); hence so is f ±gAi Bk

f ±g A.

f g A;

f = lim  and g = lim  (pointwise) on Afm gm (8.1.14)

,fm gm

±fm gm m.

± → f ±g( pointwise ) on A,fm gm (8.1.15)

f ±g A

□

( or  ) ,En Cn f n , … , ,f1 fn
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A function  is simple, elementary, or measurable on a set  in  iff all its  component functions 
 are.

Proof

For simplicity, consider .

If  and  are simple or elementary on  then (exactly as in Theorem 1 , one can achieve that both are constant on sets 
 of one and the same -partition of  Hence  too, is constant on each  as required.

Conversely, let

for some -partition

Then by definition,  and  on  so both are elementary (or simple) on 

In the general case  the proof is analogous.

For measurable functions, the proof reduces to limits of elementary maps (using Theorem 2 of Chapter 3, §15). The details
are left to the reader. 

Note 2. As  a complex function  is simple, elementary, or measurable on  iff its real and imaginary parts are.

By Definition  a measurable function is a pointwise limit of elementary maps. However, if  is a -ring, one can make the limit
uniform. Indeed, we have the following theorem.

If  is a -ring, and  is -measurable on  then

for some finite elementary maps .

Proof

Thus given  there is a finite elementary map  such that  
on .

If  is a -ring in  if

 and if all  are  -measurable on  so also is .

Briefly:  pointwise limit of measurable maps is measurable (unlike continuous maps; cf. Chapter 4, §12).

Proof

By the second clause of Theorem  each  is uniformly approximated by some elementary map  on  so that, taking 
,

Fixing such a  for each  we show that  on  as required in Definition 

 Theorem 8.1.2

f : S → ( )En Cn A (S,M) n

, , … ,f1 f2 fn

f : S → , f = ( , )E2 f1 f2

f1 f2 A )
∩Ai Bk M A. f = ( , ) ,f1 f2 ∩ ,Ai Bk

f = = ( , )  on c̄̄i ai bi Ci (8.1.16)

M

A =⋃ .Ci (8.1.17)

=f1 ai =f2 bi ;Ci A.

(  or  ) ,En Cn

□

C = ,E2 f : S → C A

4, M σ

 Theorem 8.1.3

M σ f : S → (T , )ρ′ M A,

f =  (uniformly) on Alim
m→∞

gm (8.1.18)

gm

ε > 0, g (f , g) < ερ′

A

 Theorem 8.1.4

M σ S,

→ f(pointwise) on Afm (8.1.19)

( : S → (T , )) ,fm ρ′ fm M A, f

A

3, fm gm A,
ε = 1/m,m = 1, 2, …

( (x), (x)) <  for all x ∈ A and all m.ρ′ fm gm
1

m
(8.1.20)

gm m, → f( pointwise )gm A, 4.
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Indeed, fix any  By assumption,  Hence, given ,

Take  so large that, in addition,

Then by the triangle law and by  we obtain for  that

As  is arbitrary, this implies  i.e.,  for any (fixed)  thus proving the
measurability of 

Note 3. If

we often say "Borel measurable" for -measurable. If

we say "Lebesgue (L) measurable" instead. Similarly for "Lebesgue-Stieltjes (LS) measurable."

This page titled 8.1: Elementary and Measurable Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

x ∈ A. (x) → f(x).fm δ > 0

(∃k)(∀m > k) (f(x), (x)) < δ.ρ′ fm (8.1.21)

k

(∀m > k) < δ.
1

m
(8.1.22)

(1), m > k

.
(f(x), (x))ρ′ gm ≤ (f(x), (x)) + ( (x), (x))ρ′ fm ρ′ fm gm

< δ+ < 2δ
1

m

δ (f(x), (x)) → 0,ρ′ gm (x) → f(x)gm x ∈ A,
f . □

M= B(=  Borel field in S), (8.1.23)

M

M= { Lebesgue measurable sets in  } ,En (8.1.24)
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8.1.E: Problems on Measurable and Elementary Functions in (S,M) (S,M)

Fill in all proof details in Corollaries 2 and 3 and Theorems 1 and 2.

Show that  is as stated at the end of Definition 2.

Given  and  let 

 
and 

 
Prove that 
(i)  
(ii)  if all  are in  and  is a -ring. 
[Hint:  iff 

 
Why?]

Do Problem 3 for  and  on . 
[Hint: If 

. Let  be -elementary on  with  a  -ring in  Show the following. 
(i) . 
(ii) If  then 

 and  
are in  too. 
(iii) . 
[Hint: If 

 
and 

 Exercise 8.1.E. 1

 Exercise 8.1.E. 2

∩P ′ P ′′

 Exercise 8.1.E. 3

A ⊆ S f , : S → (T , ) , m = 1, 2, … ,fm ρ′

H = A ( → f)fm (8.1.E.1)

= A( ( , f) < ) .Amn ρ′ fm

1

n
(8.1.E.2)

H = ;⋂∞
n=1⋃

∞
k=1⋂

∞
m=k Amn

H ∈M Amn M M σ

x ∈ H

(∀n)(∃k)(∀m ≥ k) x ∈ .Amn (8.1.E.3)

 Exercise 8.1.E. 3′

T = E∗ f = ±∞ H

f = +∞, = A ( > n) ⋅]Amn fm

 Exercise 8.1.E. 4

⇒ 4 f : S → T M A, M σ S.

A(f = a) ∈M, A(f ≠ a) ∈M

T = ,E∗

A(f < a), A(f ≥ a), A(f > a), A(f ≥ a)

M,

(∀B ⊆ T )A ∩ [B] ∈Mf −1

A =⋃
i−1

∞

Ai (8.1.E.4)

f =  on  ,  then A(f = a) is the countable union of those   for which  = a. ]ai Ai Ai ai
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Do Problem  for measurable . 
[Hint: If  for elementary maps  then 

 
Express  as in Problem  with 

 
where  is elementary. (Why?) Then use Problems 

. Given  let  i.e., 

 
Prove that if  and  are elementary, simple, or measurable on  so is  
[Hint: Argue as in Theorem 1. Use Theorem 

.  for a countable set . 

Prove that if  is -measurable on  then  is separable in  
[Hint:  for elementary maps  say, 

 
Let  consist of all  so  is countable (why?) and . 
Verify that 

 
with  Hence 

 
by Theorem 

. Continuing Problem  prove that if  and  then 

 
[Hint: If  any  contains some  so 

 Exercise 8.1.E. 5

4(i) f

f = lim fm ,fm

H = A(f = a) = A ( → a) .fm (8.1.E.5)

H 3,

= A( < ) ,Amn hm

1

n
(8.1.E.6)

= ( , a)hm ρ′ fm 4( ii) and 3( ii ). ]

 Exercise 8.1.E. 6

⇒ 6 f , g : S → (T , ) ,ρ′ h = (f , g),ρ′

h(x) = (f(x), g(x)).ρ′ (8.1.E.7)

f g A, h.

4 in Chapter 3, §15. ]

 Exercise 8.1.E. 7

⇒ 7  A set  B ⊆ (T , )  is called separable (in T )  iff B ⊆  (closure of D)ρ′ D
¯ ¯¯̄

D ⊆ T

f : S → T M A, f [A] T .

f = lim fm ;fm

=  on  ∈M, i = 1, 2, …fm ami Ami (8.1.E.8)

D (m, i = 1, 2, …);ami D D ⊆ T

(∀y ∈ f [A])(∃x ∈ A) y = f(x) = lim (x),fm (8.1.E.9)

(x) ∈ D.fm

(∀y ∈ f [A]) y ∈ ,D
¯ ¯¯̄

(8.1.E.10)

3 of Chapter 3, §16. ]

 Exercise 8.1.E. 8

⇒ 8 7, B ⊆ D
¯ ¯¯̄

D = { , , …} ,q1 q2

(∀n) B ⊆ ( ) ,⋃
i=1

∞

Gqi

1

n
(8.1.E.11)

p ∈ B ⊆ ,D
¯ ¯¯̄ ( )Gp

1
n

∈ D;q1
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Thus 

Prove Corollaries 2 and 3 and Theorems 1 and  assuming that  is a semiring only.

Do Problem 4 for -simple maps, assuming that  is a ring only.

8.1.E: Problems on Measurable and Elementary Functions in  is shared under a CC BY 1.0 license and was authored, remixed, and/or
curated by LibreTexts.

(p, ) < ,  or p ∈ ( ) .ρ′ qi

1

n
Gqi

1

n
(8.1.E.12)

(∀p ∈ B) p ∈ ( ) ⋅]⋃
i−1

∞

Gqi

1

n
(8.1.E.13)

 Exercise 8.1.E. 9

2, M

 Exercise 8.1.E. 10

M M

(S,M)
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8.2: Measurability of Extended-Real Functions
Henceforth we presuppose a measurable space  where  is a -ring in  Our aim is to prove the following basic
theorem, which is often used as a definition, for extended-real functions 

 function  is measurable on a set  iff  satisfies one of the following equivalent conditions (hence all of
them):

We first prove the equivalence of these conditions by showing that   closing the "circle."

 Assume  If ,

by assumption. If ,

by  And if ,

(Verify!) By ,

so .

 For  and  imply

 If ,

What if 

 Indeed,  and  imply

Thus, indeed, each of  to  implies the others. To finish, we need two lemmas that are of interest in their own right.

If the maps  satisfy conditions  so also do the functions

defined pointwise, i.e.,

(S,M), M σ S.
f : S → .E∗

 Theorem 8.2.1

A f : S → E∗ A ∈M it

( ) (∀a ∈ )A(f > a) ∈M;i
∗ E∗

( ) (∀a ∈ )A(f < a) ∈M;iii∗ E∗

( ) (∀a ∈ )A(f ≥ a) ∈M;ii∗ E∗

( ) (∀a ∈ )A(f ≤ a) ∈M.iv∗ E∗
(8.2.1)

( ) ⇒i∗ ( ) ⇒ ( ) ⇒ (i ) ⇒ ( ) ,ii∗ iii∗ v∗ i∗

( ) ⇒ ( ) .i∗ ii∗ ( ) .i∗ a = −∞

A(f ≥ a) = A ∈M (8.2.2)

a = +∞

A(f ≥ a) = A(f = ∞) = A(f > n) ∈M⋂
n=1

∞

(8.2.3)

( ) .i∗ a ∈ E1

A(f ≥ a) = A(f > a− ) .⋂
n=1

∞
1

n
(8.2.4)

( )i∗

A(f > a− ) ∈M;
1

n
(8.2.5)

A(f ≥ a) ∈M( a σ-ring! )

( ) ⇒ ( ) .ii∗ iii∗ ( )i∗ A ∈M

A(f < a) = A−A(f ≥ a) ∈M. (8.2.6)

( ) ⇒ ( ) .iii∗ iv∗ a ∈ E1

A(f ≤ a) = A(f < a+ ) ∈M.⋂
n=1

∞ 1

n
(8.2.7)

a = ±∞?

(i ) ⇒ ( ) .v∗ i∗ ( )iv∗ A ∈M

A(f > a) = A−A(f ≤ a) ∈M. (8.2.8)

( )i∗ ( )iv∗

 Lemma 8.2.1

: S → (m = 1, 2, …)fm E∗ ( ) −i∗ ( ) ,iv∗

sup , inf , ,  and  ,fm fm lim¯ ¯¯̄¯̄¯ fm lim
– ––

fm (8.2.9)

(sup ) (x) = sup (x),fm fm (8.2.10)
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and similarly for the others.

Proof

Let  Then

But by assumption,

 Hence .

Thus sup  satisfies 

So does inf  for

(Explain!)

So also do  and  for by definition,

where

satisfies  as was shown above; hence so does sup .

Similarly for 

If  satisfies  then

for some sequence of finite functions  all  -elementary on .

Moreover, if  on  the  can be made nonnegative, with  on .

Proof

Let  and

for  and 

,

 and

f = sup .fm

A(f ≤ a) = A ( ≤ a)  (Why?)⋂
m=1

∞

fm (8.2.11)

A ( ≤ a) ∈Mfm (8.2.12)

(  satisfies  (i )) .fm v∗ A(f ≤ a) ∈M( for M is a σ-ring )

fm ( ) −(i ) .i∗ v∗

;fm

A (inf ≥ a) = A ( ≥ a) ∈M.fm ⋂
m=1

∞

fm (8.2.13)

lim– –– fm ;lim
¯ ¯¯̄¯̄¯

fm

t = ,lim– –– fm sup
k

gk (8.2.14)

=gk inf
m≥k

fm (8.2.15)

( ) −(i ) ,i∗ v∗ =gk lim
– ––

fm

. □lim¯ ¯¯̄¯̄¯ fm

 Lemma 8.2.2

f ( ) −( ) ,i∗ iv∗

f =  (uniformly) on Alim
m→∞

fm (8.2.16)

,fm M A

f ≥ 0 A, fm { } ↑fm A

H = A(f = +∞),K = A(f = −∞),

= A( ≤ f < )Amk

k−1

2m
k

2m
(8.2.17)

m = 1, 2, … k = 0, ±1, ±2, … , ±n, …

By ( ) −( )i∗ iv∗

H = A(f = +∞) = A(f ≥ +∞) ∈M, (8.2.18)

K ∈M,

= A(f ≤ )∩A(f < ) ∈M.Amk

k−1

2m
k

2m
(8.2.19)
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Now define

 on  and  on  Then each  is finite and elementary on  since

and  is constant on  and .

We now show that  (uniformly) on  and

hence on .

Indeed, on  we have

and the limit is uniform since the  are constant on .

Similarly,

Finally, on  we have

and  hence

Thus

on each  hence on

By Theorem 1 of Chapter 4, §12, it follows that  on . Thus, indeed,  on .

If, further,  on  then  and  for  Moreover, on passage from  to  each 
splits into two sets. On one,  on the other,  (Why?)

Thus  on  and all is proved. 

 function  is measurable on a set  iff  satisfies one of the following equivalent conditions (hence all of
them):

Proof

If  is measurable on  then by definition,  (pointwise) for some elementary maps  on .

(∀m) =  on  ,fm
k−1

2m
Amk (8.2.20)

= mfm H, = −mfm K. fm A

(∀m) A = H ∪K∪ (disjoint)⋃
k=−∞

∞

Amk (8.2.21)

fm H,K, Amk

→ ffm H,K,

J = ,⋃
k=−∞

∞

Amk (8.2.22)

A

H

lim = limm = +∞ = f ,fm (8.2.23)

fm H

= −m → −∞ = f  on K.fm (8.2.24)

Amk

(k−1) ≤ f < k2−m 2−m (8.2.25)

= (k−1) ;fm 2−m

| −f | < k −(k−1) = .fm 2−m 2−m 2−m (8.2.26)

| −f | < → 0fm 2−m (8.2.27)

,Amk

J = .⋃
k=−∞

∞

Amk (8.2.28)

→ f( uniformly )fm J → f( uniformly )fm A

f ≥ 0 A, K = ∅ = ∅Amk k ≤ 0. m m+1, (k > 0)Amk

= ;fm+1 fm > .fm+1 fm

0 ≤ ↗ f( uniformly )fm A, □

 Theorem  (Restated)8.2.1

A f : S → E∗ A ∈M it

( ) (∀a ∈ )A(f > a) ∈M;i
∗ E∗

( ) (∀a ∈ )A(f < a) ∈M;iii∗ E∗

( ) (∀a ∈ )A(f ≥ a) ∈M;ii∗ E∗

( ) (∀a ∈ )A(f ≤ a) ∈M.iv∗ E∗
(8.2.29)

f A, f = limfm fm A
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By Problem 4 (ii) in §1, all  satisfy (i*)-(iv*). Thus so does by Lemma 1, for here .

The converse follows by Lemma 2. This completes the proof. 

Note 1. Lemmas 1 and 2 prove Theorems 3 and 4 of  for . By using also Theorem 2 in §1, one easily extends this to
. Verify!

If  is measurable on  then

Indeed,

and

If  is measurable on  in  then

for every globe  in .

Proof

Define  by

 
Then  is measurable on  by Problem 6 in §1. Thus by Theorem 1, 

But as is easily seen,

Hence the result. 

Given  we define the maps  and  on  by

and

similarly for  etc.

We also set

Clearly,  and  on  Also,  and 

fm f f = lim =fm lim
¯ ¯¯̄¯̄¯

fm

□

$1, f : S → E∗

f : S → ( )En Cn

 Corollary 8.2.1

f : S → E∗ A,

(∀a ∈ ) A(f = a) ∈M and A(f ≠ a) ∈M.E∗ (8.2.30)

A(f = a) = A(f ≥ a) ∩A(f ≤ a) ∈M (8.2.31)

A(f ≠ a) = A−A(f = a) ∈M. (8.2.32)

 Corollary 8.2.2

f : S → (T , )ρ′ A (S,M),

A∩ [G] ∈Mf−1 (8.2.33)

G= (δ)Gq (T , )ρ′

h : S → E1

h(x) = (f(x), q).ρ′ (8.2.34)

h A

A(h < δ) ∈M. (8.2.35)

A(h < δ) = {x ∈ A| (f(x), q) < δ} = A∩ [ (δ)] .ρ′ f−1 Gq (8.2.36)

□

 Definition

f , g : S → ,E∗ f ∨ g f ∧ g S

(f ∨ g)(x) = max{f(x), g(x)} (8.2.37)

(f ∧ g)(x) = min{f(x), g(x)}; (8.2.38)

f ∨ g∨h, f ∧ g∧h,

= f ∨ 0 and  = −f ∨ 0.f+ f− (8.2.39)

≥ 0f+ ≥ 0f− S. f = −f+ f− |f | = + .f+ f−
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(Why?) We now obtain the following theorem.

If the functions  are simple, elementary, or measurable on  so also are  and 
.

Proof

If  and  are finite, this follows by Theorem 1 of §1 on verifying that

and

on  (Check it!)

Otherwise, consider

By Theorem  these are -sets; hence so is their union .

On each of them  and  equal  or  so by Corollary 3 in §1,  and  have the desired properties on 
So also have  and .

We claim that the maps  and  are simple (hence elementary and measurable) on each of the four sets mentioned
above, hence on 

For example, on ,

by our conventions  in Chapter 4, §4. For  split  into three sets  with  on 
 on  and  on  so  on  on  and  on  Hence  is simple on 

.

For  use  Again, the theorem holds on  and also on  since  and  are finite on 
 Thus it holds on  by Corollary 3 in §1. 

Note 2. Induction extends Theorem 2 to any finite number of functions.

Note 3. Combining Theorem 2 with  we see that  is simple (elementary, measurable) iff  and  are.
We also obtain the following result.

If the functions  are measurable on  then  and 
.

This page titled 8.2: Measurability of Extended-Real Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by
Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

 Theorem 8.2.2

f , g : S → E∗ A, f ±g, fg, f ∨ g, f ∧ g, , ,f+ f−

|f (a ≠ 0)|a

f g

f ∨ g = (f +g+|f −g|)
1

2
(8.2.40)

f ∧ g = (f +g−|f −g|)
1

2
(8.2.41)

S.

A(f = +∞),A(f = −∞),A(g = +∞),  and A(g = −∞). (8.2.42)

1, M U

f ∨ g f ∧ g f g; f ∨ g f ∧ g U.
= f ∨ 0f+ = −f ∨ 0( take g = 0)f−

f ±g fg

U.

A(f = +∞)

f ±g = +∞( constant ) (8.2.43)

( )2∗ fg, A(f = +∞) , , ∈M,A1 A2 A3 g > 0
, g < 0A1 ,A2 g = 0 ;A3 fg = +∞ , fg = −∞A1 ,A2 fg = 0 .A3 fg

A(f = +∞)

|f ,|a U = A(|f | = ∞). U, A−U, f g

A−U ∈M. A = (A−U) ∪U □

f = − ,f+ f− f : S → E∗ f+ f−

 Theorem 8.2.3

f , g : S → E∗ A ∈M, A(f ≥ g) ∈M,A(f < g) ∈M,A(f = g) ∈M,
A(f ≠ g) ∈M
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8.2.E: Problems on Measurable Functions in (S,M,m) (S,M,m)

In Theorem  give the details in proving the equivalence of .

Prove Note 1.

Prove that  and .

Complete the proof of Theorem  in detail.

. Prove Theorem 3. 
[Hint: By our conventions,  even if  or  is  for some  (Verify all cases!) By Theorems
1 and  so 

Show that the measurability of  does not imply that of .
[Hint: Let  on  and  on  for some  e.g., use  of Problem 

. Show that a function  is measurable on  iff  (pointwise) on  for some finite simple maps 
. 

[Hint: Modify the proof of Lemma  setting  and  on , and defining the  for 
only.]

. Prove Theorem 3 in  
[Outline: By Problems 7 and 8 in  there are  such that 

 
Set 

 
by Corollary  so  on . 
By Corollary 1 in Chapter 7, §1 

 Exercise 8.2.E. 1

1, ( ) −(i )i∗ v∗

 Exercise 8.2.E. 2

 Exercise 8.2.E. 2′

f = −f + f − |f | = +f + f −

 Exercise 8.2.E. 3

2,

 Exercise 8.2.E. 4

⇒ 4
A(f ≥ g) = A(f −g ≥ 0) g f ±∞ x ∈ A.

2, A(f −g ≥ 0) ∈M; A(f ≥ g) ∈M,  and A(f < g) = A −A(f ≥ g) ∈M.  Proceed. ]

 Exercise 8.2.E. 5

|f | f

f = 1 Q f = −1 A −Q Q ∉M(Q ⊂ A); Q 6 in Chapter 7, §8. ]

 Exercise 8.2.E. 6

⇒ 6 f ≥ 0 A ↗ ffm A

≥ 0, { } ↑fm fm

2, = A(f ≥ m)Hm = mfm Hm Amk 1 ≤ k ≤ m2m

 Exercise 8.2.E. 7

⇒ 7 §1.
ξ1, ∈ Tqi

(∀n) f [A] ⊆ G ( ) .⋃
i=1

∞

qi

1

n
(8.2.E.1)

= A ∩ [ ( )] ∈MAni f −1 Gqi

1

n
(8.2.E.2)

2; (f(x), ) <ρ′ qi
1
n

Ani
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for some sets  Now define  on  so  on each 

. Prove that  is  -measurable on  iff  for every Borel set 
 in  (In the case  add: "and for  ") 

[Outline: Let 

 
Show that  is a  -ring in . 
Now, by Theorem  if  is measurable on  contains all open intervals; for 

 
Then by Lemma 2 of Chapter  hence  (Why?) 
Conversely, if so, 

. Do Problem 8 for . 
[Hint: If  and  with  and   show that 

 
Apply Problem 8 to each  and use Theorem 2 in §1. Proceed as in Problem 

Do Problem 8 for  treating  as .

Prove that  is measurable on  in  iff 
(i)  for every open globe  and 
(ii)  is separable in  
[Hint: If so, proceed as in Problem  to show that  for some elementary
maps  on  For the converse, use Problem 7 in  and Corollary 2 in .]

(i) Show that if all of  there is a sequence of globes  such that each nonempty open
set 

 is the union of some of these . 

A = = (disjoint)⋃
i=1

∞

Ani ⋃
i=1

∞

Bni (8.2.E.3)

∈M, ⊆ .Bni Bni Ani =gn qi ;Bni (f , ) <ρ′ gn
1
n

,  hence on A.  By Theorem 1 in Chapter 4, §12, → f  (uniformly) on A. ]Bni gn

 Exercise 8.2.E. 8

⇒ 8 f : S → E1 M A A ∩ [B] ∈Mf −1

B (equivalently, for every open set B) .E1 f : S → ,E∗ B = {±∞}.

R= {X ⊆ |A ∩ [X] ∈M} .E1 f −1 (8.2.E.4)

R σ E1

1, f A,R

A ∩ [(a, b)] = A(f > a) ∩ A(f < b).f −1 (8.2.E.5)

7, 2,R⊇ G, R⊇ B.

(a, ∞) ∈R⇒ A ∩ [(a, ∞)] ∈M⇒ A(f > a) ∈M. ]f −1 (8.2.E.6)

 Exercise 8.2.E. 9

⇒ 9 f : S → En

f = ( , … , )f1 fn B = ( , ) ⊂ ,ā̄̄ b
¯̄

En = ( , … , )ā a1 an =b̄ ( , … , ) ,b1 bn

[B] = [( , )] .f −1 ⋂
k=1

n

f −1
k

ak bk (8.2.E.7)

: S →fk E1 8. ]

 Exercise 8.2.E. 10

f : S → ,C n C n E2n

 Exercise 8.2.E. 11

f : S → (T , )ρ′ A (S,M)
A ∩ [G] ∈Mf −1 G ⊆ T ,
f [A] T ( Problem 7 in §1).

7 (without assuming measurability of f) f = lim gn

gn A. §1 §2

 Exercise 8.2.E. 12

T  is separable (Problem 7 in §1), ⊆ TGk

B ⊆ T Gk
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(ii) Show that  and  are separable. 
[Hints: (i) Use the  of Problem 8 in  putting them in one sequence. 
(ii) Take 

Do Problem 11 with "globe  replaced by "Borel set ." 
[Hints: Treat  as  noting that 

 
By Problem  if  is open in  then  is a countable union of "globes"  in  see Theorem 4 in
Chapter  Proceed as in Problem  replacing  by .]

A map  is said to be of Baire class  on  iff  is relatively continuous on  Inductively,
 is of Baire class  iff  (pointwise) on  for some maps . Show by induction that

Corollary 4 in  holds also if  on  for some 

8.2.E: Problems on Measurable Functions in  is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

En C n

( )Gqi

1
n

§1,

D = ⊂  in Problem 7 of §1. ]Rn En

 Exercise 8.2.E. 13

G ⊆ T ′′ B ⊆ T

f f : A → , = f [A],T ′ T ′

A ∩ [B] = A ∩ [B ∩ ] .f −1 f −1 T ′ (8.2.E.8)

12, B ≠ ∅ T , B ∩ T ′ ∩Gq T ′ ( , ) ;T ′ ρ′

3, §12. 8, E1 T

 Exercise 8.2.E. 14

g : (T , ) → (U, )ρ′ ρ′′ 0 (g ∈ )B0 D ⊆ T g D.
g n (g ∈ , n ≥ 1)Bn g = lim gm D ∈gm Bn−1

§1 g ∈ Bn f [A] n.

(S,M, m)
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8.3: Measurable Functions in (S,M,m) (S,M,m)
I. Henceforth we shall presuppose not just a measurable space (§1) but a measure space  where  is a
measure on a  -ring .

We saw in Chapter 7 that one could often neglect sets of Lebesgue measure zero on  if a property held everywhere except on a
set of Lebesgue measure zero, we said it held "almost everywhere." The following definition generalizes this usage.

We say that a property  holds for almost all  (with respect to the measure  or almost everywhere (a.e.  on 
iff it holds on  for some  with .

Thus we write

iff  on  Of course, "pointwise" implies  but the converse fails.

We say that  is almost measurable on  iff  and  is  -measurable on .

We then also say that  is  -measurable (  being the measure involved ) as opposed to -measurable.

Observe that we may assume  here (replace  by .

*Note 1. If  is a generalized measure (Chapter 7, §11), replace  by  in
Definitions 1 and 2 and in the following proofs.

If the functions

are -measurable on  and if

on  then  is -measurable on .

Proof

By assumption,  on  Also,  is -measurable on

(The  need not be the same.)

Let

so

By Corollary 2 in §1, all  are -measurable on  (why?), and  
(pointwise) on  as 

(S,M, m), m : M→ E∗

σ M⊆ 2S

−En

 Definition

P (x) x ∈ A m) (m)) A

A −Q Q ∈ M mQ = 0

→ f(a. e. ) or f = lim (a. e. (m)) on Afn fn (8.3.1)

→ f( pointwise )fn A −Q, mQ = 0. " a. e. " ( take Q = ∅),

 Definition

f : S → (T , )ρ′ A A ∈ M f M A −Q, mQ = 0

f m m M

Q ⊆ A Q A ∩ Q)

m mQ = 0 Q = 0 ( =  total variation of m)vm vm

 Corollary 8.3.1

: S → (T , ) , n = 1, 2, …fn ρ′ (8.3.2)

m A,

→ f(a. e. (m))fn (8.3.3)

A, f m A

→ f( pointwise )fn A − , m = 0.Q0 Q0 fn M

A − , m = 0, n = 1, 2, …Qn Qn (8.3.4)

Qn

Q = ;⋃
n=0

∞

Qn (8.3.5)

mQ ≤ m = 0.∑
n=0

∞

Qn (8.3.6)

fn M A −Q → ffn

A −Q, A −Q ⊆ A − .Q0
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Thus by Theorem 4 in §1,  is  -measurable on  As , this 
is the desired result. 

If  on  and  is -measurable on  so is .

Proof

By assumption,  on  and  is -measurable on , with .

Let  Then  and  on  (Why? 

By Corollary 2 of §1,  is -measurable on . Hence so is , as claimed. 

If  is  -measurable on  then

for some maps  all elementary on .

Proof

Add proof here and it will automatically be hidden

(Compare Corollary 3 with Theorem 3 in §1).

Quite similarly all other propositions of §1 carry over to almost measurable (i.e.,  -measurable) functions. Note, however, that the
term "measurable" in §§1 and 2 always meant  -measurable." This implies -measurability (take  but the converse
fails. (See Note  however.)

We still obtain the following result.

If the functions

are -measurable on a set  so also are

(Use Lemma 1 of §2).

Similarly, Theorem 2 in §2 carries over to -measurable functions.

Note 2. If  is complete (such as Lebesgue measure and LS measures) then, for  and -
measurability coincide (see Problem 3 below).

II. Measurability and Continuity. To study the connection between these notions, we first state two lemmas, often treated as
definitions.

 is -measurable on  iff 

f M A −Q. mQ = 0
□

 Corollary 8.3.2

f = g(a. e. (m)) A f m A, g

f = g A −Q1 f M A −Q2 m = m = 0Q1 Q2

Q = ∪ .Q1 Q2 mQ = 0 g = f A −Q. )

f M A −Q g □

 Corollary 8.3.3

f : S → (T , )ρ′ m A,

f = (uniformly) on A −Q(mQ = 0),lim
n→∞

fn (8.3.7)

,fn A −Q

m

" M m Q = ∅),
2,

 Corollary 8.3.4

: S → (n = 1, 2, …)fn E∗ (8.3.8)

m A,

sup , inf , ,  and fn fn lim
¯ ¯¯̄¯̄¯

fn lim– –– fn (8.3.9)

m

m f : S → ( , ) , m−E∗ En C n M

 Lemma 8.3.1

A mapf : S → ( )En C n M A

A ∩ [B] ∈ Mf −1 (8.3.10)
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for each Borel set (equivalently, open set)  in .

Proof

See Problems  in §2 for a sketch of the proof.

 is relatively continuous on  iff for any open set  the set  is open in
 as a subspace of . 

(This holds also with "open" replaced by "closed.")

Proof

By Chapter 4, §1, footnote  is relatively continuous on  iff its restriction to  (call it  is continuous in the
ordinary sense. 
Now, by Problem 15  in Chapter 4, §2, with  replaced by  this means that  is open (closed) 
when  is so in  But 

 
(Why?) Hence the result follows. 

Let  be a topological measure in  If   is relatively continuous on a set  it is  -
measurable on .

Proof

Let  be open in  By Lemma 2, 

 
is open  Hence by Theorem 4 of Chapter 3, §12, 

 
for some open set  in . 
Now, by assumption,  is in  So is  as  is topological . 
Hence 

 
for any open  The result follows by Lemma 1. 

Note 3. The converse fails. For example, the Dirichlet function (Example  in Chapter 4, §1) is L-measurable (even simple) but
discontinuous everywhere. 
Note 4. Lemma 1 and Theorem 1 hold for a map  too, provided  is separable, i.e., 

 
for a countable set  (cf. Problem 11 in §2). 

B ( )En C n

8 −10

 Lemma 8.3.2

A mapf : (S, ρ) → (T , )ρ′ A ⊆ S B ⊆ (T , ) ,ρ′ A ∩ [B]f −1

(A, ρ) (S, ρ)

4, f A A g : A → T )

(iv)(v) S A, [B]g−1 in(A, ρ)
B (T , ) .ρ′

[B] = {x ∈ A|f(x) ∈ B} = A ∩ [B].g−1 f −1 (8.3.11)

□

 Theorem 8.3.1

m : M→ E∗ (S, ρ). f : S → ( )En C n A ∈ M, M

A

B ( ) .En C n

A ∩ [B]f −1 (8.3.12)

in(A, ρ).

A ∩ [B] = A ∩ Uf −1 (8.3.13)

U (S, ρ)
A M. U, M (M⊇ G)

A ∩ [B] = A ∩ U ∈ Mf −1 (8.3.14)

B ⊆ ( ) .En C n
□

(c)

f : S → (T , ) ,ρ′ f [A]

f [A] ⊆ D
¯ ¯¯̄

(8.3.15)

D ⊆ T
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*III. For strongly regular measures (Definition 5 in Chapter 7, §7), we obtain the following theorem.

(Luzin). Let  be a strongly regular measure in . Let  be -measurable on . 
Then given  there is a closed set  such that 

 
and  is relatively continuous on . 
(Note that if  is as in Problem 5 of Chapter 3, §11.)

Proof

By assumption,  is -measurable on a set 

 
so by Problem 7 in §1,  is separable in . We may safely assume that  is -measurable on  and that all of  is
separable. (If not, replace  and  by  and  restricting  to  and  to -sets inside  see also Problems 7 and
8 below.) 
Then by Problem 12 of §2, we can fix globes  in  such that 

 
Now let  and set 

 
By Corollary 2 in §2,  As  is strongly regular, we find for each  an open set 

 
with  and 

 
Let  so  and 

 
and 

 
As  we have 

 
Hence by , 

 *Theorem 8.3.2

m : M→ E∗ (S, ρ) f : S → (T , )ρ′ m A

ε > 0, F ⊆ A(F ∈ M)

m(A −F ) < ε (8.3.16)

f F

T = ,E∗ ρ′

f M

H = A −Q, mQ = 0; (8.3.17)

f [H] T f M S T

S T H f [H], f H, m M H;

, , …G1 G2 T

 each open set B ≠ ∅ in T  is the union of a subsequence of  { } .Gk (8.3.18)

ε > 0,

= S ∩ [ ] = [ ] , k = 1, 2, …Sk f −1 Gk f −1 Gk (8.3.19)

∈ M.Sk m Sk

⊇ ,Uk Sk (8.3.20)

∈ MUk

m ( − ) < .Uk Sk

ε

2k+1
(8.3.21)

= − , D = ;Bk Uk Sk ⋃k Bk D ∈ M

mD ≤ m ≤ ≤ ε∑
k

Bk ∑
k

ε

2k+1

1

2
(8.3.22)

− = = [ ] .Uk Bk Sk f −1 Gk (8.3.23)

D = ⋃ ,Bk

(∀k) −D = ∩ (−D) = ∅.Bk Bk (8.3.24)

( )2′
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Combining this with  we have, for each open set , 

 
since the  are open in  (by construction), the set  is open in  as a subspace of  By Lemma  then,  is
relatively continuous on  or rather on 

 
(since we actually substituted  for  in the course of the proof). As  and  by , 

 
Finally, as  is strongly regular and  there is a closed -set 

 
such that  

 
since  is relatively continuous on  it is surely so on  Moreover, 

 
so 

 
This completes the proof. 

Given  and disjoint closed sets  there always is a continuous map  such that  on 
 and .

Proof

If  or  set  or  on all of . 
If, however,  and  are both nonempty, set 

 
As  is closed,  iff  (Problem 15 in Chapter 3, §14); similarly for  Thus . 

.
(∀k) [ ] ∩ (−D)f −1 Gk = ( − ) ∩ (−D)Uk Bk

= ( ∩ (−D)) −( ∩ (−D)) = ∩ (−D)Uk Bk Uk

(1), B = inT⋃i Gki

[B] ∩ (−D) = [ ] ∩ (−D) = ∩ (−D).f −1 ⋃
i

f −1 Gki
⋃

i

Uki
(8.3.25)

Uki S (3) S −D S. 2, f

S −D,

H −D = A −Q −D (8.3.26)

S H mQ = 0 mD < ε1
2

(2)

m(H −D) < mA − ε.
1

2
(8.3.27)

m H −D ∈ M, M

F ⊆ H −D ⊆ A (8.3.28)

m(H −D −F ) < ε.
1

2
(8.3.29)

f H −D, F .

A −F = (A −(H −D)) ∪ (H −D −F ); (8.3.30)

m(A −F ) ≤ m(A −(H −D)) +m(H −D −F ) < ε + ε = ε.
1

2

1

2
(8.3.31)

□

 *Lemma 8.3.3

[a, b] ⊂ E1 A, B ⊆ (S, ρ), g : S → [a, b] g = a

A g = b

A = ∅ B = ∅, g = b g = a S

A B

g(x) = a + .
(b −a)ρ(x, A)

ρ(x, A) +ρ(x, B)
(8.3.32)

A ρ(x, A) = 0 x ∈ A B. ρ(x, A) +ρ(x, B) ≠ 0
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Also,  on  on  and  on .  
For continuity, see Chapter 4, §8, Example  

(Tietze). If  is relatively continuous on a closed set  there is a function  such that  on
, 

 
and  is continuous on all of . 
(We assume  metrized as in Problem 5 of Chapter 3, §11. If  the standard metric in  may be used.)

Proof Outline

First, assume inf  and  Set 

 
and 

 
As  is closed  so are  and  by Lemma  (Why?  
As  Lemma 3 yields a continuous map  with  on  and  on  Set 

 on  so  and  is continuous on  
Applying the same steps to  (with suitable sets  find a continuous map  with  on 

Then  is continuous, and  on . 
Continuing, obtain two sequences  and  of real functions such that each  is continuous on , 

 
and  is defined and continuous on  with 

 
there . 
We claim that 

 
is the desired map. 
Indeed, the series converges uniformly on  (Theorem 3 of Chapter 4, §12). 
As all  are continuous, so is  (Theorem 2 in Chapter 4, §12). Also, 

g = a A, g = b B, a ≤ g ≤ b S

(e). □

 *Lemma 8.3.4

f : (S, ρ) → E∗ F ⊆ S, g : S → E∗ g = f

F

inf g[S] = inf f [F ], supg[S] = supf [F ], (8.3.33)

g S

E∗ |f | < ∞, E1

f [F ] = 0 supf [F ] = 1.

A = F (f ≤ ) = F ∩ [[0, ]]
1

3
f −1 1

3
(8.3.34)

B = F (f ≥ ) = F ∩ [[ , 1]] .
2

3
f −1 2

3
(8.3.35)

F inS, A B 2. )

B ∩ A = ∅, : S → [0, ] ,g1
1
3

= 0g1 A, =g1
1
3

B.

= f −f1 g1 F ; | | ≤ ,f1
2
3

f1 F .

f1 , ⊆ F ),A1 B1 ,g2 0 ≤ ≤ ⋅g2
2
3

1
3

S.

= −f2 f1 g2 0 ≤ ≤f2 ( )2
3

2
F

{ }gn { }fn gn S

0 ≤ ≤ ,gn

1

3
( )

2

3

n−1

(8.3.36)

= −fn fn−1 gn F ,

0 ≤ ≤fn ( )
2

3

n

(8.3.37)

( = f)f0

g =∑
n=1

∞

gn (8.3.38)

S

gn g

f − ≤ → 0
∣

∣
∣ ∑

k=1

n

gk

∣

∣
∣ ( )

2

3

n

(8.3.39)
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on  so  on  Moreover, 

 
Hence inf  and  as required. 
Now assume 

 
Set 

 
so that inf  and  (Why?) 
As shown above, there is a continuous map  on  with 

 
on  inf  and  Set 

 
Then  is the required function. (Verify!) 
Finally, if  all reduces to the bounded case by considering . 

(Fréchet). Let  be a strongly regular measure in  If  is  -measurable on  then 

 
for some sequence of maps  continuous on  (We assume  to be metrized as in Lemma 4.)

Proof

We consider  (the other cases reduce to  via components). 
Taking  in Theorem  we obtain for each  a closed -set  such that 

 
and  is relatively continuous on each  We may assume that  (if not, replace  by . 
Now, Lemma 4 yields for each  a continuous map  such that  on  We complete the proof by
showing that  (pointwise) on the set 

F ( why? ); f = g F .

0 ≤ ≤ g ≤ = 1 on S.g1 ∑
n=1

∞
1

3
( )

2

3

n

(8.3.40)

g[S] = 0 supg[S] = 1,

inf f [F ] = a < supf [F ] = b (a, b ∈ )E1 (8.3.41)

h(x) =
f(x) −a

b −a
(8.3.42)

h[F ] = 0 suph[F ] = 1.
g0 S,

= h =g0
f −a

b −a
(8.3.43)

F , [S] = 0,g0 sup [S] = 1.g0

a +(b −a) = g.g0 (8.3.44)

g

a, b ∈ (a < b),E∗ H(x) = arctanf(x) □

 *Theorem 8.3.3

m : M→ E∗ (S, ρ). f : S → ( , )E∗ En C n m A,

f = (a ⋅ e. (m)) on Alim
i→∞

fi (8.3.45)

fi S. E∗

f : S → E∗ E1

ε = (i = 1, 2, …)1
i

2, i M ⊆ AFi

m (A − ) <Fi

1

i
(8.3.46)

f .Fi ⊆Fi Fi+1 Fi )⋃i
k=1 Fk

i : S →fi E∗ = ffi .Fi

→ ffi

B =⋃
i=1

∞

Fi (8.3.47)
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and that . 
Indeed, fix any  Then  for some  hence also for  (since  As  on  we have 

 
and so  for  As  we get 

 
for all  Hence  and all is proved. 

This page titled 8.3: Measurable Functions in  is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

m(A −B) = 0
x ∈ B. x ∈ Fi i = ,i0 i > i0 { } ↑).Fi = ffi ,Fi

(∀i > ) (x) = f(x),i0 fi (8.3.48)

(x) → f(x)fi x ∈ B. ⊆ B,Fi

m(A −B) ≤ m (A − ) <Fi

1

i
(8.3.49)

i. m(A −B) = 0, □

(S,M, m)
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8.3.E: Problems on Measurable Functions in (S,M,m) (S,M,m)

Fill in all proof details in Corollaries 1 to 4.

Verify Notes 3 and 4.

Prove Theorems 1 and 2 in §1 and Theorem 2 in §2, for almost measurable functions.

Prove Note 2. 
[Hint: If  is -measurable on  then  and 

 
Here  by Theorem 1 in §2, and  if  is complete. For 

*4. Show that if  is complete and  is -measurable on  with  separable in  then  is  -
measurable on  
[Hint: Use Problem 

*5. Prove Theorem 1 for  assuming that  is separable in 

Given  on  prove that  on  iff  on 

Given  in  let  be the restriction of  to 

 
Prove that 
(i) ; 
(ii) if  is complete, topological, -finite or (strongly) regular, so is .

 Exercise 8.3.E. 1

 Exercise 8.3.E. 1′

 Exercise 8.3.E. 2

 Exercise 8.3.E. 3

f : S → E∗ M B = A −Q(mQ = 0, Q ⊆ A), A = B ∪ Q

(∀a ∈ ) A(f > a) = B(f > a) ∪ Q(f > a).E∗ (8.3.E.1)

B(f > a) ∈M Q(f > a) ∈M m

f : S → ( ) ,  use Theorem 2 of §1. ]En C n

 Exercise 8.3.E. 4

m f : S → (T , )ρ′ m A f [A] T , f M

A.

13 in §2. ]

 Exercise 8.3.E. 5

f : S → (T , ) ,ρ′ f [A] T .

 Exercise 8.3.E. 6

→ f( a.e. )fn A, → g( a.e. )fn A f = g( a.e. ) A.

 Exercise 8.3.E. 7

A ∈M (S,M, m), mA m

= {X ∈M|X ⊆ A}.MA (8.3.E.2)

(A, , )  is a measure space (called a subspace of (S,M, m))MA mA

m σ mA

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/25013?pdf
https://math.libretexts.org/Bookshelves/Analysis/Book%3A_Mathematical_Analysis_(Zakon)/08%3A_Measurable_Functions_and_Integration/8.03%3A_Measurable_Functions_in_((S_mathcalM_m))/8.3.E%3A_Problems_on_Measurable_Functions_in_((S_mathcalM_m))


8.3.E.2 https://math.libretexts.org/@go/page/25013

(i) Show that if  then the closure of  in the subspace  is  where  is the closure of  in 
 

[Hint: Use Problem  
(ii) Prove that if  and if  is separable in  it is so in 
[Hint: Use Problem 7 from .]

*9. Fill in all proof details in Lemma 4.

Simplify the proof of Theorem 2 for the case  
[Outline: (i) First, let  be elementary, with  on  (disjoint), . 
Given  

 
Each  has a closed subset  with  (Why?) Now use Problem 17 in Chapter 4, §8, and set 

 
(ii) If  is  -measurable on  then by Theorem 3 in  

 (uniformly) on  for some elementary maps  By  each  is relatively continuous on a closed -set 
with  so all  are relatively continuous on  Show that  is the required set.

Given  we say that 
(i)  almost uniformly on  iff 

 
(ii)  in measure on  iff 

 
Prove the following. 
(a)  (uniformly) implies  (almost uniformly), and the latter implies both 

 
(b) Given  (almost uniformly), we have  (almost uniformly) iff  similarly for convergence in
measure. 
(c) If  and  are  -measurable on  then  in measure on  iff 

 Exercise 8.3.E. 8

D ⊆ K ⊆ (T , ) ,ρ′ D (K, )ρ′ K ∩ ,D̄ D̄ D

(T , ) .ρ′

11 in Chapter 3, §16. ]

B ⊆ K B (T , ) ,ρ′ (K, ) .ρ′

ξ1

 Exercise 8.3.E. 9

 Exercise 8.3.E. 10

mA < ∞.

f f = ai ∈M, A =Ai ∪iAi ∑m = mA < ∞Ai

ε > 0

(∃n) mA − m < ε.∑
i=1

n

Ai

1

2
(8.3.E.3)

Ai ∈MFi m ( − ) < ε/2n.Ai Fi

F = .⋃n
i=1 Fi

f M H = A −Q, mQ = 0, ξ1,

→ ffn H .fn (i), fn M ⊆ H,Fn

mH −m < ε/ ;Fn 2n fn F = .⋂∞
n=1 Fn F

 Exercise 8.3.E. 11

: S → (T , ) , n = 1, 2, … ,fn ρ′

→ ffn A ⊆ S

(∀δ > 0)(∃D ∈M|mD < δ) → f(uniformly) on A −D;fn (8.3.E.4)

→ ffn A

(∀δ, σ > 0)(∃k)(∀n > k) (∃ ∈M|m < δ)Dn Dn

(f , ) < σ on A − .ρ′ fn Dn

→ ffn → ffn

→ f ( in measure) and  → f(a. e. ).fn fn

→ ffn → gfn f = g( a.e. );

f fn M A, → ffn A

(∀σ > 0) mA ( (f , ) ≥ σ) = 0.lim
n→∞

ρ′ fn (8.3.E.5)
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Assuming that  is  -measurable on  for  that  and that  on  prove
the following. 
(i) Lebesgue's theorem:  (in measure) on  (see Problem 11 ). 
(ii) Egorov's theorem:  (almost uniformly) on . 
[Outline: (i)  with  (pointwise) on  For all

 set 

 
by Problem 6 in ; hence 

 
so 

 
proving  since 

 
(ii) Continuing, set  and 

 
Deduce that  and 

 
Now, from the definition of the  show that  (uniformly) on  proving (ii). 

Disprove the converse to Problem . 
[Outline: Assume that  for all  and all  set 

 
Put the  in a single sequence by 

 
Show that  in L measure on  yet for no  does  converge as 

 Exercise 8.3.E. 12

: S → (T , )fn ρ′ m A n = 1, 2, … , mA < ∞, → f(a. e. )fn A,

→ ffn A

→ ffn A

 and f  are M -measurable on H = A −Q, mQ = 0 (Corollary 1) ,fn → ffn H.

i, k,

(k) = H( ( , f) < ) ∈MHi ⋂
n=i

∞

ρ′ fn

1

k
(8.3.E.6)

 §1. Show that ( ∀k) (k) ↗ HHi

m (k) = mH = mA < ∞;lim
i→∞

Hi (8.3.E.7)

(∀δ > 0)(∀k) (∃ ) m (A − (k)) < ,ik Hik

δ

2k
(8.3.E.8)

(i),

(∀n > ) ( , f) <  on  (k) = A −(A − (k)) .ik ρ′ fn

1

k
Hik Hik (8.3.E.9)

(∀k) = (k)Dk Hik

D = A − = (A − ) .⋂
k=1

∞

Dk ⋃
k=1

∞

Dk (8.3.E.10)

D ∈M

mD ≤ m (A − (k)) < = δ.∑
k=1

∞

Hik
∑
k=1

∞ δ

2k
(8.3.E.11)

(k),Hi → ffn A −D, ]

 Exercise 8.3.E. 13

12(i)

A = [0, 1); 0 ≤ k 0 ≤ i < ,2k

(x) = {gik

1

0

 if  ≤ x <i−1

2k

i

2k

 otherwise 
(8.3.E.12)

gik

= .f +i2k gik (8.3.E.13)

→ 0fn A, x ∈ A (x)fn n → ∞. ]
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Prove that if  is  -measurable on  and  is relatively continuous on  then 
 is -measurable on  

[Hint: Use Corollary 4 in §1.]

8.3.E: Problems on Measurable Functions in  is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 8.3.E. 14

f : S → (T , )ρ′ m A g : T → (U, )ρ′′ f [A],

g ∘ f : S → (U, )ρ′′ m A.

(S,M, m)
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8.4: Integration of Elementary Functions
In Chapter 5, integration was treated as antidifferentiation. Now we adopt another, measure-theoretical approach.

Lebesgue's original theory was based on Lebesgue measure (Chapter 7, §8). The more general modern treatment develops the
integral for functions  in an arbitrary measure space. Henceforth,  is fixed, and the range space  is 

 or another complete normed space. Recall that in such a space,  implies that  converges and is
permutable (Chapter 7, §2).

We start with elementary maps, including simple maps as a special case.

Let  be elementary on  so  on  for some -partition

(Note that there may be many such partitions.)

We say that  is integrable (with respect to ), or -integrable, on  iff

(The notation " " always makes sense by our conventions (2*) in Chapter 4, §4.) If  is Lebesgue measure, then we
say that  is Lebesgue integrable, or L-integrable.

We then define  the -integral of  on  by

(The notation " " is used to specify the measure .)

The "classical" notation for  is .

Note 1. The assumption

implies

so  if  and  if  Thus by our conventions, all "bad" terms  vanish. Hence the sum in (1)
makes sense and is finite.

Note 2. This sum is also independent of the particular choice of  For if  is another -partition of  with  on 
 say, then  on  whenever  Also,

so

and hence (see Theorem 2 of Chapter 7, §2, and Problem 11 there)

(Explain!)

f : S → E (S,M,m) E

, ,C, ,E1 E∗ En | | < ∞∑i ai ∑ai

 Definition

f : S → E A ∈M; f = ai Ai M

A =  (disjoint).⋃
i

Ai (8.4.1)

f m m A

∑ | |m < ∞.ai Ai (8.4.2)

| |mai Ai m

f

f ,∫
A

m f A,

f = fdm = m .∫
A

∫
A

∑
i

ai Ai (8.4.3)

dm m

fdm∫A f(x)dm(x)∫A

∑ | |m < ∞ai Ai (8.4.4)

(∀i) | |m < ∞;ai Ai (8.4.5)

= 0ai m = ∞,Ai m = 0Ai | | = ∞.ai mai Ai

{ }.Ai { }Bk M A, f = bk
,Bk f = =ai bk ∩Ai Bk ∩ ≠ ∅.Ai Bk

(∀i) = ( ∩ )  (disjoint);Ai ⋃
k

Ai Bk (8.4.6)

(∀i) m = m( ∩ ),ai Ai ∑
k

ai Ai Bk (8.4.7)

m = m ( ∩ ) = m ( ∩ ) = m .∑
i

ai Ai ∑
i

∑
k

ai Ai Bk ∑
k

∑
i

bk Ai Bk ∑
k

bk Bk (8.4.8)
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This makes our definition (1) unambiguous and allows us to choose any -partition  with  constant on each  when
forming integrals (1).

Let  be elementary and integrable on  Then the following statements are true.

(i)  a.e. on 

(ii)  and  are elementary and integrable on any -set  and

(iii) The set  is -finite (Definition 4 in Chapter 7, §5), and

(iv) If  (constant) on ,

(v)  iff  a.e. on .

(vi) If  then

(so we may neglect sets of measure 0 in integrals).

(vii) For any  in the scalar field of  is elementary and integrable, and

Note that if  is scalar valued,  may be a vector. If  we assume 

Proof

(i) By Note 1,  only on those  with  Let  be the union of all such  Then  and 
 on  proving (i).

(ii) If  is an -partition of  is one for  (Verify!) We have  and  on .

Also,

(Why?) Thus  and  are elementary and integrable on  and (ii) easily follows by formula (1).

(iii) By Note 1,  on  if  Thus  on  only if . Let  be the subsequence of those 
 on which  so

Also,

By (ii),  is elementary and integrable on  Also,

M { },Ai f ,Ai

 Corollary 8.4.1

f : S → E A ∈M.

|f | < ∞ A.

f |f | M B ⊆ A,

f ≤ |f | ≤ |f |.
∣
∣
∣∫

B

∣
∣
∣ ∫

B

∫
A

(8.4.9)

B = A(f ≠ 0) σ

f = f .∫
A

∫
B

(8.4.10)

f = a A

f = a ⋅mA.∫
A

(8.4.11)

|f | = 0∫A f = 0 A

mQ = 0,

f = f∫
A

∫
A−Q

(8.4.12)

k E, kf

kf = k f .∫
A

∫
A

(8.4.13)

f k E = ,E∗ k ∈ .E1

|f | = | | = ∞ai Ai m = 0.Ai Q .Ai mQ = 0
|f | < ∞ A−Q,

{ }Ai M A, {B∩ }Ai B. f = ai |f | = | |ai B∩ ⊆Ai Ai

∑ | |m (B∩ ) ≤∑ | |m < ∞.ai Ai ai Ai (8.4.14)

f |f | B,

f = 0 Ai m = ∞.Ai f ≠ 0 Ai m < ∞Ai { }Aik

Ai f ≠ 0;

(∀k) m < ∞.Aik (8.4.15)

B = A(f ≠ 0) = ∈M (σ-finite!).⋃
k

Aik (8.4.16)

f B.

f = m ,∫
B

∑
k

aik Aik (8.4.17)
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while

These sums differ only by terms with  Thus (iii) follows.

The proof of (iv)-(vii) is left to the reader.

Note 3. If  is elementary and sign-constant on  we also allow that

Thus here  exists even if  is not integrable. Apart from claims of integrability and -finiteness, Corollary 1(ii)-(vii) hold for
such , with the same proofs.

Let  be Lebesgue measure in  Define  on  (rationals) and  on  see Chapter 4, §1, Example (c). Let 

By Corollary 1 in Chapter 7, §8,  and  Also, .

Thus  is an -partition of  with  on  and  on 

Hence  is elementary and integrable on  and

Thus  is L-integrable (even though it is nowhere continuous).

(i) If  is elementary and integrable or elementary and nonnegative on  then

for any -partition  of .

(ii) If  is elementary and integrable on each set  of a finite -partition

it is elementary and integrable on all of  and (2) holds again.

Proof

(i) If  is elementary and integrable or elementary and nonnegative on  it is surely so on each  by Corollary
2 of §1 and Corollary 1(ii) above.

Thus for each  we can fix an -partition  with  constant  on . Then

is an -partition of  into the disjoint sets .

Now, by definition,

f = m .∫
A

∑
i

ai Ai (8.4.18)

= 0.ai

□

f : S → E∗ A,

f = m = ±∞.∫
A

∑
i

ai Ai (8.4.19)

f∫
A

f σ

f

 Example

m .E1 f = 1 R f = 0 −R;E1

A = [0, 1].

A∩R ∈M∗ m(A∩R) = 0. A−R ∈M∗

{A∩R,A−R} M
∗ A, f = 1 A∩R f = 0 A−R.

f A,

f = 1 ⋅m(A∩R) +0 ⋅m(A−R) = 0.∫
A

(8.4.20)

f

 Theorem  (additivity)8.4.1

f : S → E A ∈M,

f = f∫
A

∑
k

∫
Bk

(8.4.21)

M { }Bk A

f Bk M

A = ,⋃
k

Bk (8.4.22)

A,

f A = ,⋃k Bk Bk

k, M = ,Bk ⋃i Aki f (f = )aki , i = 1, 2, …Aki

A = =⋃
k

Bk ⋃
k

⋃
i

Aki (8.4.23)

M A ∈MAki
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and

by rules for double series. This proves formula (2).

(ii) If  is elementary and integrable on  then with the same notation, we have

(by integrability); hence

This means, however, that  is elementary and integrable on  and so clause (ii) follows.

Caution. Clause (ii) fails if the partition  is infinite.

(i) If  are elementary and nonnegative on  then

(ii) If  are elementary and integrable on  so is  and

Proof

Arguing as in the proof of Theorem 1 of §1, we can make  and  constant on sets of one and the same -partition of 
say,  and  on  so

In case (i),  so integrability is irrelevant by Note 3, and formula (1) yields

In (ii), we similarly obtain

(Why?) Thus  is elementary and integrable on  As before, we also get

simply by rules for addition of convergent series. (Verify!)

Note 4. As we know, the characteristic function  of a set  is defined

f = m∫
Bk

∑
i

aki Aki (8.4.24)

f = m = ( m ) = f∫
A

∑
k,i

aki Aki ∑
k

∑
i

aki Aki ∑
k

∫
Bk

(8.4.25)

f (k = 1, … ,n),Bk

| |m < ∞∑
i

aki Aki (8.4.26)

| |m < ∞.∑
k=1

n

∑
i

aki Aki (8.4.27)

f A, □

{ }Bk

 Theorem 8.4.2

f , g : S → E∗ A,

(f +g) = f + g.∫
A

∫
A

∫
A

(8.4.28)

f , g : S → E A, f ±g,

(f ±g) = f ± g.∫
A

∫
A

∫
A

(8.4.29)

f g M A,
f = ai g = bi ∈M;Ai

f ±g = ±  on  , i = 1, 2, … .ai bi Ai (8.4.30)

f , g ≥ 0;

(f +g) = ( + )m = m +∑ m = f + g.∫
A

∑
i

ai bi Ai ∑
i

ai Ai bi Ai ∫
A

∫
A

(8.4.31)

| ± |m ≤∑ | |m + | |m < ∞.∑
i

ai bi Ai ai Ai ∑
i

bi Ai (8.4.32)

f ±g A.

(f ±g) = f ± g,∫
A

∫
A

∫
A

(8.4.33)

□

CB B ⊆ S
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If  is elementary on  so that

for some -partition

then

(This sum always exists for disjoint sets  Why?) We shall often use this notation.

If  is Lebesgue measure in  the integral

has a simple geometric interpretation; see Figure 33. Let  let  be bounded and nonnegative on  Each product 
 is the area of a rectangle with base  and altitude  (We assume the  to be intervals here.) The total area,

can be treated as an approximation to the area under some curve , where  is approximated by  (Theorem 3 in §1).
Integration historically arose from such approximations.

Integration of elementary extended-real functions. Note 3 can be extended to sign-changing functions as follows.

If

on

(x) = {CB

1,

0,

x ∈ B,

x ∈ S−B.
(8.4.34)

g : S → E A,

g =  on  , 1, 2, … ,ai Ai (8.4.35)

M

A =⋃ ,Ai (8.4.36)

g =  on A.∑
i

aiCAi
(8.4.37)

.Ai

m ,E1

g = m∫
A

∑
i

ai Ai (8.4.38)

A = [a, b] ⊂ ;E1 g .E1

mai Ai Ai .ai Ai

g = m ,∫
A

∑
i

ai Ai (8.4.39)

y = f(x) f g

 Definition

f = ( ∈ )∑
i

aiCAi ai E∗ (8.4.40)

A = ( ∈M) ,⋃
i

Ai Ai (8.4.41)
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we set

with

see §2.

By Theorem 2 in §2,  and  are elementary and nonnegative on  so

are defined by Note 3, and so is

by our conventions (2*) in Chapter 4, §4.

We shall have use for formula (3), even if

then we say that  is unorthodox and equate it to  by convention; cf. Chapter 4, §4. (Other integrals are called
orthodox.) Thus for elementary and (extended) real functions,  is always defined. (We further develop this idea in §5.)

Note 5. With  as above, we clearly have

where

Thus

so that

If  or  we can subtract the two series termwise (Problem 14 of Chapter 4, §13) to obtain

for  Thus formulas (3) and (4) agree with our previous definitions.

This page titled 8.4: Integration of Elementary Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias
Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform;
a detailed edit history is available upon request.

f = − ,∫
A

∫
A

f+ ∫
A

f− (8.4.42)

= f ∨ 0 ≥ 0 and  = (−f) ∨ 0 ≥ 0;f+ f− (8.4.43)

f+ f− A;

 and ∫
A

f+ ∫
A

f− (8.4.44)

f = −∫
A

∫
A

f+ ∫
A

f− (8.4.45)

= = ∞;∫
A

f+ ∫
A

f− (8.4.46)

f∫
A

+∞,

f∫A

f

=  and  =  on  ,f+ a+
i f− a−

i Ai (8.4.47)

= max ( , 0)  and  = max (− , 0) .a+
i ai a−

i ai (8.4.48)

=∑ ⋅m  and  =∑ ⋅m ,∫
A

f+ a+
i Ai ∫

A

f− a−
i Ai (8.4.49)

f = − = ⋅m − ⋅m .∫
A

∫
A

f+ ∫
A

f− ∑
i

a+
i Ai ∑

i

a−
i Ai (8.4.50)

< ∞∫
A
f+ < ∞,∫

A
f−

f = ( − )m = m∫
A

∑
i

a+
i a−

i Ai ∑
i

ai Ai (8.4.51)

− = .a+
i a−

i ai
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8.4.E: Problems on Integration of Elementary Functions

Verify Note 2.

Prove Corollary .

Prove that  if  or  on  Disprove the converse by examples.

Find a primitive  for  in our example. Show that 

Fill in the proof details in Theorem  
[Hint: Use comparison test for series.]

. Show that if  and  are elementary and nonnegative with  on  then 

 
[Hint: As in Theorem  let 

 
Then 

. Prove that if  and  are elementary and (extended) real on  then 

 
provided 
(i)  or  is finite, or 
(ii)  and  are all orthodox. 
[Outline: As in Theorem  let 

 Exercise 8.4.E. 1

 Exercise 8.4.E. 1′

1(iv) −( vii )

 Exercise 8.4.E. 2

f = 0∫
A

mA = 0 f = 0 A.

 Exercise 8.4.E. 3

F f = CR

fdm = F (1) −F (0).∫
[0,1]

(8.4.E.1)

 Exercise 8.4.E. 4

2.

 Exercise 8.4.E. 5

⇒ 5 f g f ≥ g A,

f ≥ g ≥ 0.∫
A

∫
A

(8.4.E.2)

2,

f =  and g = .∑
i

aiCAi
∑
i

biCAi
(8.4.E.3)

f ≥ g ≥ 0 implies  ≥ ≥ 0. ]ai bi

 Exercise 8.4.E. 6

⇒ 6 f g A,

(f ±g) = f ± g,∫
A

∫
A

∫
A

(8.4.E.4)

f∫A g∫A
f , g,∫

A
fA f ± g∫

A
∫
A

2,
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so 

 
Now, if 

 
then by Problem 14 in Chapter 4, §13, and formula  converges absolutely; so its termwise addition to any other
series does not affect the absolute convergence or divergence of the latter, i.e., the finiteness or infiniteness of its positive and
negative parts. For example, 

 
iff 

 
Thus if

 
then 

 
If both 

 
Theorem  ii) applies. In the orthodox infinite case, a similar proof works on noting that either the positive or the negative
parts of both series are finite if 

 
is orthodox, too. (Verify!)]

Show that if  is elementary and nonnegative on  and 

f =  and g = ,∑
i

aiCAi
∑
i

biCAi
(8.4.E.5)

f ±g = ±  on  .ai bi Ai (8.4.E.6)

f < ∞,
∣

∣
∣∫

A

∣

∣
∣ (8.4.E.7)

(4),∑ mai Ai

m = ∞∑
i

( ± )ai bi
+ Ai (8.4.E.8)

∑ m = ∞.b+
i Ai (8.4.E.9)

g = ±∞,∫
A

(8.4.E.10)

(f ±g) = g = ±∞ = f ± g.∫
A

∫
A

∫
A

∫
A

(8.4.E.11)

f , g ≠ ±∞,∫
A

∫
A

(8.4.E.12)

2(

f ± g∫
A

∫
A

(8.4.E.13)

 Exercise 8.4.E. 7

f A

f > p ∈ ,∫
A

E∗ (8.4.E.14)
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then there is an elementary and nonnegative map  on  such that 

 
 on  and 

 
[Hints: Let 

 
and 

 
so  is elementary and nonnegative on  and 

 
and 

 
so  is elementary and nonnegative on  and 

 
By Theorem 1 and Corollary 1(iv)(vii), 

 
Deduce that 

 
so 

 
Take 

Show that if  Theorem  holds also if  is infinite but orthodox.

g A

f ≥ g > p,∫
A

∫
A

(8.4.E.15)

g = 0 A(f = 0),

f > g on A−A(f = 0). (8.4.E.16)

B = A(f = ∞) (8.4.E.17)

C = A−B; (8.4.E.18)

gn A

= n on Bgn (8.4.E.19)

=(1 − ) f  on C;gn
1

n
(8.4.E.20)

gn A

f >  on A−A(f = 0). (Why?)gn (8.4.E.21)

= + = (n) + (1 − ) f = n ⋅mB+(1 − ) f .∫
A

gn ∫
B

gn ∫
C

gn ∫
B

∫
C

1

n

1

n
∫
C

(8.4.E.22)

= f + f = f > p;lim
n→∞

∫
A

gn ∫
B

∫
C

∫
A

(8.4.E.23)

(∃n) > p.∫
A

gn (8.4.E.24)

g =  for that n. ]gn

 Exercise 8.4.E. 8

E = ,E∗ 1( i ) f∫A
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(i) Prove that if  is elementary and integrable on  so is  and 

 
(ii) Show that this holds also if  is elementary and (extended) real and  is orthodox.

8.4.E: Problems on Integration of Elementary Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 8.4.E. 9

f A, −f ,

(−f) = − f .∫
A

∫
A

(8.4.E.25)

f f∫
A
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8.5: Integration of Extended-Real Functions
We shall now define integrals for arbitrary functions  in a measure 
space  We start with the case .

Given  on  we define the upper and lower integrals, 

 
of  on  (with respect to  by 

 
over all elementary maps  on  and 

 
over all elementary and nonnegative maps  on . 
If  is not nonnegative, we use  and  (§2), and set 
\[ 

\] 
By our conventions, these expressions are always defined. The integral  is called orthodox iff it does not

have the form  in (1), e.g.,  (i.e.,  or if  An unorthodox integral equals  

We often write  for  and call it simply the integral (of  even if 

 
"Classical" notation is .

The function  is called integrable (or -integrable, or Lebesgue integrable, with respect to  on  iff  

The process described above is called (abstract) Lebesgue integration as opposed to Riemann integration (B. Riemann, 1826-1866).
The latter deals with bounded functions only and allows  and  in  and  to be simple step functions only (see §9). It is
inferior to Lebesgue theory. 
The values of 

f : S → E∗

(S,M,m). f ≥ 0

 Definition

f ≥ 0 A ∈M,

 and  ,∫
¯ ¯¯̄¯

∫
––

(8.5.1)

f A m)

f = fdm = h∫
A

¯ ¯¯̄¯̄

∫
A

¯ ¯¯̄¯̄

inf
h
∫
A

(8.5.2)

h ≥ f A,

f = fdm = g∫
−A

∫
−A

sup
g
∫
A

(8.5.3)

g ≤ f A

f = f ∨ 0f+ = (−f) ∨ 0f−

f∫A

f∫
A–––

= fdm = −  and∫A
¯ ¯¯̄¯̄

∫A
¯ ¯¯̄¯̄

f+ ∫A–––
f−

= fdm = − .∫
A–––

∫
A–––
f+ ∫

A

¯ ¯¯̄¯̄
f−

(8.5.4)

f ( or  f)∫
¯¯̄

A
∫

−A

∞ −∞ f ≥ 0 if 
¯ ¯¯̄¯̄

= 0),f− f < ∞.∫
A

+∞.

∫ ∫
¯¯̄

f),

f ≠ f .∫
A

¯ ¯¯̄¯̄

∫
A

(8.5.5)

f(x)dm(x)∫
A

 Definition

f m m) A,

fdm = fdm ≠ ±∞∫
A

¯ ¯¯̄¯̄

∫
A

(8.5.6)

h g ( )1′ ( )1′′
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depend on  If  is Lebesgue measure, we speak of Lebesgue integrals, in the stricter sense. If  is Lebesgue-Stieltjes measure,
we speak of -integrals, and so on. 
Note 1. If  is elementary and (extended) real, our present definition of 

 
agrees with that of §4. For if  itself is the least of all elementary and nonnegative functions 

 
and the greatest of all elementary and nonnegative functions 

 
Thus by Problem 5 in §4, 

 
i.e., 

 
If, however,  this follows by Definition 2 in §4. This also shows that for elementary and (extended) real maps, 

 
(See also Theorem 3.) 
Note 2. By Definition 1, 

 
For if  then for any elementary and nonnegative maps  with 

 
we have 

 
by Problem 5 in §4. Thus 

fdm and  fdm∫
A

¯ ¯¯̄¯̄

∫
A– ––

(8.5.7)

m. m m

LS

f

f∫
A

¯ ¯¯̄¯̄

(8.5.8)

f ≥ 0, f

h ≥ f (8.5.9)

g ≤ f . (8.5.10)

f = h = g,∫
A

min
h≥f
∫
A

max
g≤f

∫
A

(8.5.11)

f = f = f .∫
A

∫
¯ ¯¯̄¯

A

∫
A– ––

(8.5.12)

f ≱ 0,

f = f  always.∫
A

¯ ¯¯̄¯̄

∫
A– ––

(8.5.13)

f ≤ f  always.∫
A– ––

∫
A

¯ ¯¯̄¯̄

(8.5.14)

f ≥ 0, g,h

g ≤ f ≤ h, (8.5.15)

g ≤ h∫
A

∫
A

(8.5.16)
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is a lower bound of all such  and so 

 
In the general formula  too 

 
since 

For any functions  and any set  we have the following results. 
(a) If  on  then 

. 

(b) If  on  or  then 

 
(c) If  on  then 

 
(d) If  on  then 

 
Similarly if  on . 
(e) If  then 

 
(e') We have 

 
if one of the integrals involved in each case is orthodox. Otherwise, 

f = g∫
A– ––

sup
g
∫
A

(8.5.17)

h,∫
A

f ≤ glb h = f .∫
A– ––

∫
A

∫
¯ ¯¯̄¯

A

(8.5.18)

(1),

f ≤ f ,∫
A– ––

∫
A

¯ ¯¯̄¯̄

(8.5.19)

≤  and  ≤ .∫
−A

f+ ∫
¯ ¯¯̄¯

A

f+ ∫
−A

f− J¯¯̄
Af

− (8.5.20)

 Theorem 8.5.1

f , g : S → E∗ A ∈M,
f = a(constant) A,

f = f = a ⋅mA∫
A

¯ ¯¯̄¯̄
∫
A–––

f = 0 A mA = 0,

f = f = 0.∫
A

¯ ¯¯̄¯̄

∫
A– ––

(8.5.21)

f ≥ g A,

f ≥ g and  f ≥ g.∫
A

¯ ¯¯̄¯̄

∫
¯ ¯¯̄¯

A

∫
A– ––

∫
A– ––

(8.5.22)

f ≥ 0 A,

f ≥ 0 and  f ≥ 0.∫
A

¯ ¯¯̄¯̄

∫
A– ––

(8.5.23)

f ≤ 0 A

0 ≤ p < ∞,

pf = p f  and  pf = p f .∫
A

¯ ¯¯̄¯̄

∫
A

¯ ¯¯̄¯̄

∫
A– ––

∫
A– ––

(8.5.24)

(−f) = − f  and  (−f) = − f∫
A

¯ ¯¯̄¯̄

∫
A

– ––

∫
A

– ––

∫
A

¯ ¯¯̄¯̄

(8.5.25)

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/19215?pdf


8.5.4 https://math.libretexts.org/@go/page/19215

 
(f) If  on  and 

 
then 

 
(g) We have 

 
(but not 

 
in general). 
(h) If  on  and  (or  and  then  a.e. on .

Proof

We prove only some of the above, leaving the rest to the reader. 
(a) This following by Corollary 1 (iv) in §4. 
(b) Use (a) and Corollary 1 (v) in §4. 
(c) First, let 

 
Take any elementary and nonnegative map  on  Then  as well; so by definition, 

 
Thus 

 
for any such  Hence also 

 
Similarly, 

(−f) = ∞ = f  and  (−f) = ∞ = f .∫
A

¯ ¯¯̄¯̄

∫
A– ––

∫
A– ––

∫
A

¯ ¯¯̄¯̄

(8.5.26)

f ≥ 0 A

A ⊇ B,B ∈M, (8.5.27)

f ≥ f  and  f ≥ f .∫
A

¯ ¯¯̄¯̄

∫
B

¯ ¯¯̄¯̄

∫
A– ––

∫
B– ––

(8.5.28)

f ≤ |f | and  f ≤ |f |
∣

∣
∣∫

¯ ¯¯̄¯

A

∣

∣
∣ ∫

¯ ¯¯̄¯

A

∣

∣
∣∫

A– ––

∣

∣
∣ ∫

A

¯ ¯¯̄¯̄

(8.5.29)

f ≤ |f |
∣

∣
∣∫

A– ––

∣

∣
∣ ∫

A– ––

(8.5.30)

f ≥ 0 A f = 0∫
A

¯ ¯¯̄¯̄
f ≤ 0 f = 0),∫

A–––
f = 0 A

f ≥ g ≥ 0 on A. (8.5.31)

H ≥ f A. H ≥ g

g = h ≤ H.∫
A

¯ ¯¯̄¯̄

inf
h≥g
∫
A

∫
A

(8.5.32)

f ≤ H∫
A

¯ ¯¯̄¯̄

∫
A

(8.5.33)

H.

g ≤ H = f .∫
¯ ¯¯̄¯

A

inf
H≥f

∫
A

∫
¯ ¯¯̄¯

A

(8.5.34)
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if . 
In the general case,  implies 

 
Thus by what was proved above, 

 
Hence 

 
i.e., 

 
Similarly, one obtains 

 
(d) It is clear that (c) implies (d).
(e) Let  and suppose  on  Take any elementary and nonnegative map 

 
By Corollary 1 (vii) and Note 3 of §4, 

 
for any such  Hence 

 
Similarly, 

 
The general case reduces to the case  by formula . 
(e') Assertion  follows from  since 

f ≥ g∫
A– ––

∫
A– ––

(8.5.35)

f ≥ g ≥ 0
f ≥ g

≥  and  ≤ .  (Why?) f+ g+ f− g− (8.5.36)

≥  and  ≤ .∫
A

¯ ¯¯̄¯̄

f+ ∫
A

¯ ¯¯̄¯̄

g+ ∫
A– ––

f− ∫
A– ––

g− (8.5.37)

− ≥ − ;∫
A

¯ ¯¯̄¯̄

f+ ∫
A

– ––

f− ∫
A

¯ ¯¯̄¯̄

g+ ∫
−A

– –––

g− (8.5.38)

≥ g.∫
A

¯ ¯¯̄¯̄

∫
A

¯ ¯¯̄¯̄

(8.5.39)

]underline∫ Af ≥ g.∫
A– ––

(8.5.40)

0 ≤ p < ∞ f ≥ 0 A.

h ≥ f  on A. (8.5.41)

ph = p h∫
A

∫
A

(8.5.42)

h.

pf = ph = p h = p f .∫
A

¯ ¯¯̄¯̄

inf
h
∫
A

inf
h
∫
A

∫
A

¯ ¯¯̄¯̄

(8.5.43)

pf = p f .∫
A

– ––

∫
A

– ––

(8.5.44)

f ≥ 0 (1)
( )e′ (1)
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and  if  is orthodox. (Why?) 
(f) Take any elementary and nonnegative map 

 
By Corollary 1 (ii) and Note 3 of §4, 

 
for any such  Hence 

 
Similarly for .
(g) This follows from  and  since  implies 

 
and 

 
For  and later work, we need the following lemmas.

Let  and  Then the following are true. 
(i) If 

 
there is an elementary and (extended) real map 

 
with 

 
(ii) If 

(−f = , (−f = ,)+ f− )− f+ (8.5.45)

−(x−y) = y−x x−y

h ≥ f ≥ 0 on A. (8.5.46)

h ≥ h∫
B

∫
A

(8.5.47)

h.

f = h ≤ h = f .∫
B

¯ ¯¯̄¯̄

inf
h
∫
B

inf
h
∫
A

∫
¯ ¯¯̄¯

A

(8.5.48)

∫
––

(c) ( )e′ ±f ≤ |f |

|f | ≥ f ≥ f∫
¯ ¯¯̄¯

A

∫
¯ ¯¯̄¯

A

∫
A– ––

(8.5.49)

|f | ≥ (−f) ≥ − f ≥ − f . □∫
A

¯ ¯¯̄¯̄

∫
A

¯ ¯¯̄¯̄

∫
A– ––

∫
A

¯ ¯¯̄¯̄

(8.5.50)

(h)

 Lemma 8.5.1

f : S → E∗ A ∈M.

f < q ∈ ,∫
A

E∗ (8.5.51)

h ≥ f  on A, (8.5.52)

h < q.∫
A

(8.5.53)

f > p ∈ ,∫
A

E∗ (8.5.54)
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there is an elementary and (extended) real map 

 
with 

 
moreover,  can be made elementary and nonnegative if  on .

Proof

If  this is immediate by Definition 1 and the properties of glb and lub. 
If, however,  and if 

 
our conventions yield 

 
Thus there are  such that  and 

 
and 

 

To see why this is so, choose  so close to  that 

 
and set . 
As the lemma holds for positive functions, we find elementary and nonnegative maps  and  with 

 

 
Let  Then 

g ≤ f  on A, (8.5.55)

g > p;∫
A

(8.5.56)

g f ≥ 0 A

f ≥ 0,
f ≱ 0,

q > f = − ,∫
A

∫
A

¯ ¯¯̄¯̄

f+ ∫
A

– ––

f− (8.5.57)

∞ > . (Why?)∫
A

f+ (8.5.58)

u, v∈ E∗ q = u+v

0 ≤ < u < ∞∫
A

f+ (8.5.59)

− < v.∫
A

f− (8.5.60)

u ∫
¯¯̄

A f+

q−u > −∫
A– ––

f− (8.5.61)

v= q−u

h′ ,h′′

≥ , ≤ ,h′ f+ h′′ f− (8.5.62)

< u < ∞ and  > −v.∫
A

h′ ∫
A

h′′ (8.5.63)

h = − .h′ h′′

h ≥ − = f ,f+ f− (8.5.64)
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and by Problem 6 in §4, 

 
Hence 

 
and clause (i) is proved in full.
Clause (ii) follows from (i) by Theorem 1  if 

 
(Verify!) For the case  see Problem 

Note 3. The preceding lemma shows that formulas  and  hold (and might be used as definitions) even for sign-changing 
 and .

If  and  there are  -measurable maps  and  with 

 
such that  

 
We can take  if  on .

Proof

If 

 
the constant map  satisfies the statement of the theorem. 
If 

 
let 

h = − ( for   is finite! ) .∫
A

∫
A

h′ ∫
A

h′′ ∫
A

h′ (8.5.65)

h > u+v= q,∫
A

(8.5.66)

( )e′

f < ∞.∫
A– ––

(8.5.67)

f = ∞,∫A–––
3. □

( )1′ ( )1′′

f , g, h

 Lemma 8.5.2

f : S → E∗ A ∈M, M g h,

g ≤ f ≤ h on A, (8.5.68)

f = h and  f = g.∫
A

¯ ¯¯̄¯̄

intA
¯ ¯¯̄¯̄¯̄¯̄ ∫

A– ––

∫
A– ––

(8.5.69)

g,h ≥ 0 f ≥ 0 A

f = ∞,∫
A

¯ ¯¯̄¯̄

(8.5.70)

h = ∞

−∞ < f < ∞,∫
A

¯ ¯¯̄¯̄

(8.5.71)

= f + , n = 1, 2, … ;qn ∫
A

¯ ¯¯̄¯̄
1

n
(8.5.72)
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so 

 
By Lemma  for each  there is an elementary and (extended) real (hence measurable) map  on  with 

 
Let 

 
By Lemma 1 in §2,  is -measurable on  Also, 

 
by Theorem 1  Hence 

 
so 

 
as required. 
Finally, if 

 
the same proof works with  (Verify!  
Similarly, one finds a measurable map  with 

Proof of Theorem 1(h). If  choose  as in Lemma  Let 

 
so 

→ f < .qn ∫
A

¯ ¯¯̄¯̄

qn (8.5.73)

1, n ≥ fhn A,

≥ ≥ f .qn ∫
A

hn ∫
A

¯ ¯¯̄¯̄

(8.5.74)

h = ≥ f .inf
n
hn (8.5.75)

h M A.

(∀n) > ≥ h ≥ fqn ∫
A

hn ∫
A

¯ ¯¯̄¯̄

∫
A

¯ ¯¯̄¯̄

(8.5.76)

(c).

f = ≥ h ≥ f ,∫
A

¯ ¯¯̄¯̄

lim
n→∞

qn ∫
A

¯ ¯¯̄¯̄

∫
A

¯ ¯¯̄¯̄

(8.5.77)

f = h,∫
A

¯ ¯¯̄¯̄

∫
A

¯ ¯¯̄¯̄

(8.5.78)

f = −∞,∫
A

¯ ¯¯̄¯̄

(8.5.79)

= −n.qn )
g ≤ f ,

f = g. □∫
A– ––

∫
A– ––

(8.5.80)

f ≥ 0, h ≥ f 2.

D = A(h > 0) and  = A(h > ) ;An

1

n
(8.5.81)

D = ( why ?)⋃
n=1

∞

An (8.5.82)
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and  by Theorem 1 of §2. Also, 

 
Thus  Hence 

 
so  a.e. on . 
The case  reduces to . 

If 

 
then  a.e. on  and  is -finite.

Proof

By Lemma  fix an elementary and nonnegative  with 

 
(so  is elementary and integrable). 
Now, by Corollary  in §4, our assertions apply to  hence certainly to 

(additivity). Given  and an -partition  of  we have 

 
provided 

 
is orthodox, or  is finite. 
Hence if  is integrable on each of finitely many disjoint M-sets  it is so on 

 
and formulas  apply.

D, ∈MAn

0 = f = h ≥ ( ) = m ≥ 0.∫
A

¯ ¯¯̄¯̄

∫
A

¯ ¯¯̄¯̄

∫
An

1

n

1

n
An (8.5.83)

(∀n)m = 0.An

mD = m = mA(h > 0) = 0;⋃
n=1

∞

An (8.5.84)

0 ≤ f ≤ h ≤ 0( i.e., f = 0) A

f ≤ 0 (−f) ≥ 0 □

 Corollary 8.5.1

|f | < ∞,∫
A

¯ ¯¯̄¯̄

(8.5.85)

|f | < ∞ A, A(f ≠ 0) σ

1, h ≥ |f |

h < ∞∫
A

(8.5.86)

h

1(i) −( iii ) h, f . □

 Theorem 8.5.2

f : S → E∗ M P = { }Bn A ∈M,

 (a)  f = f  and   (b)  f = f ,∫
¯ ¯¯̄¯

A

∑
n

∫
¯ ¯¯̄¯

Bn

∫
A– ––

∑
n

∫
Bn– –––

(8.5.87)

f ( f ,  respectively )∫
A

¯ ¯¯̄¯̄

∫
A– ––

(8.5.88)

P

f ,Bn

A = ,⋃
n

Bn (8.5.89)

(2)(a)(b)
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Proof

Assume first  on  Then by Theorem  if one of 

 

so is  and all is trivial. Thus assume all  are finite. 
Then for any  and  there is an elementary and nonnegative map  on  with 

 
(Why?) Now define  by  on  
Clearly,  is elementary and nonnegative on each  hence on  (Corollary 3 in §1), and  on  Thus by Theorem
1 of §4,  

 
Making  we get 

 
To prove also 

 
take any elementary and nonnegative map  on  Then again, 

 
As this holds for any such  we also have 

 
This proves formula (a) for  The proof of  is quite similar. 
If  we have 

 
where by the first part of the proof, 

f ≥ 0 A. 1(f),

f = ∞,∫
Bn

¯ ¯¯̄¯̄¯̄

(8.5.90)

f ,∫
¯¯̄

A
f∫

Bn

ε > 0 n ∈ N , ≥ fhn ,Bn

< f + .∫
Bn

hn ∫
¯ ¯¯̄¯

Bn

ε

2n
(8.5.91)

h : A → E∗ h = hn ,n = 1, 2, …Bn

h ,Bn A h ≥ f A.

f ≤ h = ≤ ( f + ) ≤ f +ε.∫
¯ ¯¯̄¯

A

∫
A

∑
n

∫
Bn

hn ∑
n

∫
Bn

¯ ¯¯̄¯̄¯̄ ε

2n
∑
n

∫
¯ ¯¯̄¯

Bn

(8.5.92)

ε → 0,

f ≤ f .∫
A

¯ ¯¯̄¯̄

∑
n

∫
¯ ¯¯̄¯

Bn

(8.5.93)

f ≥ f ,∫
A

¯ ¯¯̄¯̄

∑
n

∫
¯ ¯¯̄¯

Bn

(8.5.94)

H ≥ f A.

H = H ≥ f .∫
A

∑
n

∫
Bn

∑
n

∫
¯ ¯¯̄¯

Bn

(8.5.95)

H,

f = H ≥ f .∫
A

¯ ¯¯̄¯̄

inf
H
∫
A

∑
n

∫
¯ ¯¯̄¯

Bn

(8.5.96)

f ≥ 0. (b)
f ≱ 0,

f = − ,∫
A

¯ ¯¯̄¯̄

∫
A

¯ ¯¯̄¯̄

f+ ∫
A– ––

f− (8.5.97)

=  and  = .∫
A

¯ ¯¯̄¯̄

f+ ∑
n

∫
Bn

¯ ¯¯̄¯̄¯̄

f+ ∫
A– ––

f− ∑
n

∫
Bn

– –––

f− (8.5.98)
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If  

 
is orthodox, one of these sums must be finite, and so their difference may be rearranged to yield 

 
proving (a). Similarly for (b). 
This rearrangement works also if  is finite (i.e., the sums have a finite number of terms  For, then, all reduces to
commutativity and associativity of addition, and our conventions  of Chapter 4, §4. Thus all is proved. 

If  then for  

 
For by Theorem 2, 

 
where 

 
by Theorem 1(b).

If 

 
is orthodox, so is 

 
whenever . 
For if 

f∫
A

¯ ¯¯̄¯̄

(8.5.99)

f = ( − ) = f ,∫
A

¯ ¯¯̄¯̄

∑
n

∫
Bn

¯ ¯¯̄¯̄¯̄

f+ ∫
Bn

– –––

f− ∑
n

∫
Bn

¯ ¯¯̄¯̄¯̄

(8.5.100)

P ).
( )2∗ □

 Corollary 8.5.2

mQ = 0(Q ∈M), A ∈M

f = f  and  f = f .∫
¯ ¯¯̄¯

A−Q

∫
A

¯ ¯¯̄¯̄

∫
A−Q

– ––––

∫
A– ––

(8.5.101)

f = f + f ,∫
A

¯ ¯¯̄¯̄

∫
A−Q

¯ ¯¯̄¯̄ ¯̄ ¯̄¯

∫
A∩Q

¯ ¯¯̄¯̄¯̄¯̄¯

(8.5.102)

f = 0∫
A∩Q

¯ ¯¯̄¯̄¯̄¯̄¯

(8.5.103)

 Corollary 8.5.3

f (or f)∫
A

¯ ¯¯̄¯̄

∫
A

– ––

(8.5.104)

f ( f)∫
X

¯ ¯¯̄¯̄

∫
X

– ––

(8.5.105)

A ⊇ X,X ∈M
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it remains so also when  is reduced to  (see Theorem 1 . Hence orthodoxy follows by formula . 
Note 4. Given  we can define two additive (by Theorem 2) set functions  and  by setting for  

 
They are called, respectively, the upper and lower indefinite integrals of  also denoted by 

 
. 

By Theorem 2 and Corollary  if 

 
is orthodox, then  is  -additive (and semifinite) when restricted to -sets  Also 

 
by Theorem 1(b). 
Such set functions are called signed measures (see Chapter 7, §11). In particular, if  on  and  are -additive and
nonnegative on all of  hence measures on .

If  is m-measurable (Definition 2 in §3) on  then 

Proof

First, let  on  By Corollary  we may assume that  is -measurable on  (drop a set of measure zero). Now fix 
. 

Let  and 

 
Clearly, these are disjoint  -sets (Theorem 1 of §2), and 

 
Thus, setting 

, , ,  or   is finite, ∫
A

¯ ¯¯̄¯̄

f+ ∫
A

¯ ¯¯̄¯̄

f− ∫
A– ––

f+ ∫
A– ––

f− (8.5.106)

A X (f) (1)
f : S → ,E∗ s̄̄̄ s

–
X ∈M

X = f  and  X = f .s̄̄̄ ∫
X

¯ ¯¯̄¯̄

s
–

∫
X

– ––

(8.5.107)

f ,

f  and  f∫
¯ ¯¯̄¯

∫
––

(8.5.108)

( or   and  )s̄̄̄f s–f
3,

f∫
A

¯ ¯¯̄¯̄

(8.5.109)

s̄̄̄ σ M X ⊆ A.

∅ = ∅ = 0s̄̄̄ s
–

(8.5.110)

f ≥ 0 S, s̄̄̄ s– σ

M, M

 Theorem 8.5.3

f : S → E∗ A,

f = f .∫
A

¯ ¯¯̄¯̄

∫
A– ––

(8.5.111)

f ≥ 0 A. 2, f M A

ε > 0
= A(f = 0), = A(f = ∞),A0 A∞

= A ((1 +ε ≤ f < (1 +ε ) , n = 0, ±1, ±2, …An )n )n+1 (8.5.112)

M

A = ∪ ∪ .A0 A∞ ⋃
n=−∞

∞

An (8.5.113)
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and 

 on , 
we obtain two elementary and nonnegative maps, with 

 
By Note 1, 

 
Now, if  then 

 
yields 

 
If, however,  then 

 
so  and  are elementary and integrable on  Thus by Theorem 2(ii) in §4, 

 
Moreover,  implies 

 
so 

 
As  is arbitrary, all is proved for . 
The case  now follows by formula (1), since  and  are measurable (Theorem 2 in §2). 

g =
⎧

⎩
⎨
⎪

⎪

0

∞

(1 +ε)n

 on A0

 on  ,  and A∞

 on  (n = 0, ±1, ±2, …)An

(8.5.114)

h = (1 +ε)g A

g ≤ f ≤ h on A. (Why?) (8.5.115)

g = g.∫
A– ––

∫
A

¯ ¯¯̄¯̄

(8.5.116)

g = ∞,∫
A

f ≥ f ≥ g∫
A

¯ ¯¯̄¯̄

∫
A– ––

∫
A

(8.5.117)

f ≥ f = ∞.∫
A

¯ ¯¯̄¯̄

∫
A– ––

(8.5.118)

g < ∞,∫A

h = (1 +ε)g = (1 +ε) g < ∞;∫
A

∫
A

∫
A

(8.5.119)

g h A.

h− g = (h−g) = ((1 +ε)g−g) = ε g.∫
A

∫
A

∫
A

∫
A

∫
A

(8.5.120)

g ≤ f ≤ h

g ≤ f ≤ f ≤ h;∫
A

∫
A– ––

∫
A

¯ ¯¯̄¯̄

∫
A

(8.5.121)

f − f ≤ h− g ≤ ε g.
∣

∣
∣∫

¯ ¯¯̄¯

A

∫
A– ––

∣

∣
∣ ∫

A

∫
A

∫
A

(8.5.122)

ε f ≥ 0
f ≱ 0 f+ f− M− □
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8.5.E: Problems on Integration of Extended-Real Functions

Using the formulas in ( 1) and our conventions, verify that 
(i)  iff ; 
(ii)  iff  and 

(iii)  iff  and . 
(iv) Derive a condition similar to (iii) for . 
(v) Review Problem 6 of Chapter 4, §4.

Fill in the missing proof details in Theorems 1 to 3 and Lemmas 1 and 2.

Prove that if  there is an elementary and (extended) real map  on  with . 
[Outline: By Problem  we have 

 
As Lemmas 1 and 2 surely hold for nonnegative functions, fix a measurable   with 

 
Arguing as in Theorem  find an elementary and nonnegative map  with 

 
so  and  on . 
Let 

 
and 

 
(Theorem 1 in §2). On  

 
while on  so 

 Exercise 8.5.E. 1

f =+∞∫
¯¯̄

A
=∞∫

¯¯̄

A
f+

f =∞∫
––A

=∞;∫
––A

f+

f =−∞f
¯̄̄

A =∞∫
––A

f− <∞∫
¯¯̄

A f+

f =−∞∫
––A

 Exercise 8.5.E. 2

 Exercise 8.5.E. 3

f =∞,∫A–––
g ≤ f A, g =∞∫A

1,

=∞.∫
A

– ––

f+ (8.5.E.1)

F ≤ f+ (F ≥ 0),

F = =∞.∫
A

∫
A

– ––

f+ (8.5.E.2)

3, g ≤ F ,

(1+ε) g = F =∞;∫
A

∫
A

(8.5.E.3)

g =∞∫
A

0 ≤ g ≤ F ≤ f+ A

= A(F > 0) ∈MA+ (8.5.E.4)

= A(F = 0) ∈MA0 (8.5.E.5)

,A+

g ≤ F ≤ = f( why? ),f+ (8.5.E.6)

, g = F = 0;A0

g = g =∞(why?).∫
A+

∫
A

(8.5.E.7)
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Now redefine  on  (only). Show that  is then the required function.]

For any  prove the following. 

(a) If  then  a.e. on . 
(b) If  is orthodox and  then  a.e. on . 
[Hint: Use Problem 1 and apply Corollary 1 to  thus prove (a). Then for (b), use Theorem 1(e').]

. For any  prove that 

(i)  and 
(ii)  if . 
[Hint: Suppose that 

 
Then there are numbers 

 
with 

 
(Why?) Thus Lemma 1 yields elementary and (extended) real maps  and  such that 

 
As  on  Theorem  of §5 and Problem 6 of §4 show that 

 
contrary to 

 
Similarly prove clause (ii).]

g =−∞ A0 g

 Exercise 8.5.E. 4

f : S → ,E∗

f <∞,∫
¯¯̄

A f <∞ A

f∫A
–––

>−∞, f >−∞ A

;f+

 Exercise 8.5.E. 5

⇒5 f , g : S → ,E∗

f + g ≥ (f +g),∫
¯¯̄

A ∫
¯¯̄

A ∫
¯¯̄

A

(f +g) ≥ f + g∫
––A

∫
––A

∫
––A

g <∞∣
∣∫––A

∣
∣

f + g < (f +g).∫
¯ ¯¯̄¯

A

∫
¯ ¯¯̄¯

A

∫
¯ ¯¯̄¯

A

(8.5.E.8)

u > f  and v > g,∫
¯ ¯¯̄¯

A

∫
¯ ¯¯̄¯

A

(8.5.E.9)

u+v ≤ overline (f +g).∫
A

(8.5.E.10)

F ≥ f G ≥ g

u > F  and v > G∫
¯ ¯¯̄¯

A

∫
¯ ¯¯̄¯

A

(8.5.E.11)

f +g ≤ F +G A, 1(c)

(f +g) ≤ (F +G) = F + G < u+v,∫
¯ ¯¯̄¯

A

∫
A

∫
A

∫
A

(8.5.E.12)

u+v ≤ (f +g).∫
¯ ¯¯̄¯

A

(8.5.E.13)
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Continuing Problem  prove that 

 
provided . 
[Hint for the second inequality: We may assume that 

 
(Why?) Apply Problems 5 and  to 

 
Use Theorem 

Prove the following. 
(i)

 

(ii) If  and  then 

 
and 

 
[Hint: Use Problems 

Show that any signed measure  is the difference of two measures: .

8.5.E: Problems on Integration of Extended-Real Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 8.5.E. 6

5,

(f +g) ≥ f + g ≥ (f +g) ≥ f + g∫
¯ ¯¯̄¯

A

∫
¯ ¯¯̄¯

A

∫
–– A

∫
–– A

∫
–– A

∫
–– A

(8.5.E.14)

g <∞∣
∣∫––A

∣
∣

(f +g) <∞ and  f >−∞.∫
¯ ¯¯̄¯

A

∫
¯ ¯¯̄¯

A

(8.5.E.15)

4(a)

((f +g)+(−g)).∫
¯ ¯¯̄¯

A

(8.5.E.16)

1 ( ) . ]e′

 Exercise 8.5.E. 7

|f | <∞ iff −∞< f ≤ f <∞.∫
¯ ¯¯̄¯

A

∫
–– A

∫
¯ ¯¯̄¯

A

(8.5.E.17)

|f | <∞f
¯̄̄

A |g| <∞,∫
¯¯̄

A

f − g ≤ |f −g|
∣

∣
∣∫
¯ ¯¯̄¯

A

∫
¯ ¯¯̄¯

A

∣

∣
∣ ∫

¯ ¯¯̄¯

A

(8.5.E.18)

f − g ≤ |f −g|.
∣

∣
∣∫
–– A

∫
–– A

∣

∣
∣ ∫

¯ ¯¯̄¯

A

(8.5.E.19)

5 and 6. ]

 Exercise 8.5.E. 8

 (Note 4)s̄f = −s̄f s̄f+ s̄f−
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8.6: Integrable Functions. Convergence Theorems
I. Some important theorems apply to integrable functions.

If  are integrable on a set  in  so is

for any  and

in particular,

Proof

By Problem 5 in §5,

(Here

are finite by integrability; so all is orthodox.)

As

the inequalities turn into equalities, so that

Using also Theorem 1(e)(e') from §5, we obtain the desired result for any 

A function  is integrable on  in  iff

(i) it is -measurable on  and

(ii)  (equivalently ) is finite.

Proof

If these conditions hold,  is integrable on  by Theorem 3 of §5.

Conversely, let

 Theorem  (linearity of the integral)8.6.1

f , g : S → E∗ A ∈M (S,M, m),

pf +qg (8.6.1)

p, q ∈ ,E1

(pf +qg) = p f +q g;∫
A

∫
A

∫
A

(8.6.2)

(f ±g) = f ± g.∫
A

∫
A

∫
A

(8.6.3)

f + g ≥ (f +g) ≥ (f +g) ≥ f + g.∫
¯ ¯¯̄¯

A

∫
¯ ¯¯̄¯

A

∫
¯ ¯¯̄¯

A

∫
–– A

∫
–– A

∫
–– A

(8.6.4)

f , f , g,  and  g∫
¯ ¯¯̄¯

A

∫
–– A

∫
¯ ¯¯̄¯

A

∫
–– A

(8.6.5)

f = f  and  g = g,∫
¯ ¯¯̄¯

A

∫
–– A

∫
¯ ¯¯̄¯

A

∫
–– A

(8.6.6)

f + g = (f +g) = (f +g).∫
A

∫
A

∫
¯ ¯¯̄¯

A

∫
–– A

(8.6.7)

p, q ∈ . □E1

 Theorem 8.6.2

f : S → E∗ A (S,M, m)

m A,

f∫
¯¯̄

A |f |∫
¯¯̄

A

f A

f = f ≠ ±∞.∫
¯ ¯¯̄¯

A

∫
–– A

(8.6.8)
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Using Lemma 2 in §5, fix measurable maps  and  ( ) on  with

By Theorem 3 in §5,  and  are integrable on  so by Theorem 1,

As

we get

and so by Theorem 1(h) of §5,  a.e. on .

Hence  is almost measurable on  and

by assumption. From formula (1), we then get

and hence

by Theorem 1 and by Theorem 2 of §2. Thus all is proved.

Simultaneously, we also obtain the following corollary.

A function  is integrable on  iff  and  are.

If  are integrable on  so also are

with

Exercise!

For products  this holds if  or  is bounded. In fact, we have the following theorem.

g h g ≤ f ≤ h A,

g = f = h ≠ ±∞.∫
A

∫
A

∫
A

(8.6.9)

g h A;

(h −g) = h − g = 0.∫
A

∫
A

∫
A

(8.6.10)

h −g ≥ h −f ≥ 0, (8.6.11)

(h −f) = 0,∫
A

(8.6.12)

h −f = 0 A

f A,

f ≠ ±∞∫
A

(8.6.13)

 and  < ∞,∫
A

f + ∫
A

f − (8.6.14)

|f | = ( + ) = + < ∞∫
A

∫
A

f + f − ∫
A

f + ∫
A

f − (8.6.15)

□

 Corollary 8.6.1

f : S → E∗ A f + f −

 Corollary 8.6.2

f , g : S → E∗ A,

f ∨ g, f ∧ g, |f |,  and kf  for k ∈ ,E1 (8.6.16)

kf = k f .∫
A

∫
A

(8.6.17)

fg, f g
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Let  be -measurable and bounded on A. Set

Then if  is -integrable on  so is  and

for some .

If, further,  also has the Darboux property on A (Chapter 4, §9), then  for some 

Proof

By assumption,

on  Hence if ,

so any  yields

If, however,  the number

is the required constant.

Moreover, as  and  are -measurable on  so is  and as

 is integrable on  by Theorem 2.

Finally, if  has the Darboux property and if  (with  as above), then

for some  (why?); hence by the Darboux property,  for some 

If, however,

then

and

so by Theorem 1(h) in §5,  a.e. on  Then surely  for some  (except the trivial case ).
This also implies .

Proceed similarly in the case 

 Theorem  (weighted law of the mean)8.6.3

f m

p = inf f [A] and q = supf [A]. (8.6.18)

g m A, fg,

f |g| = c |g|∫
A

∫
A

(8.6.19)

c ∈ [p, q]

f c = f( )x0 ∈ A.x0

(∃k ∈ ) |f | ≤ kE1 (8.6.20)

A. |g| = 0∫A

f |g| ≤ |fg| ≤ k |g| = 0;
∣

∣
∣∫

A

∣

∣
∣ ∫

A

∫
A

(8.6.21)

c ∈ [p, q]

f |g| = c |g| = 0.∫
A

∫
A

(8.6.22)

|g| ≠ 0,∫A

c =( f |g|) / |g|∫
A

∫
A

(8.6.23)

f g m A, fg;

fg ≤ |c| |g| < ∞,
∣

∣
∣∫

A

∣

∣
∣ ∫

A

(8.6.24)

fg A

f p < c < q p, q

f(x) < c < f(y) (8.6.25)

x, y ∈ A f ( ) = cx0 ∈ A.x0

c ≤ inf f [A] = p, (8.6.26)

(f −c)|g| ≥ 0 (8.6.27)

(f −c)|g| = f |g| −c |g| = 0 (why?);∫
A

∫
A

∫
A

(8.6.28)

f −c = 0 A. f ( ) = cx0 ∈ Ax0 mA = 0

c ∈ f [A] ∈ [p, q]

c ≥ q. □
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If  is integrable on  it is so on any .

Proof

Apply Theorem 1(f) in §5, and Theorem 3 of §5, to  and 

II. Convergence Theorems. If  on  (pointwise, a.e., or uniformly), does it follow that

To give some answers, we need a lemma.

If  on  and if

there is an elementary and nonnegative map  on  such that

and  on  except only at those  (if any) at which

(We then briefly write  on )

Proof

By Lemma 1 in §5, there is an elementary and nonnegative map  on  with

For the rest, proceed as in Problem 7 of §4, replacing  by  there.

If  (a.e.) on  i.e.,

and  (a.e.) on  then

Proof for -measurable  and  on 

By Corollary 2 in §5, we may assume that  (pointwise) on  (otherwise, drop a null set).

By Theorem 1(c) of §5,  implies

 Corollary 8.6.3

f A ∈M, B ⊆ A(B ∈M)

f + . □f −

→ ffn A

→ f?∫
A

fn ∫
A

(8.6.29)

 Lemma 8.6.1

f ≥ 0 A ∈M

f > p ∈ ,∫
–– A

E∗ (8.6.30)

g A

g > p,∫
A

(8.6.31)

g < f A x ∈ A

f(x) = g(x) = 0. (8.6.32)

g ⊂ f A.

G ≤ f A,

f ≥ G > p.∫
–– A

∫
A

(8.6.33)

f G □

 Theorem  (monotone convergence)8.6.4

0 ≤ ↗ ffn A ∈M,

0 ≤ ≤ (∀n),fn fn+1 (8.6.34)

→ ffn A,

↗ f .∫
¯ ¯¯̄¯

A

fn ∫
¯ ¯¯̄¯

A

(8.6.35)

M fn f A.

↗ ffn A

0 ≤ ↗ ffn

0 ≤ ≤ f ,∫
A

fn ∫
A

(8.6.36)
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and so

The limit, call it  exists in  as  It remains to show that

(We know that

by the assumed measurability of  see Theorem 3 in §5.)

Suppose

Then Lemma 1 yields an elementary and nonnegative map  on  with

Let

Then  and

For if  then  and if  then  so that  for large  hence 

By Note 4 in §5, the set function  is a measure, hence continuous by Theorem 2 in Chapter 7, §4. Thus

But as  on  we have

Hence

contrary to  This contradiction completes the proof.

If  on  then

Proof

≤ f .lim
n→∞

∫
A

fn ∫
A

(8.6.37)

p, ,E∗ { } ↑.∫
A

fn

p ≥ f = f .∫
¯ ¯¯̄¯

A

∫
–– A

(8.6.38)

f = f ,∫
¯ ¯¯̄¯

A

∫
–– A

(8.6.39)

f ;

f > p.∫
–– A

(8.6.40)

g ⊂ f A,

p < g.∫
A

(8.6.41)

= A ( ≥ g) , n = 1, 2, … .An fn (8.6.42)

∈MAn

↗ A = .An ⋃
n=1

∞

An (8.6.43)

f(x) = 0, x ∈ ,A1 f(x) > 0, f(x) > g(x), (x) > g(x)fn n; x ∈ .An

s = ∫ g

g = sA = s = g.∫
A

lim
n→∞

An lim
n→∞

∫
An

(8.6.44)

g ≤ fn ,An

g ≤ ≤ .∫
An

∫
An

fn ∫
A

fn (8.6.45)

g = lim g ≤ lim = p,∫
A

∫
An

∫
A

fn (8.6.46)

p < g.∫A □

 Lemma  (Fatou)8.6.2

≥ 0fn A ∈M(n = 1, 2, …),

≤ .∫
¯ ¯¯̄¯

A

lim
– ––

fn lim
– ––

∫
¯ ¯¯̄¯

A

fn (8.6.47)
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Let

so  and  on  Thus by Theorem 4,

But

Hence

 
as claimed.

Let  be -measurable on  Let

Then

provided that there is a map  such that

and

Proof

Neglecting null sets, we may assume that

on  and  (pointwise) on  so  and

on  As  we have

on  Hence, setting

we get

We may also assume that  is measurable on  (If not, replace it by a measurable  with

= , n = 1, 2, … ;gn inf
k≥n

fk (8.6.48)

≥ ≥ 0fn gn { } ↑gn A.

lim = lim = ≤ .∫
¯ ¯¯̄¯

A

gn ∫
¯ ¯¯̄¯

A

gn lim– –– ∫
¯ ¯¯̄¯

A

gn lim– –– ∫
¯ ¯¯̄¯

A

fn (8.6.49)

= = = .lim
n→∞

gn sup
n

gn sup
n

inf
k≥n

fk lim
n

fn (8.6.50)

= lim ≤ ,∫
¯ ¯¯̄¯

A

lim– –– fn ∫
¯ ¯¯̄¯

A

gn lim– –– ∫
¯ ¯¯̄¯

A

fn (8.6.51)

□

 Theorem  (dominated convergence)8.6.5

: S → Efn m A ∈M(n = 1, 2, …).

→ f  (a.e.) on A.fn (8.6.52)

| −f | = 0,lim
n→∞

∫
A

fn (8.6.53)

g : S → E1

g < ∞∫
A

(8.6.54)

(∀n) | | ≤ g a.e. on A.fn (8.6.55)

| | ≤ g < ∞fn (8.6.56)

A → ffn A; |f | ≤ g

| −f | ≤ | | +|f | ≤ 2gfn fn (8.6.57)

A. |f | < ∞,

| −f | → 0fn (8.6.58)

A.

= 2g −| −f | ≥ 0,hn fn (8.6.59)

2g = = .lim
n→∞

hn lim– –– hn (8.6.60)

g A. G ≥ g,
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by Lemma 2 in §5.) Then all

are measurable (even integrable) on .

Thus by Lemma 2,

 
(See Problems 5 and 8 in Chapter 2, §13.)

Canceling  (finite!), we have

Hence

as  This yields

as required.

Note 1. Theorem 5 holds also for complex and vector-valued functions (for  is real).

In the extended-real case, Theorems 1(g) in §5 and Theorems 1 and 2 in §6 yield

i.e.,

Moreover,  is integrable on  being measurable (why?), with

For complex and vector-valued functions, this will follow from §7. Observe that Theorem 5, unlike Theorem 4, requires the -
measurability of the .

Note 2. Theorem 5 fails if there is no "dominating"

G = g < ∞,∫
A

∫
A

(8.6.61)

= 2g −| −f |hn fn (8.6.62)

A

2g =∫
A

∫
A

lim
– ––

hn ≤ (2g −| −f |)lim
– ––

∫
A

fn

= ( 2g + (−| −f |))lim– –– ∫
A

∫
A

fn

= 2g + (− | −f |)∫
A

lim– –– ∫
A

fn

= 2g − | −f | .∫
A

lim
¯ ¯¯̄¯̄¯ ∫

A

fn

2g∫
A

0 ≤ − | −f | .lim
¯ ¯¯̄¯̄¯ ∫

A

fn (8.6.63)

0 ≥ | −f | ≥ | −f | ≥ 0,lim
¯ ¯¯̄¯̄¯ ∫

A

fn lim– –– ∫
A

fn (8.6.64)

| −f | ≥ 0.fn

0 = | −f | = | −f | = lim | −f | ,lim
¯ ¯¯̄¯̄¯ ∫

A

fn lim– –– ∫
A

fn ∫
A

fn (8.6.65)

□

| −f |fn

− f = ( −f) ≤ | −f | → 0,
∣

∣
∣∫

A

fn ∫
A

∣

∣
∣

∣

∣
∣∫

A

fn
∣

∣
∣ ∫

A

fn (8.6.66)

→ f .∫
A

fn ∫
A

(8.6.67)

f A,

|f | ≤ g < ∞.∫
A

∫
A

(8.6.68)

m

fn

g ≥ | |  with  g < ∞,fn ∫
A

(8.6.69)
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even if  and the  are integrable.

Let  be Lebesgue measure in  and

Then  and  so

The trouble is that any

would have to be  on  so

instead of .

This example also shows that  alone does not imply

Given  with

and  there is  such that

whenever

Proof

By Lemma 2 in §5, fix  measurable on  with

Neglecting a null set, we assume that  on  (Corollary 1 of §5). Now,  set

Then  and  is measurable on . (Why?)

Also,  and  (pointwise) on .

For let  fix  and find  Then

f fn

 Example

m A = , f = 0,E1

={fn

1

0

 on [n, n +1],

 elsewhere. 
(8.6.70)

→ ffn = 1;∫
A

fn

= 1 ≠ 0 = f .lim
n→∞

∫
A

fn ∫
A

(8.6.71)

g ≥ (n = 1, 2, …)fn (8.6.72)

≥ 1 B = [1, ∞);

g ≥ g = 1 ⋅ mB = ∞,∫
A

∫
B

(8.6.73)

g < ∞∫
A

→ ffn

→ f .∫
A

fn ∫
A

(8.6.74)

 Theorem  (absolute continuity of the integral)8.6.6

f : S → E

|f | < ∞∫
¯ ¯¯̄¯

A

(8.6.75)

ε > 0, δ > 0

|f | < ε∫
¯ ¯¯̄¯

X

(8.6.76)

mX < δ (A ⊇ X, X ∈M). (8.6.77)

h ≥ |f |, A,

h = |f | < ∞.∫
A

∫
¯ ¯¯̄¯

A

(8.6.78)

|h| < ∞ A (∀n)

(x) ={gn

h(x),

0,

x ∈ = A(h < n),An

x ∈ − .An

(8.6.79)

≤ ngn gn A

≥ 0gn → hgn A

ε > 0, x ∈ A, k > h(x).

(∀n ≥ k) h(x) ≤ n and  (x) = h(x).gn (8.6.80)
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So

Clearly,  Hence by Theorem 5

Thus we can fix  so large that

For that  let

and take any  with .

As  (see above), Theorem 1(c) in §5 yields

Hence as  and

(Theorem 1(f) of §5), we obtain

as required.

This page titled 8.6: Integrable Functions. Convergence Theorems is shared under a CC BY 3.0 license and was authored, remixed, and/or curated
by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts
platform; a detailed edit history is available upon request.

(∀n ≥ k) | (x) −h(x)| = 0 < ε.gn (8.6.81)

≤ h.gn

|h − | = 0.lim
n→∞

∫
A

gn (8.6.82)

n

(h − ) < ε.∫
A

gn

1

2
(8.6.83)

n,

δ =
ε

2n
(8.6.84)

X ⊆ A(X ∈M), mX < δ

≤ ngn

≤ (n) = n ⋅ mX < nδ = ε.∫
X

gn ∫
X

1

2
(8.6.85)

|f | ≤ h

(h − ) ≤ (h − ) < ε∫
X

gn ∫
A

gn

1

2
(8.6.86)

|f | ≤ h = (h − ) + < ε + ε = ε,∫
¯ ¯¯̄¯

X

∫
X

∫
X

gn ∫
X

gn

1

2

1

2
(8.6.87)

□
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8.6.E: Problems on Integrability and Convergence Theorems

Fill in the missing details in the proofs of this section.

(i) Show that if  is bounded and -measurable on  with  then  is  -integrable on 
and 

 
where inf . 
(ii) Prove that if  also has the Darboux property on  then 

 
[Hint: Take  
(iii) What results if  and  Lebesgue measure?

Prove Theorem 4 assuming that the  are measurable on  and that 

 
instead of . 
[Hint: As , show that 

 
If 

 
then 

 
Otherwise, 

 
so  is integrable. (Why?) By Corollary 1 in §5, assume  (Why?) Apply Theorem 4 to 
considering two cases: 

 Exercise 8.6.E. 1

 Exercise 8.6.E. 2

f : S → E∗ m A, mA < ∞, f m A( Theorem 2)

f = c ⋅ mA,∫
A

(8.6.E.1)

f [A] ≤ c ≤ supf [A]
f A,

(∃ ∈ A) c = f ( ) .x0 x0 (8.6.E.2)

g = 1 in Theorem 3. ]
A = [a, b] m =

 Exercise 8.6.E. 3

fn A

(∃k) > −∞∫
A

fk (8.6.E.3)

≥ 0fn

{ } ↑fn

(∀n ≥ k) > −∞.∫
A

fn (8.6.E.4)

(∃n) = ∞,∫
A

fn (8.6.E.5)

f = lim = ∞.∫
A

∫
A

fn (8.6.E.6)

(∀n ≥ k) < ∞;
∣
∣
∣∫

A

fn

∣
∣
∣ (8.6.E.7)

fn | | < ∞.fn = − (n ≥ k),hn fn fk
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Show that if  (pointwise) on  there are -measurable maps  and  on  with 
(pointwise) on  such that 

 
[Hint: By Lemma 2 of §5, fix measurable maps  and  with the same integrals. Let 

 
and  (Why?) Proceed.]

For  and any (even nonmeasurable) functions  prove the following. 
(i) If  on  then 

 
provided 

 
(ii) If  on  then 

 
provided 

 
[Hint: Replace  by  as in Problem  Then apply Problem 3 to  thus obtain (i). For (ii), use (i) and Theorem 

 in §5. (All is orthodox; why?)]

Show by examples that 
(i) the conditions 

h < ∞ and  h = ∞. ]∫
A

∫
A

(8.6.E.8)

 Exercise 8.6.E. 4

↗ ffn A ∈M, M ≥Fn fn F ≥ f A, ↗ FFn

A,

F = f  and  = .∫
A

∫
¯ ¯¯̄¯

A

∫
A

Fn ∫
¯ ¯¯̄¯

A

fn (8.6.E.9)

h ≥ f ≥hn fn

= (h ∧ ) , n = 1, 2, … ,Fn inf
k≥n

hk (8.6.E.10)

F = ≤ h.supn Fn

 Exercise 8.6.E. 5

A ∈M f , : S → ,fn E∗

↗ f( a.e. )fn A,

↗ f ,∫
¯ ¯¯̄¯

A

fn ∫
¯ ¯¯̄¯

A

(8.6.E.11)

(∃n) > −∞.∫
¯ ¯¯̄¯

A

fn (8.6.E.12)

↘ f( a.e. )fn A,

↘ f ,∫
–– A

fn ∫
–– A

(8.6.E.13)

(∃n) < ∞.∫
–– A

fn (8.6.E.14)

f , fn F , Fn 4. ;Fn

1 ( )e′

 Exercise 8.6.E. 6

> −∞ and  < ∞∫
¯ ¯¯̄¯

A

fn ∫
–– A

fn (8.6.E.15)
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in Problem 5 are essential; and 
(ii) Problem  fails for lower integrals. What about  
[Hints: (i) Let  Lebesgue measure,  on  elsewhere. 
(ii) Let  on  elsewhere. If  on  then  but
not 

 
Explain!]

Given  and  let 

 
Prove that 

(i)  provided  and 

(ii) . 
[Hint: Apply Problem 5 to  
(iii) Give examples for which 

 
(See Note 2).

Let  on  and  on  Let  
Prove the following. 
(i) If 

 
then 

 
(ii) This fails for sign-changing . 
[Hints: If (i) fails, then 

 
Find a subsequence of 

5(i) 5(ii)?
A = (0, 1) ⊂ , m =E1 = −∞fn (0, ) , = 11

n
fn

M= { , ∅} , m = 1, m∅ = 0, = 1E1 E1 fn (−n, n), = 0fn f = 1 A = ,E1 → f ,fn

→ f .∫
–– A

fn ∫
–– A

(8.6.E.16)

 Exercise 8.6.E. 7

: S →fn E∗ A ∈M,

=  and  = (n = 1, 2, …).gn inf
k≥n

fk hn sup
k≥n

fk (8.6.E.17)

≤∫
¯¯̄

A lim– –– fn lim– –– ∫
––A

fn (∃n) > −∞;∫
¯¯̄

A gn

≤ provided(∃n) < ∞∫
––A

lim¯ ¯¯̄¯̄¯ fn lim¯ ¯¯̄¯̄¯ ∫
––A

fn ∫
––A

hn

 and  . ]gn hn

≠  and  ≠ .∫
¯ ¯¯̄¯

A

lim– –– fn lim
¯ ¯¯̄¯̄¯

A ∫
¯ ¯¯̄¯

A

fn ∫
–– A

lim
¯ ¯¯̄¯̄¯

fn lim– –– ∫
–– A

fn (8.6.E.18)

 Exercise 8.6.E. 8

≥ 0fn A ∈M → f( a.e. )fn A. A ⊇ X, X ∈M.

→ f < ∞,∫
¯ ¯¯̄¯

A

fn ∫
¯ ¯¯̄¯

A

(8.6.E.19)

→ f .∫
¯ ¯¯̄¯

X

fn ∫
¯ ¯¯̄¯

X

(8.6.E.20)

fn

< f  or  > f .lim– –– X ∫
¯ ¯¯̄¯

X

fn ∫
¯ ¯¯̄¯

X

lim– –– X ∫
¯ ¯¯̄¯

X

fn ∫
¯ ¯¯̄¯

X

(8.6.E.21)
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contradicting Lemma 2. 
(ii) Let  Lebesgue measure; , 

. (i) Show that if  and  are -measurable and nonnegative on  then 

 
(ii) If, in addition,  or  this formula holds for any  
[Hint: Proceed as in Theorem 1.]

. If 

 
with all  measurable and nonnegative on  then 

 
[Hint: Apply Theorem 4 to the maps 

 
Use Problem 9.]

If 

 
and the  are -measurable on  then 

{ }  or { }∫
¯ ¯¯̄¯

X

fn ∫
¯ ¯¯̄¯

A−X

fn (8.6.E.22)

m = A = (0, 1), X = (0, )1
2

={fn

n

−n

 on (0, ] ,1
2n

 on (1 − , 1[ .1
2n

(8.6.E.23)

 Exercise 8.6.E. 9

⇒ 9 f g m A,

(∀a, b ≥ 0) (af +bg) = a f +b g.∫
A

∫
A

∫
A

(8.6.E.24)

f < ∞∫
A

g < ∞,∫
A

a, b ∈ .E1

 Exercise 8.6.E. 10

⇒ 10

f = ,∑
n=1

∞

fn (8.6.E.25)

fn A,

f = .∫
A

∑
n=1

∞

∫
A

fn (8.6.E.26)

= ↗ f .gn ∑
k=1

n

fk (8.6.E.27)

 Exercise 8.6.E. 11

q = | | < ∞∑
n=1

∞

∫
A

fn (8.6.E.28)

fn m A,

| | < ∞(a. e. ) on A∑
n=1

∞

fn (8.6.E.29)
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and  is -integrable on  with 

 
[Hint: Let  By Problem 10, 

 
so  on  (Why?) Apply Theorem 5 and Note 1 to the maps 

 
note that 

(Convergence in measure; see Problem 11(ii) of §3). 
(i) Prove Riesz' theorem: If  in measure on , there is a subsequence  such that  (almost
uniformly), hence (a.e.), on . 
[Outline: Taking 

 
pick, step by step, naturals 

 
and sets  such that  

 
and 

 
on  (Explain!) Let 

 
 Why?) Show that 

 
on  
(ii) For maps  and  deduce that if 

f = ∑∞
n=1 fn m A,

f = .∫
A

∑
n=1

∞

∫
A

fn (8.6.E.30)

g = | | .∑∞
n=1 fn

g = | | = q < ∞;∫
A

∑
n=1

∞

∫
A

fn (8.6.E.31)

g < ∞(a. e. ) A.

= ;gn ∑
k=1

n

fk (8.6.E.32)

| | ≤ g. ]gn

 Exercise 8.6.E. 12

→ ffn A ⊆ S { }fnk → ffnk

A

= = ,σk δk 2−k (8.6.E.33)

< < ⋯ < < ⋯n1 n2 nk (8.6.E.34)

∈MDk (∀k)

m <Dk 2−k (8.6.E.35)

( , f) <ρ′ fnk 2−k (8.6.E.36)

A − .Dk

= ,En ⋃
k=n

∞

Dk (8.6.E.37)

m < . (En 21−n

(∀n)(∀k > n) ( , f) <ρ′ fnk 21−n (8.6.E.38)

A − .  Use Problem 11 in §3. ]En

: S → Efn g : S → E1

→ ffn (8.6.E.39)
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in measure on  and 

 
then 

 

Continuing Problem  let 

 
in measure on  and 

 
with 

 
Prove that 

 
Does 

 
[Outline: From Corollary 1 of §5, infer that  on  where 

 
 (We may assume -measurable on  Why?) Also, 

 
so the series converges. Hence 

A

(∀n) | | ≤ g( a.e. ) on A,fn (8.6.E.40)

|f | ≤ g( a.e. ) on A. (8.6.E.41)

[ Hint:  → f(a. e. ) on A. ]fnk

 Exercise 8.6.E. 13

12( ii ),

→ ffn (8.6.E.42)

A ∈M ( : S → E)fn

(∀n) | | ≤ g(a. e.) on A,fn (8.6.E.43)

g < ∞.∫
A

¯ ¯¯̄¯̄

(8.6.E.44)

| −f | = 0.lim
n→∞

∫
¯ ¯¯̄¯

A

fn (8.6.E.45)

→ f?∫
¯ ¯¯̄¯

A

fn ∫
¯ ¯¯̄¯

A

(8.6.E.46)

g = 0 A −C,

C = (disjoint),⋃
k=1

∞

Ck (8.6.E.47)

m < ∞.Ck gM A.

∞ > g = g + g = 0 + g;∫
A

∫
A−C

∫
C

∑
k=1

∞

∫
Ck

(8.6.E.48)

(∀ε > 0)(∃p) g −ε < g = g,∫
A

∑
k=1

p

∫
Ck

∫
H

(8.6.E.49)
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where 

 
and  As  we get 

 
(Explain!) 
As  we can fix  with 

 
Also, by Theorem  fix  such that 

 
whenever  and . 
As  in measure on  we find -sets  such that 

 
and 

 
(We may use the standard metric, as  and  a.e. Why?) Thus from  we get 

 
for  (Explain!) Hence 

 
See also Problem 7 in §5 and Note 1 of §6 (for measurable functions) as regards 

H = ∈M⋃
k=1

p

Ck (8.6.E.50)

mH < ∞. | −f | ≤ 2g( a.e. ),fn

 (1)  | −f | ≤ | −f | ≤ | −f | + 2g < | −f | +2ε.∫
–– A

fn ∫
¯ ¯¯̄¯

A

fn ∫
¯ ¯¯̄¯

H

fn ∫
A−H

∫
H

¯ ¯¯̄ ¯̄

fn (8.6.E.51)

mH < ∞, σ > 0

σ ⋅ mH < ε. (8.6.E.52)

6, δ

2 g < ε∫
X

(8.6.E.53)

A ⊇ X, X ∈M mX < δ

→ ffn H, M ⊆ HDn

(∀n > ) m < δn0 Dn (8.6.E.54)

| −f | < σ on  = H − .fn An Dn (8.6.E.55)

|f | | | < ∞fn (1),

| −f |∫
¯ ¯¯̄¯

A

fn ≤ | −f | +2ε∫
H

¯ ¯¯̄ ¯̄

fn

= | −f | + | −f | +2ε∫
¯ ¯¯̄¯

An

fn ∫
¯ ¯¯̄¯

Dn

fn

< | −f | +3ε∫
¯ ¯¯̄¯

An

fn

≤ σ ⋅ mH +3ε < 4ε

n > .n0

lim | −f | = 0.∫
A

¯ ¯¯̄¯̄

fn (8.6.E.56)

lim ⋅]∫
A

¯ ¯¯̄¯̄

fn (8.6.E.57)
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Do Problem 12 in §3 (Lebesgue-Egorov theorems) for  assuming 

 
with 

 
(instead of . 
[Hint: With  as before, it suffices that 

 
(Why?) Verify that 

 
and 

 
Infer that 

 
Now, as  (why?), right continuity applies.]

8.6.E: Problems on Integrability and Convergence Theorems is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

 Exercise 8.6.E. 14

T = E,

(∀n) | | ≤ g(a. e. ) on A,fn (8.6.E.58)

g < ∞∫
A

(8.6.E.59)

mA < ∞)
(k)Hi

m (A − (k)) = 0.lim
i→∞

Hi (8.6.E.60)

(∀n) ( , f) = | −f | ≤ 2g(a. e. ) on A,ρ′ fn fn (8.6.E.61)

(∀i, k) A − (k) ⊆ A(2g ≥ )∪ Q(mQ = 0).Hi

1

k
(8.6.E.62)

(∀i, k) m (A − (k)) < ∞.Hi (8.6.E.63)

(∀k) (k) ↘ ∅Hi
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8.7: Integration of Complex and Vector-Valued Functions
I. First we consider functions  For such functions, it is natural (and easy) to define integration "componentwise"
as follows.

A function  is said to be integrable on  iff its  (real) components,  are. In this case, we define

where the  are basic unit vectors (as in Chapter 3, §§1-3, Theorem 2 .

In particular, a complex function  is integrable on  iff its real and imaginary parts  are. Then we also say that 
 exists. By  we have

If  we use  with complex components 

With this definition, integration of functions  reduces to that of  and one easily obtains the
same theorems as in §§4-6, as far as they make sense for vectors.

A function  is integrable on  iff it isc -measurable on  and 

(Alternate definition!)

Proof

Assume the range space is .

By our definition, if  is integrable on  then its components  are. Thus by Theorem 2 and Corollary 1, both in §6, for 
 the functions  and  are -measurable; furthermore,

This implies

Since  is -measurable by Problem 14 in §3 (  is a continuous mapping from  to ), and

we get

Conversely, if  satisfies

then

f : S → ( ) .En Cn

 Definition

f : S → En A ∈M n , … , ,f1 fn

f = fdm =( , , … , ) = ⋅∫
A

∫
A

∫
A

f1 ∫
A

f2 ∫
A

fn ∑
k=1

n

ē̄̄k ∫
A

fk (8.7.1)

ē̄̄k )

f A (  and )f re f im 

f∫
A

(1),

f =( , ) = + i .∫
A

∫
A

fre ∫
A

fim ∫
A

fre ∫
A

fim (8.7.2)

f : S → ,Cn (1), fk

f : S → ( )En Cn : S → (C),fk E1

 Theorem 8.7.1

f : S → ( )En Cn A ∈M m A |f | < ∞.∫
A

En

f A, fk
k = 1, 2, … ,n, f+

k f−
k m

≠ ±∞ and  ≠ ±∞.∫
A

f+
k ∫

A

f−
k (8.7.3)

∞ > + = ( + ) = | | , k = 1, 2, … ,n.∫
A

f+
k ∫

A

f−
k ∫

A

f+
k f−

k ∫
A

fk (8.7.4)

|f | m | ⋅ | En E1

|f | = ≤ | | | | = | | ,
∣

∣
∣∑
k=1

n

ē̄̄kfk
∣

∣
∣ ∑

k=1

n

ē̄̄k fk ∑
k=1

n

fk (8.7.5)

|f | ≤ | | = | | < ∞.∫
A

∫
A

∑
1

n

fk ∑
1

n

∫
A

fk (8.7.6)

f

|f | < ∞∫
A

(8.7.7)
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Also, the  are -measurable if  is (see Problem 2 in §3). Hence the  are integrable on  (by Theorem 2 of §6), and
so is 

The proof for  is analogous.

Similarly for other theorems (see Problems 1 to 4 below). We have already noted that Theorem 5 of §6 holds for complex and
vector-valued functions. So does Theorem 6 in §6. We prove another such proposition (Lemma 1) below.

II. Next we consider the general case,  (  complete). We now adopt Theorem 1 as a definition. (It agrees with
Definition 1 of §4. Verify!) Even if  we always assume  a.e.; thus, dropping a null set, we can make  finite and
use the standard metric on 

First, we take up the case .

If  (uniformly) on  ( ), then

Proof

By assumption,

so

As  is arbitrary, the result follows.

If

and

for some elementary maps  on  then all but finitely many  are elementary and integrable on  and

exists in  further, the latter limit does not depend on the sequence .

Proof

By Lemma 1,

(The latter can be achieved since

(∀k) < ∞.
∣

∣
∣∫

A

fk
∣

∣
∣ (8.7.8)

fk m f fk A

f .

Cn □

f : S → E E

E = ,E∗ |f | < ∞ f

.E1

mA < ∞

 Lemma 8.7.1

→ ffn A mA < ∞

| −f | → 0.∫
A

fn (8.7.9)

(∀ε > 0) (∃k) (∀n > k) | −f | < ε on A;fn (8.7.10)

(∀n > k) | −f | ≤ (ε) = ε ⋅mA < ∞.∫
A

fn ∫
A

(8.7.11)

ε □

 Lemma 8.7.2

|f | < ∞ (mA < ∞)∫
A

(8.7.12)

f =  (uniformly) on A−Q (mQ = 0)lim
n→∞

fn (8.7.13)

fn A, fn A,

lim
n→∞

∫
A

fn (8.7.14)

E; { }fn

(∀ε > 0) (∃q) (∀n, k > q) | −f | < ε and  | − | < ε.∫
A

fn ∫
A

fn fk (8.7.15)
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Now, as

Problem 7 in §5 yields

Thus  is elementary and integrable for  as claimed. Also, by Theorem 2 and Corollary 1(ii), both in §4,

Thus  is a Cauchy sequence. As  is complete,

exists in  as asserted.

Finally, suppose  (uniformly) on  for some other elementary and integrable maps  By what was shown
above,  exists, and

by Lemma 1, as  (uniformly) on  Thus

and all is proved.

This leads us to the following definition.

If  is integrable on   we set

for any elementary and integrable maps  such that  (uniformly) on .

Indeed, such maps exist by Theorem 3 of §1, and Lemma 2 excludes ambiguity.

*Note 1. If  itself is elementary and integrable, Definition 2 agrees with that of §4. For, choosing  we get

(the latter as in §4).

*Note 2. We may neglect sets on which  along with null sets. For if  on   we may choose 
 on  in Definition 2. Then

Thus we now define

| − | = | −f | < ε. )lim
k→∞

∫
A

fn fk ∫
A

fn (8.7.16)

| | ≤ | −f | + |f |,fn fn (8.7.17)

(∀n > k) | | ≤ | −f | + |f | < ε+ |f | < ∞.∫
A

fn ∫
A

fn ∫
A

∫
A

(8.7.18)

fn n > k,

(∀n, k > q) − = ( − ) ≤ | − | < ε.
∣

∣
∣∫

A

fn ∫
A

fk
∣

∣
∣

∣

∣
∣∫

A

fn fk
∣

∣
∣ ∫

A

fn fk (8.7.19)

{ }∫A fn E

lim ≠ ±∞∫
A

fn (8.7.20)

E,

→ fgn A−Q .gn
lim ∫A gn

lim −lim = lim ( − ) ≤ lim | − −0| = 0
∣

∣
∣ ∫

A

gn ∫
A

fn
∣

∣
∣

∣

∣
∣ ∫

A

gn fn
∣

∣
∣ ∫

A

gn fn (8.7.21)

− → 0gn fn A.

lim = lim ,∫
A

gn ∫
A

fn (8.7.22)

□

 Definition

f : S → E A ∈M (mA < ∞),

f = fdm =∫
A

∫
A

lim
n→∞

∫
A

fn (8.7.23)

fn → ffn A−Q,mQ = 0

f = f(n = 1, 2, …),fn

f =∫
A

∫
A

fn (8.7.24)

f = 0, f = 0 A−B (A ⊇ B,B ∈M),

= 0fn A−B

f = lim = lim = f .∫
A

∫
A

fn ∫
B

fn ∫
B

(8.7.25)
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even if  provided  on  i.e.,

 characteristic function of  with  and .

If such a  exists, we say that  has -finite support in .

*Note 3. By Corollary 1 in §5,

implies that  is -finite. Neglecting  we may assume that

(if not, replace  by ); so .

Let  be integrable on . Let  and set

Then  (pointwise) on  all  are integrable on  and

exists in  Furthermore, this limit does not depend on the choice of .

Proof

Fix any  As ,

By assumption,  on  Thus

so  (pointwise) on .

Moreover,  is -measurable on  (as  and  are); and

implies

Thus all  are integrable on .

As  on ,

is defined. Since  (pointwise) and  on  Theorem 5 in §6, with  yields

f = f ,∫
A

∫
B

(8.7.26)

mA = ∞, f = 0 A−B,

f = f  on ACB (8.7.27)

( =CB B), A ⊇ B,B ∈M, mB < ∞

B f m A

|f | < ∞∫
A

(8.7.28)

A(f ≠ 0) σ A(f = 0),

A =⋃ ,m < ∞,  and  { } ↑Bn Bn Bn (8.7.29)

Bn ∪n
k=1Bk ↗ ABn

 Lemma 8.7.3

ϕ : S → E A ↗ A,m < ∞Bn Bn

= ϕ , n = 1, 2, … .fn CBn (8.7.30)

→ ϕfn A, fn A,

lim
n→∞

∫
A

fn (8.7.31)

E. { }Bn

x ∈ A. ↗ A = ∪Bn Bn

(∃ )   (∀n > ) x ∈ .n0 n0 Bn (8.7.32)

= ϕfn .Bn

(∀n > ) (x) = ϕ(x);n0 fn (8.7.33)

→ ϕfn A

= ϕfn CBn m A ϕ CBn

| | = |ϕ|fn CBn
(8.7.34)

| | ≤ |ϕ| < ∞.∫
A

fn ∫
A

(8.7.35)

fn A

= 0fn A− (mB < ∞)Bn

∫
A

fn (8.7.36)

→ ϕfn | | ≤ |ϕ|fn A, g = |ϕ|,

| −ϕ| → 0.∫
A

fn (8.7.37)
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The rest is as in Lemma 2, with our present Theorem 2 below (assuming -finite support of  and  replacing Theorem 2
of §4. Thus all is proved.

If  is integrable on  we set

with the  as in Lemma 3 (even if  has no -finite support).

If  are integrable on  so is

for any scalars  Moreover,

Furthermore if  and  are scalar valued,  and  may be vectors in .

Proof

For the moment,  denotes mappings with -finite support in  Integrability is clear since  is measurable on 
(as  and  are), and

yields

Now, as noted above, assume that

for some  Let  so

additionally,

Also,  so by Definition 2,

for some elementary and integrable maps

Thus

But by Theorem 2 and Corollary 1(vii), both of §4 (for elementary and integrable maps),

m f g),

□

 Definition

ϕ : S → E A ∈M,

ϕ = ϕdm = ,∫
A

∫
A

lim
n→∞

∫
A

fn (8.7.38)

fn ϕ m

 Theorem  (linearity)8.7.2

f , g : S → E A ∈M,

pf +qg (8.7.39)

p, q.

(pf +qg) = p f +q g.∫
A

∫
A

∫
A

(8.7.40)

f g p q E

f , g m A. pf +qg A

f g

|pf +qg| ≤ |p||f | + |q||g| (8.7.41)

|pf +qg| ≤ |g| |f | + |q| |g| < ∞.∫
A

∫
A

∫
A

(8.7.42)

f = f  and g = gCB1
CB2

(8.7.43)

, ⊆ A(m +m < ∞).B1 B2 B1 B2 B = ∪ ;B1 B2

f = g = pf +qg = 0 on A−B; (8.7.44)

f = f , g = g,  and  (pf +qg) = (pf +qg).∫
A

∫
B

∫
A

∫
B

∫
A

∫
B

(8.7.45)

mB < ∞;

f = lim  and  g = lim∫
B

∫
B

fn ∫
B

∫
B

gn (8.7.46)

→ f  (uniformly) and  → g (uniformly) on B−Q,mQ = 0.fn gn (8.7.47)

p +q → pf +qg (uniformly) on B−Q.fn gn (8.7.48)
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Hence

This proves the statement of the theorem, provided  and  have -finite support in  For the general case, we now
resume the notation  for any functions, and extend the result to any integrable functions.

Using Definition 3, we set

and

Then by definition,

and so

As  have -finite supports, the first part of the proof yields

Thus as claimed,

Similarly, one extends Corollary 1(ii)(iii)(v) of §4 first to maps with -finite support, and then to all integrable maps. The other
parts of that corollary need no new proof. (Why?)

(i) If  is integrable on each of  disjoint -sets  it is so on their union

and

(ii) This holds for countable unions, too, if  is integrable on all of 

Proof

Let  have -finite support:  on  Then

(p +q ) = p +q .∫
B

fn gn ∫
B

fn ∫
B

gn (8.7.49)

(pf +qg) =∫
A

(pf +qg) = lim (p +q )∫
B

∫
B

fn gn

= lim(p +q ) = p f +q g = p f +q g.∫
B

fn ∫
B

gn ∫
B

∫
B

∫
A

∫
A

f g m A.

f , g, …

A = , { } ↑,m < ∞,⋃
n=1

∞

Bn Bn Bn (8.7.50)

= f , = g , n = 1, 2, … .fn CBn
gn CBn

(8.7.51)

f =  and  g = ,∫
A

lim
n→∞

∫
A

fn ∫
A

lim
n→∞

∫
A

gn (8.7.52)

p f +q g = (p +q ) .∫
A

∫
A

lim
n→∞

∫
A

fn ∫
A

gn (8.7.53)

,fn gn m

p +q = (p +q ) .∫
A

fn ∫
A

gn ∫
A

fn gn (8.7.54)

p f +q g = lim (p +q ) = (pf +qg). □∫
A

∫
A

∫
A

fn gn ∫
A

(8.7.55)

m

 Theorem  (additivity)8.7.3

f : S → E n M ,Ak

A = ,⋃
k=1

n

Ak (8.7.56)

f = f .∫
A

∑
k=1

n

∫
Ak

(8.7.57)

f A.

f m f = fCB A,mB < ∞.
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where

By Definition 2, fix elementary and integrable maps  (on ) and a set   such that  (uniformly) on 
 (hence also on ), with

As the  are elementary and integrable, Theorem 1 in §4 yields

Hence

Thus clause (i) holds for maps with -finite support. For other functions, (i) now follows quite similarly, from Definition
3. (Verify!)

As for (ii), let  be integrable on

In this case, set  where . By clause (i), we have

since  on each .

Also, as is easily seen,  on  and  (pointwise) on  (proof as in Lemma 3). Thus by Theorem 5 in §6,

As

we obtain

and the result follows by (3).

8.7: Integration of Complex and Vector-Valued Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

f = f  and  f = f ,∫
A

∫
B

∫
Ak

∫
Bk

(8.7.58)

= ∩B, k = 1, 2, … ,n.Bk Ak (8.7.59)

fi A Q (mQ = 0) → ffi
B−Q −QBk

f = f =  and  f = , k = 1, 2, … ,n.∫
A

∫
B

lim
i→∞

∫
B

fi ∫
Ak

lim
i→∞

∫
Bk

fi (8.7.60)

fi

= = = .∫
A

fi ∫
B

fi ∑
k=1

n

∫
Bk

fi ∑
k=1

n

∫
Ak

fi (8.7.61)

f = = = ( ) = f .∫
A

lim
i→∞

∫
B

fi lim
i→∞

∑
k=1

n

∫
Bk

fi ∑
k=1

n

lim
i→∞

∫
Ak

fi ∑
k=1

n

∫
Ak

(8.7.62)

m

f

A =  (disjoint), ∈M.⋃
k=1

∞

Ak Ak (8.7.63)

= f ,gn CBn = ,n = 1, 2, …Bn ⋃n

k=1 Ak

= = = f ,∫
A

gn ∫
Bn

gn ∑
k=1

n

∫
Ak

gn ∑
k=1

n

∫
Ak

(8.7.64)

= fgn ⊆Ak Bn

| | ≤ |f |gn A → fgn A

| −f | → 0.∫
A

gn (8.7.65)

− f = ( −f) ≤ | −f | ,
∣

∣
∣∫

A

gn ∫
A

∣

∣
∣

∣

∣
∣∫

A

gn
∣

∣
∣ ∫

A

gn (8.7.66)

f = ,∫
A

lim
n→∞

∫
A

gn (8.7.67)

□
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8.7.E: Problems on Integration of Complex and Vector-Valued Functions

Prove Corollary  (vii) in §4 componentwise for integrable maps 

Prove Theorems 2 and 3 componentwise for .

Do it for Corollary 3 in §6.

Prove Theorem 1 with 

 
replaced by 

Prove that if  is integrable on  so is  Disprove the converse.

Disprove Lemma 1 for .

Complete the proof of Lemma 3.

Complete the proof of Theorem 3.

Do Problem 1 and  for .

Prove formula (1) from definitions of Part II of this section.

 Exercise 8.7.E. 1

1( iii )− f : S → ( ) .En C n

 Exercise 8.7.E. 2

E = ( )En C n

 Exercise 8.7.E. 2′

 Exercise 8.7.E. 3

|f | < ∞∫
A

(8.7.E.1)

| | < ∞, k = 1, … , n.∫
A

fk (8.7.E.2)

 Exercise 8.7.E. 4

f : S → ( )En C n A, |f |.

 Exercise 8.7.E. 5

mA = ∞

 Exercise 8.7.E. ∗6

 Exercise 8.7.E. ∗7

 Exercise 8.7.E. ∗8

2′ f : S → E

 Exercise 8.7.E. ∗9
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. Show that 

 
for integrable maps  See also Problem 14. 
[Hint: If  use Corollary  us imitate" the proof of Lemma  ]

Do Problem 11 in §6 for  Do it componentwise for  

Show that if  are integrable on  then 

 
In what case does equality hold? Deduce Theorem  in Chapter  §§1-3, from this result. 
[Hint: Argue as in that theorem. Consider the case 

Show that if  is integrable on  and 

 
then 

 
[Hint: Let  The case  is trivial. If  let 

 
Let  Show that , 

 

 Exercise 8.7.E. 10

⇒ 10

f ≤ |f |
∣

∣
∣∫

A

∣

∣
∣ ∫

A

(8.7.E.3)

f : S → E.

mA < ∞, 1( ii ) of §4 and Lemma 1.  If mA = ∞, 3.

 Exercise 8.7.E. 11

: S → E.fn E = ( ) .En C n

 Exercise 8.7.E. 12

f , g : S → (C)E1 A,

≤ |f ⋅ |g .fg
∣

∣
∣∫

A

∣

∣
∣
2

∫
A

|
2 ∫

A

|
2

(8.7.E.4)

4 ( )c′ 3,

(∃t ∈ ) |f − tg| = 0. ]E1 ∫
A

(8.7.E.5)

 Exercise 8.7.E. 13

f : S → (C)E1 A

f = |f |,
∣

∣
∣∫

A

∣

∣
∣ ∫

A

(8.7.E.6)

(∃c ∈ C) cf = |f |  a.e. on A. (8.7.E.7)

a = f .∫A a = 0 a ≠ 0,

c = ; |c| = 1; ca = |a|.
|a|

a
(8.7.E.8)

r = (cf .)re r ≤ |cf | = |f |

f
∣

∣
∣∫

A

∣

∣
∣ = cf = r ≤ |f | = f ,∫

A

∫
A

∫
A

∣

∣
∣∫

A

∣

∣
∣

|f | = r = (cf∫
A

∫
A

∫
A

)re,

(cf = |cf |(a. e.),  and cf = |cf | = |f | a.e. on A. ])re
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Do Problem 10 for  using the method of Problem 

Show that if  is integrable on  it is integrable on each -set  If, in addition, 

 
for all such  show that  a.e. on  Prove it for  first. 
[Hint for 

In Problem  show that 

 
is a -additive set function on 

 
(Note  is called the indefinite integral of  in 

8.7.E: Problems on Integration of Complex and Vector-Valued Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or
curated by LibreTexts.

 Exercise 8.7.E. 14

E = C 13.

 Exercise 8.7.E. 15

f : S → E A, M B ⊆ A.

f = 0∫
B

(8.7.E.9)

B, f = 0 A. E = En

E = : A = A(f > 0) ∪ A(f ≤ 0).  Use Theorems 1(h) and 2 from §5. ]E∗

 Exercise 8.7.E. 16

15,

s = ∫ f (8.7.E.10)

σ

= {X ∈M|X ⊆ A}.MA (8.7.E.11)

4 in §5); s f A.
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8.8: Product Measures. Iterated Integrals
Let  and  be measure spaces, with  and  Let  be the family of all "rectangles," i.e., sets

with  and .

Define a premeasure  by

Let  be the -induced outer measure in  and

the -induced measure ("product measure," ) on the -field  of all -measurable sets in  (Chapter 7, §§5-6).

We consider functions  (extended-real).

I. We begin with some definitions.

(1) Given a function  (of two variables ), let  or  denote the function on  given by

it arises from  by fixing .

Similarly,  or  is given by .

(2) Define  by

and set

also written

This is called the iterated integral of  on  and  in this order.

Similarly,

and

Note that by the rules of §5, these integrals are always defined.

(3) With  as above, we say that  is a Fubini map or has the Fubini properties (after the mathematician Fubini) iff

(a)  is -measurable on  and  is -measurable on ;

(b)  is -measurable on  for almost all  (i.e., for ,  is -measurable on  for 
 and

(X,M,m) (Y ,N ,n) X ∈M Y ∈N . C

A×B, (8.8.1)

A ∈M,B ∈N ,mA < ∞, nB < ∞

s : C→ E1

s(A×B) = mA ⋅nB, A×B ∈ C. (8.8.2)

p∗ s X×Y

p : →P∗ E∗ (8.8.3)

p∗ p = m×n σ P
∗ p∗ X×Y

f : X×Y → E∗

 Definitions

f : X → Y → E∗ x, y fx f(x, ⋅) Y

(y) = f(x, y);fx (8.8.4)

f x

f y f(⋅, y) (x) = f(x, y)f y

g : X → E∗

g(x) = f(x, ⋅)dn,∫
Y

(8.8.5)

fdndm = gdm,∫
X

∫
Y

∫
X

(8.8.6)

dm(x) f(x, y)dn(y).∫
X

∫
Y

(8.8.7)

f Y X,

h(y) = dm∫
X

f y (8.8.8)

fdmdn = hdn.∫
Y

∫
X

∫
Y

(8.8.9)

f , g,h f

g m X h n Y

fx n Y x x ∈ X−Q mQ = 0); f y m X

y ∈ Y − ,n = 0;Q′ Q′
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(c) the iterated integrals above satisfy

(the main point).

For monotone sequences

we now obtain the following lemma.

If  (pointwise) on  and if each  has Fubini property (a), (b), or (c), then  has the same property.

Proof

For  set

and

By assumpsion,

pointwise on  Thus by Theorem 4 in §6,

i.e.,  (pointwise) on  with  as in Definition 2.

Again, by Theorem 4 of §6,

or by Definition 2,

Similarly for

and

Hence  satisfies (c) if all  do.

Next, let  have property (b); so  is -measurable on  if  ( ). Let

fdndm = fdmdn = fdp∫
X

∫
Y

∫
Y

∫
X

∫
X×Y

(8.8.10)

: X×Y → (k = 1, 2, …),fk E∗ (8.8.11)

 Lemma 8.8.1

0 ≤ ↗ ffk X×Y fk f

k = 1, 2, … ,

(x) = (x, ⋅)dngk ∫
Y

fk (8.8.12)

(y) = (⋅, y)dm.hk ∫
X

fk (8.8.13)

0 ≤ (x, ⋅) ↗ f(x, ⋅)fk (8.8.14)

Y .

(x, ⋅) ↗ f(x, ⋅)dn,∫
Y

fk ∫
Y

(8.8.15)

↗ ggk X, g

dm ↗ gdm;∫
X

gk ∫
X

(8.8.16)

fdndm = dndm.∫
X

∫
Y

lim
k→∞

∫
X

∫
Y

fk (8.8.17)

fdmdn∫
Y

∫
X

(8.8.18)

fdp.∫
X×Y

(8.8.19)

f fk

fk (∀k) (x, ⋅)fk n Y x ∈ X−Qk m = 0Qk

Q = ;⋃
k=1

∞

Qk (8.8.20)

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/22219?pdf


8.8.3 https://math.libretexts.org/@go/page/22219

so  and all  are -measurable on  for  Hence so is

Similarly for  Thus  satisfies (b).

Property (a) follows from  and 

Using Problems 9 and 10 from §6, the reader will also easily verify the following lemma.

(i) If  and  are nonnegative, -measurable Fubini maps, so is  for .

(ii) If, in addition,

then  is a Fubini map, too

Let  (pointwise), with  on .

(i) If all  are -measurable Fubini maps, so is .

(ii) If the  have Fubini properties (a) and (b), then

and

II. By Theorem 4 of Chapter 7, §3, the family  (see above) is a semiring, being the product of two rings,

(Verify!) Thus using Theorem 2 in Chapter 7, §6, we now show that  is an extension of 

The product premeasure s is -additive on the semiring  Hence

(i)  and  on  and

(ii) the characteristic function  of any set  is a Fubini map.

Proof

Let  so

(Why?) Thus for a fixed  is just a multiple of the -simple map  hence -measurable on  Also,

so  is -simple on  with

mQ = 0, (x, ⋅)fk n Y , x ∈ X−Q.

f(x, ⋅) = (x, ⋅).lim
k→∞

fk (8.8.21)

f(⋅, y). f

→ ggk → h. □hk

 Lemma 8.8.2

f1 f2 p a +bf1 f2 a, b ≥ 0

dp < ∞ or  dp < ∞,∫
X×Y

f1 ∫
X×Y

f2 (8.8.22)

−f1 f2

 Lemma 8.8.3

f =∑
∞
i=1 fi ≥ 0fi X×Y

fi p f

fi

fdndm = dndm∫
X

∫
Y

∑
i=1

∞

∫
X

∫
Y

fi (8.8.23)

fdmdn = dmdn.∫
Y

∫
X

∑
i=1

∞

∫
Y

∫
X

fi (8.8.24)

C

{A ∈M|mA < ∞} and {B ∈N |nB < ∞}. (8.8.25)

p s : C→ .E1

 Theorem 8.8.1

σ C.

C⊆P∗ p = s < ∞ C,

CD D ∈ C

D = A×B ∈ C;

(x, y) = (x) ⋅ (y).CD CA CB (8.8.26)

x, (x, ⋅)CD N ,CB n Y .

g(x) = (x, ⋅)dn = (x) ⋅ dn = (x) ⋅nB;∫
Y

CD CA ∫
Y

CB CA (8.8.27)

g = ⋅nBCA M X,

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/22219?pdf


8.8.4 https://math.libretexts.org/@go/page/22219

Similarly for  and

Thus  has Fubini properties (a) and (b), and for every 

To prove -additivity, let

so

(Why?) As shown above, each  has Fubini properties (a) and (b); so by (1) and Lemma 3,

as required.

Assertion (i) now follows by Theorem 2 in Chapter 7, §6. Hence

so by formula (1),  also has Fubini property (c), and all is proved.

Next, let  be the -ring generated by the semiring  (so ).

 is the least set family  such that

(i) ;

(ii)  is closed under countable disjoint unions; and

(iii)  if  and .

This is simply Theorem 3 in Chapter 7, §3, with changed notation.

If  ( -generated by  then  is a Fubini map.

Proof

Let  be the family of all  such that  is a Fubini map. We shall show that  satisfies (i)-(iii) of Lemma 4, and so

(ii) Let

dndm = gdm = nB dm = nB ⋅mA = sD.∫
X

∫
Y

CD ∫
X

∫
X

CA (8.8.28)

(⋅, y),CD

h(y) = (⋅, y)dm.∫
X

CD (8.8.29)

CD D ∈ C

dndm = dmdn = sD.∫
X

∫
Y

CD ∫
Y

∫
X

CD (8.8.30)

σ

D =  (disjoint),  ∈ C;⋃
i=1

∞

Di Di (8.8.31)

= .CD ∑
i=1

∞

CDi (8.8.32)

CDi

sD = dndm = dndm = s ,∫
X

∫
Y

CD ∑
i=1

∞

∫
X

∫
Y

CDi ∑
i=1

∞

Di (8.8.33)

sD = pD = dp;∫
X×Y

CD (8.8.34)

CD □

P σ C C⊆P ⊆P∗

 Lemma 8.8.4

P R

R⊇ C

R

H −D ∈R D ∈R D ⊆ H,H ∈ C

 Lemma 8.8.5

D ∈ P σ C), CD

R D ∈ P CD R

P ⊆R.
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Then

and each  is a Fubini map. Hence so is  by Lemma 3. Thus , proving (ii).

(iii) We must show that  is a Fubini map if  is and if  Now,  implies

(Why?) Also, by Theorem 1,  implies

and  is a Fubini map. So is  by assumption. So also is

by Lemma 2(ii). Thus  proving (iii).

By Lemma 4, then,  Hence  is a Fubini map.

We can now establish one of the main theorems, due to Fubini.

Suppose  is -measurable on  (  as above) rom. Then  is a Fubini map if either

(i)  on  or

(ii) one of

is finite.

In both cases,

Proof

First, let

i.e.,  is -elementary, hence certainly -measurable. (Why?) By Lemmas 5 and 2, each  is a Fubini map. Hence so
is  (Lemma 3). Formula (2) is simply Fubini property (c).

Now take any -measurable  By Lemma 2 in §2,

for some sequence  of -elementary maps,  As shown above, each  is a Fubini map. Hence so is  by
Lemma 1. This settles case (i).

D =  (disjoint), ∈R.⋃
i=1

∞

Di Di (8.8.35)

= ,CD ∑
i=1

∞

CDi
(8.8.36)

CDi
CD D ∈R

CH−D CD D ⊆ H,H ∈ C. D ⊆ H

= − .CH−D CH CD (8.8.37)

H ∈ C

dp = pH = sH < ∞,∫
X×Y

CH (8.8.38)

CH CD

= −CH−D CH CD (8.8.39)

H −D ∈R,

P ⊆R. (∀D ∈ P)CD □

 Theorem  (Fubini I)8.8.2

f : X×Y → E∗ P X×Y P f

f ≥ 0 X×Y ,

|f |dp, |f |dndm, or |f |dmdn∫
X×Y

∫
X

∫
Y

∫
Y

∫
X

(8.8.40)

fdndm = fdmdn = fdp.∫
X

∫
Y

∫
Y

∫
X

∫
X×Y

(8.8.41)

f = ( ≥ 0, ∈ P) ,∑
i=1

∞

aiCDi
ai Di (8.8.42)

f P p aiCDi

f

P f ≥ 0.

f =  on X×Ylim
k→∞

fk (8.8.43)

{ } ↑fk P ≥ 0.fk fk f
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Next, assume (ii). As  is -measurable, so are  and  (Theorem 2 in §2). As they are nonnegative, they are
Fubini maps by case (i).

So is  by Lemma 2(ii), since  implies

by our assumption (ii). (The three integrals are equal, as  is a Fubini map.)

Thus all is proved.

III. We now want to replace  by  in Lemma 5 and Theorem 2. This works only under certain -finiteness conditions, as shown
below.

Let  be -finite, i.e.,

for some  with  

Then there is  such that  and .

Proof

As  is a -ring containing  it also contains  Thus by Theorem 3 of Chapter 7, §5,  is -regular.

For the rest, proceed as in Theorems 1 and 2 in Chapter 7, §7.

If  is -finite (Lemma 6), then  is a Fubini map.

Proof

By Lemma 6,

Let  so  and  that is,  and

As  is a Fubini map. Thus by Lemma 2(ii), all reduces to proving the same for 

Now, as  is certainly -finite; so by Lemma 6,

Again  is a Fubini map; so

As  we have  and so

f P , ,f+ f− |f |

f = −f+ f− ≤ |f |f+

dp < ∞∫
X×Y

f+ (8.8.44)

|f |

□

P P
∗ σ

 Lemma 8.8.6

D ∈ P∗ σ

D =  (disjoint)⋃
i=1

∞

Di (8.8.45)

∈ ,Di P∗ p < ∞Di (i = 1, 2, …).

aK ∈ P p(K−D) = 0 D ⊆ K

P σ C, .Cσ p∗ P

□

 Lemma 8.8.7

D ∈ P∗ σ CD

(∃K ∈ P) p(K−D) = 0,D ⊆ K. (8.8.46)

Q = K−D, pQ = 0, = − ;CQ CK CD = −CD CK CQ

dp = pQ = 0.∫
X×Y

CQ (8.8.47)

K ∈ P,CK .CQ

pQ = 0,Q σ

(∃Z ∈ P) Q ⊆ Z, pZ = pQ = 0. (8.8.48)

CZ

dndm = dp = pZ = 0.∫
X

∫
Y

CZ ∫
X×Y

CZ (8.8.49)

Q ⊆ Z, ≤ ,CQ CZ
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Similarly,

Thus setting

we have

Hence by Theorem 1(h) in §5,  a.e. on  and  a.e. on  So  and  are "almost" measurable (Definition 2 of
§3); i.e.,  has Fubini property (a).

Similarly, one establishes (b), and (3) yields Fubini property (c), since

as required.

Suppose  is -measurable on  and satisfies condition (i) or (ii) of Theorem 2.

Then  is a Fubini map, provided  has -finite support, i.e.,  vanishes outside some -finite set .

Proof

First, let

with  on  (as above).

As  on  we must have  so all  are -finite. (Why?) Thus by Lemma 7, each  is a Fubini map,
and so is  (Why?)

If  is -measurable and nonnegative, and  on  we can proceed as in Theorem 2, making all  vanish on 
Then the  and  are Fubini maps by what was shown above.

Finally, in case (ii),  on  implies

Thus  and  are Fubini maps by part (i) and the argument of Theorem 2.

Note 1. The -finite support is automatic if  is -integrable (Corollary 1 in §5), or if  or both  and  are -finite (see Problem
3). The condition is also redundant if  is -measurable (Theorem 2; see also Problem 4).

Note 2. By induction, our definitions and Theorems 2 and 3 extend to any finite number  of measure spaces

dndm∫
X

∫
Y

CQ = [ (x, ⋅)dn]dm∫
X

∫
Y

CQ

≤ [ (x, ⋅)dn]dm = dp = 0.∫
X

∫
Y

CZ ∫
X×Y

CZ

dmdn = [ (⋅, y)dm]dn = 0.∫
Y

∫
X

CQ ∫
Y

∫
X

CQ (8.8.50)

g(x) = (x, ⋅)dn and h(y) = (⋅, y)dm,∫
Y

CQ ∫
X

CQ (8.8.51)

gdm = 0 = hdn.∫
X

∫
Y

(8.8.52)

g = 0 X, h = 0 Y . g h

CQ

dndm = dmdn = dp = 0,∫
X

∫
Y

CQ ∫
Y

∫
X

CQ ∫
X×Y

CQ (8.8.53)

□

 Theorem  (Fubini II)8.8.3

f : X×Y → E∗ P
∗ X×Y

f f σ f σ H ⊆ X×Y

f = ( > 0, ∈ ) ,∑
i=1

∞

aiCDi ai Di P
∗ (8.8.54)

f = 0 −H

f = ≠ 0ai ,Ai ⊆ H;Di Di σ CDi

f .

f P∗ f = 0 −H, fk −H.

fk f

f = 0 −H

= = |f | = 0 on  −H.f+ f− (8.8.55)

, ,f+ f− f □

σ f p p m n σ

f P

q

( , , ) , i = 1, … , q.Xi Mi mi (8.8.56)
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One writes

if  and sets

Theorems 2 and 3 with similar assumptions then state that the order of integrations is immaterial.

Note 3. Lebesgue measure in  can be treated as the product of  one- dimensional measures. Similarly for  product measures
(but this method is less general than that described in Problems 9 and 10 of Chapter 7, §9).

IV. Theorems 2(ii) and 3(ii) hold also for functions

if Definitions 2 and 3 are modified as follows (so that they make sense for such maps): In Definition 2, set

if  is -integrable on  and  otherwise. Similarly for  In Definition 3, replace "measurable" by "integrable."

For the proof of the theorems, apply Theorems 2(i) and 3(i) to  This yields

Hence if one of these integrals is finite,  is -integrable on  and so are its  components. The result then follows on noting
that  is a Fubini map (in the modified sense) iff its components are. (Verify!) See also Problem 12 below.

V. In conclusion, note that integrals of the form

reduce to

Thus it suffices to consider integrals over .

8.8: Product Measures. Iterated Integrals is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

p = ×m1 m2 (8.8.57)

q = 2

× ×⋯ × = ( ×⋯ × ) × .m1 m2 mq+1 m1 mq mq+1 (8.8.58)

Eq q LS

f : X×Y → ( )En Cn (8.8.59)

g(x) = dn∫
Y

fx (8.8.60)

fx n Y , g(x) = 0 h(y).

|f |.

|f |dmdn = |f |dndm = |f |dp.∫
Y

∫
X

∫
X

∫
Y

∫
X×Y

(8.8.61)

f p X×Y , q

f

fdp (D ∈ )∫
D

P
∗ (8.8.62)

f ⋅ dp.∫
X×Y

CD (8.8.63)

X×Y
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8.8.E: Problems on Product Measures and Fubini Theorems

Prove Lemmas 2 and 3.

Show that  is a set ring.

Fill in all proof details in Theorems 1 to 3.

Do the same for Lemmas 5 to 7.

Prove that if  and  are -finite, so is  Disprove the converse by an example. 
[Hint: . Verify!]

Prove the following. 
(i) Each  (as in the text) is (p) -finite. 
(ii) All -measurable maps  have -finite support. 
[Hints: (i) Use Problem  from Chapter 7, §3. (ii) Use (i) for -elementary and nonnegative maps first. 

(i) Find  and  such that  is not -measurable on  Does this contradict Lemma  
[Hint: Let  Lebesgue measure in  with  non-measurable.  
(ii) Which -sets have nonzero measure if  is as in Problem  of Chapter  and  is
Lebesgue measure?

Let  Lebesgue measure in  Let 

 
Let 

 
the series converges. (Why?) Show that 
(i) ; 

 Exercise 8.8.E. 1

 Exercise 8.8.E. 1′

{A ∈M|mA < ∞}

 Exercise 8.8.E. 2

 Exercise 8.8.E. 2′

 Exercise 8.8.E. 3

m n σ p = m×n.

( ) ×( ) = ( × )∪iAi UjBj Ui,j Ai Bj

 Exercise 8.8.E. 4

D ∈ P σ

P f : X×Y → E∗ σ

14(b) P ]

 Exercise 8.8.E. 5

D ∈ P∗ x ∈ X (x, ⋅)CD n Y . 7?

m = n = ;D = {x} ×Q,E1 Q ]

C X = Y = ,E1 m∗ 2(b) 7, §5( with S = X), n

 Exercise 8.8.E. 5′

m = n = [0, 1] = X = Y .

= {fk
k(k+1)

0

 on ( , ]  and 1
k+1

1
k

 elsewhere. 
(8.8.E.1)

f(x, y) = [ (x) − (x)] (y);∑
k=1

∞

fk fk+1 fk (8.8.E.2)

(∀k) = 1∫X fk
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(ii) . 
What is wrong? Is  -measurable? 
[Hint: Explore 

Let  as in Example  of Chapter  and  Lebesgue measure in  
(i) Show that  is a topological measure under the standard metric in  
(ii) Prove that . 
(iii) Describe . 
[Hints: (i) Any subinterval of  is in  (ii)  is closed. Verify!]

Continuing Problem  let . 
(i) Show that 

 
What is wrong? 
[Hint:  is not -finite; for if 

 
at least one  is uncountable and has no finite basic covering values (why?), so ] 
(ii) Compute  and .

Show that  is -finite iff 

 
for some sets . 
[Hint: First let 

Given  and  let 

 
and 

fdndm = 1 ≠ 0 = fdmdn∫
X
∫
Y

∫
Y
∫
X

f P

|f |dndm. ]∫
X

∫
Y

(8.8.E.3)

 Exercise 8.8.E. 6

X = Y = [0, 1],m (c) 7, §6, (S = X) n = Y .

p = m×n .E2

D = {(x, y) ∈ X×Y |x = y} ∈ P∗

C

X×Y ;P
∗ D

 Exercise 8.8.E. 7

6, f = CD

fdndm = 0 ≠ 1 = fdmdn.∫
Y

∫
X

∫
Y

∫
X

(8.8.E.4)

D σ

D = ,⋃
i=1

∞

Di (8.8.E.5)

Di = ∞.p∗Di

{(x, 0)|x ∈ X}p∗ {(0, y)|y ∈ Y }p∗

 Exercise 8.8.E. 8

D ∈ P∗ σ

D ⊆ (disjoint)⋃
i=1

∞

Di (8.8.E.6)

∈ CDi

D < ∞.  Use Corollary 1 from Chapter 7, §1. ]p∗

 Exercise 8.8.E. 9

D ∈ P, a ∈ X, b ∈ Y ,

= {y ∈ Y |(a, y) ∈ D}Da (8.8.E.7)

= {x ∈ X|(x, b) ∈ D}.Db (8.8.E.8)
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(See Figure  
Prove that 
(i) ; 
(ii) . 
[Hint: Let 

 
Show that  is a -ring  Hence  Similariy for ]

. Let  Lebesgue measure in  Let  be -mensurable on  Let 

 
and 

 
(the "graph" of  ). Prove that 
(i)  and 

 
(="the area under f") 
(ii)  and . 
[Hints: (i) First take  and elementary and nonnegative maps. Then use Lemma 2 in §2 (last clause). Fix elementary
and nonnegative maps  assuming  Let 

 
Show that . 
(ii) Set 

 
Using Corollary 4 of §1, show that  is -measurable on  so . Dropping a null set (Lemma 
assume  By Problem 9 (ii), 

 
as 

Let 

34 for X = Y = . )E1

∈N , ∈MDa Db

(a, ⋅) = ,n = (a, ⋅)dn,m = (⋅, b)dmCD CDa Da ∫Y CD Db ∫X CD

H = {(x, y) ∈ |0 ≤ y < f(x)}E2 (8.8.E.9)

R σ ⊇ C. R⊇P;D ∈R; ∈N .Da .Db

 Exercise 8.8.E. 10

⇒ 10 m = n = = X = Y .E1 f : → [0, ∞)E1 m X.

H = {(x, y) ∈ |0 ≤ y < f(x)}E2 (8.8.E.10)

G= {(x, y) ∈ |y = f(x, y)}E2 (8.8.E.11)

f

H ∈ P∗

pH = fdm∫
X

(8.8.E.12)

G∈ P∗ pG= 0

f = ,CD

↗ f ,fk < f  (if not, replace   by (1 − ) ) .fk fk
1
k

fk

= {(x, y)|0 ≤ y < (x)} .Hk fk (8.8.E.13)

↗ H ∈Hk P
∗

ϕ(x, y) = y−f(x). (8.8.E.14)

ϕ p ;E2 G= (ϕ = 0) ∈E2 P
∗ 6),

G∈ P.

(∀x ∈ ) (x, ⋅)dn = n = 0,E1 ∫
Y

CG Gx (8.8.E.15)

= {f(x)},  a singleton. ]Gx

 Exercise 8.8.E. 11

f(x, y) = (x) (y).ϕ1 ϕ2 (8.8.E.16)
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Prove that if  is -integrable on  and  is -integrable on  then  is -integrable on  and 

Prove Theorem . 
[Outline: If  is -simple, use Lemma 7 above and Theorem 2 in §7. 
If 

 
let 

 
and  so the  are -simple (hence Fubini maps), and  (point-wise) on  with  and 

 
(by assumption). Now use Theorem 5 from §6.
Let now  be -measurable; so 

 
for some  By assumption,  -finite); so we may assume 

 Then as shown above, all  are Fubini maps. So is  by Lemma 1 in §7 (verify!), provided  for some 
 

In the general case, by Problem 8 , 

 
Let  By the previous step, each  is a Fubini map; so is 

 
(why?), hence so is  by Theorem 5 of §6. (Verify!)]

Let  Lebesgue measure in  Lebesgue measure in  and 

ϕ1 m X ϕ2 n Y , f p X×Y

fdp = ⋅ .∫
X×Y

∫
X

ϕ1 ∫
Y

ϕ2 (8.8.E.17)

 Exercise 8.8.E. ∗12

3(ii) for f : X×Y → E(E complete) 

f P∗

f = , ∈ ,∑
k=1

∞

akCDk Dk P
∗ (8.8.E.18)

=Hk ⋃
i=1

k

Di (8.8.E.19)

= f ,fk CHk
fk P∗ → ffk X×Y , | | ≤ |f |fk

|f |dp < ∞∫
X×Y

(8.8.E.20)

f P∗

f =  (uniformly) lim
k→∞

fk (8.8.E.21)

-elementary maps   (Theorem 3 in §1) .P
∗ gk f = f (HCH σ

= .gk gkCH gk f H ⊆ D

D ∈ C.

H ⊆ (disjoint), ∈ C.⋃
i

Di Di (8.8.E.22)

= H ∩ .Hi Di fCHi

= ffk ∑
i=1

k

CHi (8.8.E.23)

f = ,limk→∞ fk

 Exercise 8.8.E. 13

m = , p =E1 ,X = (0, ∞),Es

Y = { ∈ || | = 1} .ȳ Es ȳ (8.8.E.24)
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Given  let 

 
Call  and  the polar coordinates of . 
If  set 

 
Show that  is an outer measure in  so it induces a measure  in  
Then prove that 

 
if  is -measurable and nonnegative on  
[Hint: Start with  

 
for some open set  Next, let  then 

8.8.E: Problems on Product Measures and Fubini Theorems is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

∈ −{ },x̄ Es 0¯̄̄

r = | | and  = ∈ Y .x̄ ū
x̄

r
(8.8.E.25)

r ū ≠x̄ 0¯̄̄

D ⊆ Y ,

D = s ⋅ {r | ∈ D, 0 < r ≤ 1}.n∗ p∗ ū ū (8.8.E.26)

n∗ Y ; n Y .

fdp = dm(r) f(r )dn( )∫
E s

∫
X

rs−1 ∫
Y

ū ū (8.8.E.27)

f p .Es

f = ,CA

A = {r | ∈ H, a < r < b},ū ū (8.8.E.28)

H ⊆ Y  (subspace of  ) .Es A ∈ B( Borel set in Y );

A ⊆ .  Then let f  be p-elementary, and so on. ]P
∗
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8.9: Riemann Integration. Stieltjes Integrals
I. In this section,  is the family of all intervals in  and  is an additive finite premeasure on  (or ), such as the volume
function  (Chapter 7, §§1-2).

By a -partition of  (or ), we mean a finite family

such that

As we noted in §5, the Riemann integral,

of  can be defined as its Lebesgue counterpart,

with elementary maps replaced by simple step functions (" -simple" maps.) Equivalently, one can use the following construction,
due to J. G. Darboux.

(a) Given  and a -partition

of  we define the lower and upper Darboux sums,  and  of  over  (with respect to ) by

(b) The lower and upper Riemann integrals ("R-integrals") of  on  (with respect to  are

where the "inf" and "sup" are taken over all -partitions  of .

(c) We say that  is Riemann-integrable ("R-integrable") with respect to  on  iff  is bounded on  and

We then set

and call it the Riemann integral ("R-integral") of  on  "Classical" notation:

If  we also write

C ,En m C Cs

v

C A ∈ C A ∈ Cs

P = { } ⊂ CAi (8.9.1)

A=  (disjoint).⋃
i

Ai (8.9.2)

R f =R fdm,∫
A

∫
A

(8.9.3)

f : →En E1

f ,∫
A

(8.9.4)

C

 Definitions

f : →En E∗ C

P = { ,… , }A1 Aq (8.9.5)

A, S
––

,S
¯¯̄

f P m

(f ,P) = m ⋅ inff [ ]  and  (f ,P) = m ⋅ supf [ ] .S–– ∑
i=1

q

Ai Ai S
¯¯̄ ∑

i=1

q

Ai Ai (8.9.6)

f A m)

}
R f =R fdm = (f ,P) and ∫
––A

∫
––A

supP S––

R f =R fdm = (f ,P),∫
¯¯̄

A ∫
¯¯̄

A infP S
¯¯̄

(8.9.7)

C P A

f m A f A

R f =R f .∫
–– A

∫
¯ ¯¯̄¯

A

(8.9.8)

R f =R f =R fdm =R fdm∫
A

∫
–– A

∫
¯ ¯¯̄¯

A

∫
A

(8.9.9)

f A.

R f( )dm( ).∫
A

x̄̄̄ x̄̄̄ (8.9.10)

A= [a, b] ⊂ ,E1
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instead.

If  is Lebesgue measure (or premeasure) in  we write " " for " ."

For Lebesgue integrals, we replace " " by " ," or we simply omit " "

If  is R-integrable on  we also say that

exists (note that this implies the boundedness of  note that

are always defined in .

Below, we always restrict  to a fixed  (or );  and  denote -partitions of 

We now obtain the following result for any additive .

If  refines  (§1), then

Proof

Let  and

By additivity,

Also,  implies

So setting

we get

Similarly,

and

R f =R f(x)dm(x)∫
b

a

∫
b

a

(8.9.11)

m ,E1 dx dm(x)

R L R.

f A,

R f∫
A

(8.9.12)

f);

R f  and R f∫
–– A

∫
¯ ¯¯̄¯

A

(8.9.13)

E∗

f A ∈ C A ∈ Cs P, , ,P
′
P

′′
P

∗
Pk C A.

m : C→ [0,∞)

 Corollary 8.9.1

P P
′

(f , ) ≤ (f ,P) ≤ (f ,P) ≤ (f , ) .S
––

P ′ S
––

S
¯¯̄

S
¯¯̄

P ′ (8.9.14)

= { } ,P = { } ,P
′ Ai Bik

(∀i) = .Ai ⋃
k

Bik (8.9.15)

m = m .Ai ∑
k

Bik (8.9.16)

⊆Bik Ai

f [ ]Bik

supf [ ]Bik

inff [ ]Bik

⊆ f [ ] ;Ai

≤ supf [ ] ;  and Ai

≥ inff [ ] .Ai

= inff [ ]  and  = inff [ ] ,ai Ai bik Bik (8.9.17)

(f , ) = mS–– P
′ ∑

i

ai Ai = m∑
i

∑
k

ai Bik

≤ m = (f ,P).∑
i,k

bik Bik S
––

(f , ) ≤ (f ,P),S
¯¯̄

P
′ S

¯¯̄
(8.9.18)
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is obvious from (1).

For any  and ,

Hence

Proof

Let  (see §1). As  refines both  and , Corollary 1 yields

Thus, indeed, no lower sum  exceeds any upper sum .

Hence also,

i.e.,

as claimed.

A map  is -integrable iff  is bounded and, moreover,

Proof

By formulas (1) and (2),

Hence (3) implies

As  is arbitrary, we get

so  is R-integrable.

Conversely, if so, definitions (b) and (c) imply the existence of  and  such that

(f ,P) ≤ (f ,P)S–– S
¯¯̄

(8.9.19)

□

 Corollary 8.9.2

P ′ P ′′

(f , ) ≤ (f , ) .S–– P
′ S

¯¯̄
P

′′ (8.9.20)

R f ≤R f .∫
–– A

∫
¯ ¯¯̄¯

A

(8.9.21)

P = ∩P ′ P ′′ P P ′ P ′′

(f , ) ≤ (f ,P) ≤ (f ,P) ≤ (f , ) .S–– P
′ S–– S

¯¯̄
S
¯¯̄

P
′′ (8.9.22)

(f , )S–– P
′ (f , )S

¯¯̄
P

′′

(f , ) ≤ (f , ) ,sup
P ′

S–– P
′ inf

P
′′
S
¯¯̄

P
′′ (8.9.23)

R f ≤R f ,∫
–– A

∫
¯ ¯¯̄¯

A

(8.9.24)

□

 Lemma 8.9.1

f : A→E1 R f

(∀ε> 0) (∃P) (f ,P)− (f ,P) < ε.S
¯¯̄

S–– (8.9.25)

(f ,P) ≤R f ≤R f ≤ (f ,P).S–– ∫
–– A

∫
¯ ¯¯̄¯

A

S
¯¯̄

(8.9.26)

R f −R f < ε.
∣

∣
∣ ∫

¯ ¯¯̄¯

A

∫
–– A

∣

∣
∣ (8.9.27)

ε

R f =R f ;∫
¯ ¯¯̄¯

A

∫
–– A

––

(8.9.28)

f

P ′ P ′′
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and

Let  refine both  and  Then by Corollary 1,

as required.

Let  be -simple; say,  on  for some -partition   of  (we then write

on  see Note 4 of §4).

Then

Hence any finite -simple function is R-integrable, with  as in (4).

Proof

Given any -partition  of  consider

As  on  (even on all of ),

Also,

and

so

and

for any such .

Hence also

(f , ) >R f − εS–– P ′ ∫
A

1

2
(8.9.29)

(f , ) <R f + ε.S
¯¯̄

P
′′ ∫

A

1

2
(8.9.30)

P P
′ .P

′′

(f ,P)− (f ,P)S
¯¯̄

S–– ≤ (f , )− (f , )S
¯¯̄

P
′′ S–– P

′

<(R f + ε)−(R f − ε) = ε,∫
A

1

2
∫
A

1

2

□

 Lemma 8.9.2

f C f = ai Ai C =P
∗ { }Ai A

f =∑
i

aiCAi
(8.9.31)

A;

R f =R f = (f , ) = (f , ) = m .∫
–– A

∫
¯ ¯¯̄¯

A

S
––

P∗ S
¯¯̄

P∗ ∑
i

ai Ai (8.9.32)

C R f∫
A

C P = { }Bk A,

\acdotP = { ∩ } .P
∗ Ai Bk (8.9.33)

f = ai ∩Ai Bk Ai

= inff [ ∩ ] = supf [ ∩ ] .ai Ai Bk Ai Bk (8.9.34)

A= ( ∩ )  (disjoint)⋃
i,k

Ai Bk (8.9.35)

(∀i) = ( ∩ ) ;Ai ⋃
k

Ai Bk (8.9.36)

m = m ( ∩ )Ai ∑
k

Ai Bk (8.9.37)

(f ,P) = m ( ∩ ) = m = (f , )S
––

∑
i

∑
k

ai Ai Bk ∑
i

ai Ai S
––

P∗ (8.9.38)

P
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Similarly for  This proves (4).

If, further,  is finite, it is bounded (by max ) since there are only finitely many  so  is R-integrable on  and all is
proved.

Note 1. Thus  and  are integrals of -simple maps, and definition (b) can be restated:

taking the sup and inf over all -simple maps  with

(Verify by properties of glb and lub!)

Therefore, we can now develop R-integration as in §§4-5, replacing elementary maps by -simple maps, with  In
particular, Problem 5 in §5 works out as before.

Hence linearity (Theorem 1 of §6) follows, with the same proof. One also obtains additivity (limited to -partitions). Moreover, the
R-integrability of  and  implies that of  and  (See the Problems.)

If  (uniformly) on  and if the  are R-integrable on , so also is  Moreover,

Proof

As all  are bounded (definition (c)), so is  by Problem 10 of Chapter 4, §12.

Now, given  fix  such that

Verify that

fix one such  and choose a  such that

which one can do by Lemma 1. Then for this ,

(Why?) By Lemma 1, then,  is R-integrable on .

Finally,

for all  Hence the second clause of our theorem follows, too.

m = (f ,P) =R f .∑
i

ai Ai sup
P

S–– ∫
–– A

(8.9.39)

R f .∫
¯¯̄

A

f | |ai ;ai f A,

□

S
––

S
¯¯̄

C

R f = R g and R f = R h,∫
–– A

sup
g

∫
A

∫
¯ ¯¯̄¯

A

inf
h

∫
A

(8.9.40)

C g,h

g≤ f ≤ h on A. (8.9.41)

C S = .En

C

f g fg, f ∨ g, f ∧ g, |f |.

 Theorem 8.9.1

→ ffi A fi A f .

R |f − | = 0 and  R =R f .lim
i→∞

∫
A

fi lim
i→∞

∫
A

fi ∫
A

(8.9.42)

fi f ,

ε> 0, k

(∀i ≥ k) |f − | < on A.fi
ε

mA
(8.9.43)

(∀i ≥ k) (∀P) | (f − ,P)| < ε and  (f − ,P) < ε;S
––

fi ∣
∣S
¯¯̄ fi ∣

∣ (8.9.44)

fi P

( ,P)− ( ,P) < ε,S
¯¯̄

fi S
––

fi (8.9.45)

P

(f ,P)− (f ,P) < 3ε.S
¯¯̄

S
––

(8.9.46)

f A

R f −R
∣

∣
∣ ∫

A

∫
A

fi
∣

∣
∣ ≤R |f − |∫

A

fi

≤R ( )=mA( )= ε∫
A

ε

mA

ε

mA

i ≥ k. □
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If  is bounded and regulated (Chapter 5, §10) on  then  is R-integrable on 

In particular, this applies if  is monotone, or of bounded variation, or relatively continuous, or a step function, on 

Proof

By Lemma 2, this applies to -simple maps.

Now, let  be regulated (e.g., of the kind specified above).

Then by Lemma 2 of Chapter 5, §10,

for finite -simple .

Thus  is R-integrable on  by Theorem 1.

II. Henceforth, we assume that  is a measure on a -ring  in , with  on . (For a reader who took the "limited
approach," it is now time to consider §§4-6 in full.) The measure  may, but need not, be Lebesgue measure in 

If  is R-integrable on  it is also Lebesgue integrable (with respect to  as above) on  and

Proof

Given a -partition  of  define the -simple maps

with

Then  on  with

and

By Theorem 1(c) in §5,

As this holds for any  we get

But by assumption,

 Corollary 8.9.3

f : →E1 E1 A= [a, b], f A.

f A.

C

f

f = (uniformly)lim
i→∞

gi (8.9.47)

C gi

f A □

m σ M⊇ C En m <∞ C

m .En

 Theorem 8.9.2

f : →En E1 A ∈ C, m A,

L f =R f ,∫
A

∫
A

(8.9.48)

C P = { }Ai A, C

g=  and h =∑
i

aiCAi
∑
i

biCAi
(8.9.49)

= inff [ ]  and  = supf [ ] .ai Ai bi Ai (8.9.50)

g≤ f ≤ h A

(f ,P) = m =L gS
––

∑
i

ai Ai ∫
A

(8.9.51)

(f ,P) = m =L h.S
¯¯̄ ∑

i

bi Ai ∫
A

(8.9.52)

(f ,P) =L g≤L f ≤L f ≤L h = (f ,P).S–– ∫
A

∫
–– A

∫
¯ ¯¯̄¯

A

∫
A

S
¯¯̄

(8.9.53)

P,

R f = (f ,P) ≤L f ≤L f = (f ,P) =R f .∫
–– A

sup
P

S–– ∫
–– A

∫
¯ ¯¯̄¯

A

inf
P
S
¯¯̄ ∫

¯ ¯¯̄¯

A

(8.9.54)
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Thus these inequalities become equations:

Also, by definition (c),  is bounded on  so  on  Hence

Thus

i.e.,  is Lebesgue integrable, and

as claimed.

Note 2. The converse fails. For example, as shown in the example in §4 ,  (  rationals) is L-integrable on 

Yet  is not -integrable.

For -partitions involve intervals containing both rationals (on which ) and irrationals (on which ). Thus for any ,

(Why?) So

while

Note 3. By Theorem 1, any  is also a Lebesgue integral. Thus the rules of §§5-6 apply to R-integrals, provided that the
functions involved are R-integrable. For a deeper study, we need a few more ideas.

(d) The mesh  of a -partition  is the largest of the diagonals 

Note 4. For any  there is a sequence of -partitions  such that

(i) each  refines  and

(ii) .

To construct such a sequence, bisect the edges of  so as to obtain  subintervals of diagonal  (Chapter 3, §7). Repeat this
with each of the subintervals, and so on. Then

R f =R f .∫
–– A

∫
¯ ¯¯̄¯

A

(8.9.55)

R f = f = f =R f .∫
A

∫
–– A

∫
¯ ¯¯̄¯

A

∫
A

(8.9.56)

f A; |f | <K <∞ A.

f ≤ |f | ≤K ⋅mA<∞.
∣

∣
∣∫

A

∣

∣
∣ ∫

A

(8.9.57)

f = f ≠±∞,∫
–– A

∫
¯ ¯¯̄¯

A

(8.9.58)

f

L f =R f ,∫
A

∫
A

(8.9.59)

□

f =CR R= A= [0, 1].

f R

C f = 1 f = 0 P

(f ,P) = 0 and  (f ,P) = 1 ⋅mA= 1.S–– S
¯¯̄

(8.9.60)

R f = inf (f ,P) = 1,∫
¯ ¯¯̄¯

A

S
¯¯̄

(8.9.61)

R f = 0 ≠R f .∫
–– A

∫
¯ ¯¯̄¯

A

(8.9.62)

R f∫
A

 Definitions (continued)

|P| C P = { ,… , }A1 Aq d :Ai

|P| =max{d , d ,… , d } .A1 A2 Aq (8.9.63)

A ∈ C, C Pk

Pk+1 Pk

| | = 0limk→∞ Pk

A 2n dA1
2
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Let  be bounded. Let  satisfy (i) of Note 4. If  put

and

Then the functions

are Lebesgue integrable on  and

Proof

As in Theorem 2, we obtain  on  with

and

Since  refines  it also easily follows that

(Verify!)

Thus  and  and so

Also, as  is bounded

The definition of  and  then implies

with

The  and  are measurable (even simple) on  with  and .

Thus by Theorem 5 and Note 1, both from §6,  and  are Lebesgue integrable, with

| | = → 0.Pk

dA

2k
(8.9.64)

 Lemma 8.9.3

f : A→E1 { }Pk = { ,… , } ,Pk Ak
1 Ak

qk

= inff [ ]gk ∑
i=1

qk

CAk
i

Ak
i (8.9.65)

= f [ ] .hk ∑
i=1

qk

C supAk
i

Ak
i (8.9.66)

g=  and h =sup
k

gk inf
k
hk (8.9.67)

A,

g= (f , ) ≤R f ≤R f ≤ (f , ) = h.∫
A

lim
k→∞

S
––

Pk ∫
–– A

∫
¯ ¯¯̄¯

A

lim
k→∞

S
¯¯̄

Pk ∫
A

(8.9.68)

≤ f ≤gk hk A

= (f , )∫
A

gk S–– Pk (8.9.69)

= (f , ) .∫
A

hk S
¯¯̄

Pk (8.9.70)

Pk+1 ,Pk

≤ ≤ = g≤ f ≤ h = ≤ ≤ .gk gk+1 sup
k

gk inf
k
hk hk+1 hk (8.9.71)

{ } ↑gk { } ↓,hk

g= =  and h = = .sup
k

gk lim
k→∞

gk inf
k
hk lim

k→∞
hk (8.9.72)

f

(∃K ∈ ) |f | <K on A.E1 (8.9.73)

gk hk

(∀k) | | ≤K and  | | ≤K (why?),gk hk (8.9.74)

(K) =K ⋅mA<∞.∫
A

(8.9.75)

gk hk A, → ggk → hhk

g h
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As

and

passage to the limit in equalities yields (6). Thus the lemma is proved.

With all as in Lemma 3, let  be the union of the boundaries of all intervals from all  Let  Then we have the
following.

(i) If  is continuous at  then .

(ii) The converse holds if .

Proof

For each  is in one of the intervals in  call it .

If  is an interior point of  so there is a globe

Also, by the definition of  and ,

(Why?)

Now fix  If  then

so

As  we get

proving continuity (clause (ii)).

For (i), given  choose  so that

Because

for  Deduce that

g=  and  h = .∫
A

lim
k→∞

∫
A

gk ∫
A

lim
k→∞

∫
A

hk (8.9.76)

= (f , ) ≤R f∫
A

gk S–– Pk ∫
–– A

(8.9.77)

= (f , ) ≥R f ,∫
A

hk S
¯¯̄

Pk ∫
¯ ¯¯̄¯

A

(8.9.78)

□

 Lemma 8.9.4

B .Pk | | → 0.Pk

f p ∈ A, h(p) = g(p)

p ∈ A−B

k, p ;Pk Akp

p ∈ A−B, p ;Akp

( ) ⊆ .Gp δk Akp (8.9.79)

gk hk

(p) = inff [ ]  and  = supf [ ] .gk Akp hk Akp (8.9.80)

ε> 0. g(p) = h(p),

0 = h(p)−g(p) = [ (p)− (p)] ;lim
k→∞

hk gk (8.9.81)

(∃k) | (p)− (p)| = supf [ ] − inff [ ] < ε.hk gk Akp Akp (8.9.82)

( ) ⊆ ,Gp δk Akp

(∀x ∈ ( )) |f(x)−f(p)| ≤ supf [ ] − inff [ ] < ε,Gp δk Akp Akp (8.9.83)

ε> 0, δ > 0

(∀x, y ∈ A∩ (δ)) |f(x)−f(y)| < ε.Gp (8.9.84)

(∀δ > 0) (∃ ) (∀k> ) | | < δk0 k0 Pk (8.9.85)

k> , ⊆ (δ).k0 Akp Gp

(∀k> ) | (p)− (p)| ≤ ε. □k0 hk gk (8.9.86)
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Note 5. The Lebesgue measure of  in Lemma 4 is zero; for  consists of countably many "faces" (degenerate intervals), each of
measure zero.

A map  is R-integrable on  (with  Lebesgue measure) iff  is bounded on  and continuous on  for
some  with .

Note that relative continuity on  is not enough-take  of Note 2.

Proof

If these conditions hold, choose  as in Lemma 4.

Then by the assumed continuity,  on .

Thus

(Corollary 2 in §5).

Hence by formula (6),  is R-integrable on .

Conversely, if so, use Lemma 1 with

to get for each  some  such that

By Corollary 1, this will hold if we refine each  step by step, so as to achieve properties (i) and (ii) of Note 4 as well.
Then Lemmas 3 and 4 apply.

As

formula (6) show that

As  and  are integrable on ,

Also  so by Theorem 1(h) in §5,  on  (under Lebesgue measure). Hence by Lemma 4, 
is continuous on

with  (Note 5).

Let  Then  and

so  is continuous on  This completes the proof.

B B

 Theorem 8.9.3

f : A→E1 A m = f A A−Q

Q mQ = 0

A−Q f =CR

{ }Pk

g= h A−Q,mQ = 0

g= h∫
A

∫
A

(8.9.87)

f A

ε= 1, ,… , ,…
1

2

1

k
(8.9.88)

k Pk

(f , )− (f , ) < → 0.S
¯¯̄

Pk S
––

Pk

1

k
(8.9.89)

,Pk

(f , )− (f , ) → 0,S
¯¯̄

Pk S
––

Pk (8.9.90)

g= (f , ) = (f , ) = h.∫
A

lim
k→∞

S–– Pk lim
k→∞

S
¯¯̄

Pk ∫
A

(8.9.91)

h g A

(h−g) = h− g= 0.∫
A

∫
A

∫
A

(8.9.92)

h−g≥ 0; h = g A− ,m = 0Q′ Q′ f

A− −B,Q′ (8.9.93)

mB= 0

Q = ∪B.Q′ mQ = 0

A−Q =A− −B;Q′ (8.9.94)

f A−Q. □
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Note 6. The first part of the proof does not involve  and thus works even if  is not the Lebesgue measure. The second part
requires that .

Theorem 3 shows that R-integrals are limited to a.e. continuous functions and hence are less flexible than L-integrals: Fewer
functions are R-integrable, and convergence theorems (§6, Theorems 4 and 5) fail unless  exists.

III. Functions  For such functions, R-integrals are defined componentwise (see §7). Thus 
is R-integrable on  iff all   are, and then

A complex function  is R-integrable iff  and  are, and then

Via components, Theorems 1 to 3, Corollaries 3 and 4, additivity, linearity, etc., apply.

IV. Stieltjes Integrals. Riemann used Lebesgue premeasure  only. But as we saw, his method admits other premeasures, too.

Thus in  we may let  be the  premeasure  or the  measure  where  (Chapter 7, §5, Example (b), and Chapter
7, §9).

Then

is called the Riemann-Stieltjes (RS) integral of  with respect to  also written

(the latter if );  and  are called the integrand and integrator, respectively.

If  becomes the Lebesgue measure, and

turns into

Our theory still remains valid; only Theorem 3 now reads as follows.

If  is bounded and a.e. continuous on  (under an LS measure ) then

exists. The converse holds if  is continuous on .

For by Notes 5 and 6, the "only if" in Theorem 3 holds if  Here consists of countably many endpoints of partition
subintervals. But (see Chapter §9)  if  is continuous at  Thus the later implies .

RS-integration has been used in many fields (e.g., probability theory, physics, etc.), but it is superseded by LS-integration, i.e.,
Lebesgue integration with respect to  which is fully covered by the general theory of §§1-8.

Actually, Stieltjes himself used somewhat different definitions (see Problems 10-13), which amount to applying the set function 
of Problem 9 in Chapter 7, §4, instead of  or  We reserve the name "Stieltjes integrals," denoted

B m

mB= 0

R f∫
A

f : → ( ) .En Es Cs f = ( ,… , )f1 fs
A fk (k≤ s)

R f = R .∫
A

∑
k=1

s

ē̄̄k ∫
A

fk (8.9.95)

f fre fim

R f =R + iR .∫
A

∫
A

fre ∫
A

fim (8.9.96)

v

,E1 m LS sα LS mα α ↑

R fdm∫
A

(8.9.97)

f α,

R fdα or R f(x)dα(x)∫
A

∫
b

a

(8.9.98)

A= [a, b] f α

α(x) = x,mα

R∫ f(x)dα(x) (8.9.99)

R∫ f(x)dx. (8.9.100)

 Corollary 8.9.4

f A= [a, b] mα

R fdα∫
b

a

(8.9.101)

α A

B= 0.mα

{p} = 0mα α p. B= 0mα

,mα

σα
sα .mα
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for such integrals, and "RS-integrals" for those based on  or  (this terminology is not standard).

Observe that  need not be  Thus for the first time, we encounter integration with respect to sign-changing set functions. A
much more general theory is presented in §10 (see Problem 10 there).

8.9: Riemann Integration. Stieltjes Integrals is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

S fdα,∫
b

a

(8.9.102)

mα sα

σα ≥ 0.
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8.9.E: Problems on Riemann and Stieltjes Integrals

Replacing " " by " " and "elementary and integrable" or "elementary and nonnegative" by " -simple," price Corollary 1(ii)
(iv)(vii) and Theorems 1(i) and 2(ii), all in §4, and do Problems 5-7 in §4, for R-integrals.

Verify Note 1.

Do Problems  in §5 for R-integrals.

Do the following for R-integrals. 
(i) Prove Theorems  and  both in . 
(ii) Prove Theorem 1 and Corollaries 1 and 2, all in §6. 
(iii) Show that definition (b) can be replaced by formulas analogous to formulas  and ( 1) of Definition 1 in §5. 
[Hint: Use Problems 

Fill in all details in the proof of Theorem  Lemmas 3 and  and Corollary 

For  via components, prove the following. 
(i) Theorems  and 
(ii) additivity and linearity of R-integrals. 
Do also Problem 13 in §7 for R-integrals.

Prove that if  is bounded and a.e. continuous on  then

 
For  Lebesgue measure, do it assuming R-integrability only.

Prove that if  are R-integrable, then 
(i) so is  and 
(ii) so is . 
[Hints: (i) Use Lemma 1. Let  on A. Verify that 

 Exercise 8.9.E. 1

M C, C

 Exercise 8.9.E. 2

 Exercise 8.9.E. 2′

5 −7

 Exercise 8.9.E. 3

1(a) −(g) 2, §5(C-partitions only )

( ) , ( ) ,1′ 1′′

1 and  . ]2′

 Exercise 8.9.E. 4

1, 4, 4.

 Exercise 8.9.E. 5

f , g : → ( ) ,En Es C s

1 −3

 Exercise 8.9.E. 6

f : A → ( )Es C s A,

R |f | ≥ R f .∫
A

∣

∣
∣ ∫

A

∣

∣
∣ (8.9.E.1)

m =

 Exercise 8.9.E. 7

f , g : A → E1

,f 2

fg

h = |f | ≤ K < ∞

= inf [ ]  and  = sup [ ] ;(infh [ ])Ai
2 f 2 Ai (suph [ ])Ai

2 f 2 Ai (8.9.E.2)
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so 

 
(ii) Use 

 
(iii) For  Lebesgue measure, do it using Theorem 3.]

Prove that if  the volume function  (or LS function  for a continuous  ), then in formulas ( 1) and  one may
replace  by  (closure of  
[Hint: Show that here , 

 
and additivity works even if the  have some common "faces" (only their interiors being disjoint).]

(Riemann sums.) Instead of  and , Riemann used sums 

 
where  and  is arbitrarily chosen from . 
For a bounded  prove that 

 
exists on  iff for every  there is  such that 

 
for every refinement 

 
of  and any choice of . 
[Hint: Show that by Problem  this is equivalent to formula ( 3 ).]

sup [ ] −inf [ ]f 2 Ai f 2 Ai = (suph [ ] + infh [ ]) (suph [ ] − infh [ ])Ai Ai Ai Ai

≤ (suph [ ] − infh [ ]) 2K.Ai Ai

fg = [(f +g −(f −g ] .
1

4
)2 )2 (8.9.E.3)

m =

 Exercise 8.9.E. 8

m = v sα α (2),

Ai A
¯ ¯¯̄

i ) .Ai

mA = mA
¯ ¯¯̄

R f = R f ,∫
A

∫
A
¯ ¯¯̄

(8.9.E.4)

Ai

 Exercise 8.9.E. 9

S–– S̄

S(f ,P) = f ( )dm ,∑
i

xi Ai (8.9.E.5)

m = v (see Problem 8) xi Ai
¯ ¯¯̄¯

f ,

r = R fdm∫
A

(8.9.E.6)

A = [a, b] ε > 0, Pε

|S(f ,P) −r| < ε (8.9.E.7)

P = { }Ai (8.9.E.8)

Pε ∈xi Ai
¯ ¯¯̄¯

8,
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Replacing  by the  of Problem 9 of Chapter 7, §4, write  for  in Problem  treating Problem 9 as a
definition of the Stieltjes integral, 

 
Here  (monotone or not; even  will do). 
Prove that if  is continuous and  then 

 
the -integral.

(Integration by parts.) Continuing Problem  prove that 

 
exists iff 

 
does, and then 

 
where 

 
[Hints: Take any -partition  of  with 

 
say. For any  verify that 

 
and 

 
Deduce that 

 Exercise 8.9.E. 10

m σα S(f ,P,α) S(f ,P) 9,

S fdα ( or S fd ) .∫
b

a

∫
b

a

σα (8.9.E.9)

f ,α : →E1 E1 f ,α : → CE1

α : →E1 E1 α ↑,

S fdα = R fdα,∫
b

a

∫
b

a

(8.9.E.10)

RS

 Exercise 8.9.E. 11

10,

S fdα∫
b

a

(8.9.E.11)

S αdf∫
b

a

(8.9.E.12)

S fdα+S αdf = K,∫
b

a

∫
b

a

(8.9.E.13)

K = f(b)α(b) −f(a)α(a). (8.9.E.14)

C P = { }Ai [a, b],

= [ , ] ,Ai
¯ ¯¯̄¯

yi−1 yi (8.9.E.15)

∈ ,xi A
¯ ¯¯̄

i

S(f ,P,α) =∑f ( ) [α ( ) −α ( )] =∑f ( )α ( ) −∑f ( )α ( )xi yi yi−1 xi yi xi yi−1 (8.9.E.16)

K =∑f ( )α ( ) −∑f ( )α ( ) .xi yi xi−1 yi−1 (8.9.E.17)

K−S(f ,P,α) = S (α, , f) =∑α ( ) [f ( ) −f ( )] −∑α ( ) [f ( ) −f ( )] ;P ′ xi xi yi xi−1 yi xi−1 (8.9.E.18)
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here  results by combining the partition points  and  so it refines . 
Now, if  exists, fix  as in Problem 9 and show that 

 
whenever 

If  is of class  on  and if 

 
exists (see Problem  it equals 

 
[Hints: Set . Then 

 
and (Corollary 3 in Chapter 5, §2) 

 
As  is bounded and  is uniformly continuous on  (why?), deduce that 

 
Proceed. Use Problem 9.]

(Laws of the mean.) Let  on   Prove the following. 
(i) If  and if 

 
exists, then  such that 

 
Similarly, if 

P ′ xi ,yi P

S αdf∫ b

a
Pε

K−S(f ,P,α) −S αdf < ε
∣

∣
∣ ∫

b

a

∣

∣
∣ (8.9.E.19)

P refines  . ]Pε

 Exercise 8.9.E. 12

α : →E1 E1 CD1 [a, b]

S fdα∫
b

a

(8.9.E.20)

10),

R f(x) (x)dx.∫
b

a

α′ (8.9.E.21)

ϕ = f ,P = { } , = [ , ]α′ Ai Ai
¯ ¯¯̄¯

ai−1 ai

S(ϕ,P) =∑f ( ) ( ) ( − ) , ∈xi α′ xi ai ai−1 xi Ai
¯ ¯¯̄¯

(8.9.E.22)

S(f ,P,α) =∑f ( ) [α ( ) −α ( )] =∑f ( ) ( ) , ∈ .xi ai ai−1 xi α′ qi qi Ai (8.9.E.23)

f α′ [a, b]

(∀ε > 0) (∃ ) (∀ ) (∀PPε Pε  refining  )Pε

|S(ϕ,P) −S(f ,P,α)| < ε and  S(f ,P,α) −S fdα < ε.
1

2

∣

∣
∣ ∫

b

a

∣

∣
∣

1

2

 Exercise 8.9.E. 13

f , g,α : → ; p ≤ f ≤ qE1 E1 A = [a, b]; p, q ∈ .E1

α ↑

s fdα∫
b

a

(8.9.E.24)

(∃c ∈ [p, q])

S fdα = c[α(b) −α(a)].∫
b

a

(8.9.E.25)
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exists, then  such that 

 
(i') If  also has the Darboux property on  then  for some  
(ii) If  is continuous, and  on  then 

 
exists, and  such that 

 
(ii') If  is continuous and  on  then  such that 

 
If  replace  by  (See also Corollary 5 in Chapter  §1.) 
[Hints: (i) As  we get 

 
(Why?) Now argue as in §6, Theorem 3 and Problem 2. 
(ii) Use Problem  and apply (i) to . 

(ii') By Theorem 2 of Chapter  has a primitive  Apply Problem 12 to 

8.9.E: Problems on Riemann and Stieltjes Integrals is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

R fdα∫
b

a

(8.9.E.26)

(∃c ∈ [p, q])

R fdα = c[α(b+) −α(a−)].∫
b

a

(8.9.E.27)

f A, c = f ( )x0 ∈ A.x0

α f ↑ A,

S fdα = [f(b)α(b) −f(a)α(a)] −S αdf∫
b

a

∫
b

a

(8.9.E.28)

(∃z ∈ A)

S fdα∫
b

a

= f(a)S dα+f(b)S dα∫
z

a

∫
b

z

= f(a)[α(z) −α(a)] +f(b)[α(b) −α(z)].

g f ↑ A, (∃z ∈ A)

R f(x)g(x)dx = p ⋅R g(x)dx+q ⋅R g(x)dx.∫
b

a

∫
z

a

∫
b

z

(8.9.E.29)

f ↓, f −f . 9,

α ↑,

p[α(b) −α(a)] ≤ S fdα ≤ q[α(b) −α(a)].∫
b

a

(8.9.E.30)

11, ∫ αdf

5, $10, g β ∈ C .D1 S fdβ. ]∫ b

a
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8.10: Integration in Generalized Measure Spaces
Let  be a generalized measure space. By Note 1 in §3, a map  is -measurable iff it is -measurable. This naturally
leads us to the following definition.

A map  is -integrable on a set  iff it is -integrable on  (Recall that  the total variation of  is a measure.)

Note 1. Here the range spaces of  and  are assumed complete and such that  is defined for  and  Thus if 
is vector valued,  must be scalar valued, and vice versa. Later, if a factor  occurs, it must be such that  is defined, i.e., at
least two of  and  are scalars.

Note 2. If  is a measure  then  (Corollary 3 in Chapter 7, §11); so our present definition agrees with the
previous ones (as in Theorem 1 of §7).

If  and  are measures, with  on  then

for all  and any .

Proof

First, take any elementary and nonnegative map ,

Then (§4)

Hence by Definition 1 in §5,

as claimed.

(i) If  with  and if  is s-integrable on  then  is -integrable on  for 

(ii) If  is a signed measure and  is s-integrable on  then  is integrable on  with respect to both  and  (with  and 
 as in formula (3) in Chapter 7, §11).

Note 3. The converse statements hold if  is -measurable on .

Proof

(i) If  then (Problem 4 of Chapter 7, §11)

Hence by Definition 1 and Lemma 1, the -integrability of  implies

(S,M, s) f s vs

 Definition

f : S → E s A vs A. ,vs s,

f s f(x)sA x ∈ S A ∈M. s

f p pf(x)sA

p, f(x), sA

s (≥ 0), = = svs s+

 Lemma 8.10.1

m′ m′′ ≥m′ m′′ M,

|f |d ≥ |f |d∫
A

m′ ∫
A

m′′ (8.10.1)

A ∈M f : S → E

g ≥ |f |

g =  on A.∑
i

CAi
ai (8.10.2)

gd =∑ ≥∑ = gd .∫
A

m′ aim
′Ai aim

′′Ai ∫
A

m′′ (8.10.3)

|f |d = gd ≥ gd = |f |d ,∫
A

m′ inf
g≥|f|

∫
A

m′ inf
g≥|f|

∫
A

m′′ ∫
A

m′′ (8.10.4)

□

 Lemma 8.10.2

s : M→ ( )En Cn s = ( , … , ) ,s1 sn f A ∈M, f sk A

k = 1, 2, … ,n.

s f A, f A s+ s− s+

s−

f M A

s = ( , … , ) ,s1 sn

≥ , k = 1, … ,n.vs vsk (8.10.5)

s f
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Also,  is -measurable, i.e., -measurable on  with

Thus  is  -integrable on  as claimed.

(ii) If  then by Theorem 4 in Chapter 7, §11, and Corollary 3 there,  and  are measures  and 
 so that both

Thus the desired result follows exactly as in part (i) of the proof.

We leave Note 3 as an exercise.

If  is -integrable on  we set

(i) in the case ,

with  and  as in formula (3) of Chapter 7, §11;

(ii) in the case ,

with  as in Theorem 2 of Chapter 3, §§1-3;

(iii) if ,

(See also Problems 2 and 3.)

Note 4. If  is a measure, then

and

so Definition 2 agrees with our previous definitions. Similarly for  

Below,  and  are generalized measures on  as in Definition 2, while  are functions, with  a complete normed
space, as in Note 1.

The linearity, additivity, and -additivity properties (as in §7, Theorems 2 and 3) also apply to integrals

with  as in Definition 2.

∞ > |f |d ≥ |f |d .∫
A

vs ∫
A

vsk (8.10.6)

f vs M A−Q,

0 = Q ≥ Q ≥ 0.vs vsk (8.10.7)

f sk A, k = 1, … ,n,

s = − ,s+ s− s+ s− (≥ 0)

= + ,vs s+ s−

≥ =  and  ≥ = .vs s+ vs+ vs s− vs− (8.10.8)

□

 Definition

f s A ∈M,

s : M→ E∗

fds = fd − fd ,∫
A

∫
A

s+ ∫
A

s− (8.10.9)

s+ s−

s : M→ ( )En Cn

fds = fd ,∫
A

∑
k=1

n

e ⃗ k ∫
A

sk (8.10.10)

e ⃗ k

s : M→ C

fds = fd + i ⋅ fd .∫
A

∫
A

sre ∫
A

sim (8.10.11)

s

s = = =s+ sre s1 (8.10.12)

0 = = = ;s− sim s2 (8.10.13)

s : M→ ( ) .En Cn

s, t, u M f , g : S → E E

 Theorem 8.10.1

σ

fds,∫
A

(8.10.14)

s
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Proof

(i) Linearity: Let  be s-integrable on  Let  be suitable constants (see Note 1).

If  is a signed measure, then by Lemma 2(ii) and Definitions 1 and 2,  is integrable with respect to  and  As
these are measures, Theorem 2 in §7 shows that  is integrable with respect to  and  and by Definition 2,

Thus linearity holds for signed measures. Via components, it now follows for  as well. Verify!

(ii) Additivity and -additivity follow in a similar manner.

Assume  is s-integrable on  with  as in Definition 2.

(i) If  is constant  on  we have

(ii) If

for an -partition  of  then

(both series absolutely convergent).

(iii)  a.e. on .

(iv)  iff  a.e. on .

(v) The set   is  -finite (Definition 4 in Chapter 7, §5).

(vi)  if  or  on  .

(vii)  is s-integrable on any -set .

Proof

(i) If  is a signed measure, we have by Definition 2 that

as required.

For  the result now follows via components. (Verify!)

(ii) As  on  clause (i) yields

Hence by -additivity,

f , g : S → E A ∈M. p, q

s f , ,vs s+ .s−

pf +qg , ,vs s+ ,s−

(pf +qg)ds∫
A

= (pf +qg)d − (pf +qg)d∫
A

s+ ∫
A

s−

= p fd +q gd −p fd −q gd∫
A

s+ ∫
A

s+ ∫
A

s− ∫
A

s−

= p fds+q gds.∫
A

∫
A

s : M→ ( )En Cn

σ □

 Corollary 8.10.1

f A, s

f (f = c) A,

fds = c ⋅ sA.∫
A

(8.10.15)

f =∑
i

aiCAi (8.10.16)

M { }Ai A,

fds = s  and  |f |ds = | | s∫
A

∑
i

ai Ai ∫
A

∑
i

ai Ai (8.10.17)

|f | < ∞ A

|f |d = 0∫
A

vs f = 0 A

A (f ≠ 0) ( )vs σ

fds = fds∫
A

∫
A−Q

Q = 0vs f = 0 Q (Q ∈M)

f M B ⊆ A

s = −s+ s−

fds = fd − fd = c ( A− A) = c ⋅ sA,∫
A

∫
A

s+ ∫
A

s− s+ s− (8.10.18)

s : M→ ( ) ,En Cn

f = ai ,Ai

fds = s , i = 1, 2, … .∫
Ai

ai Ai (8.10.19)

σ

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/22257?pdf


8.10.4 https://math.libretexts.org/@go/page/22257

as claimed.

Clauses (iii), (iv), and (v) follow by Corollary 1 in §5 and Theorem 1(b)(h) there, as  is a measure; (vi) is proved as §5,
Corollary 2. We leave (vii) as an exercise.

If

on  and if each  is s-integrable on  so is  and

all provided that

for some map  with .

Proof

If  is a measure, this follows by Theorem 5 in §6. Thus as  is a measure,  is -integrable (hence -integrable) on  as
asserted.

Next, if  is a signed measure, Lemma 2 shows that  and the  are  and -integrable as well, with

similarly for

As  and  are measures, Theorem 5 of §6 yields

Thus all is proved for signed measures.

In the case  the result now easily follows by Definition 2(ii)(iii) via components.

If  (uniformly) on   and if each  is s-integrable on  so is  and

Proof

Argue as in Theorem 2, replacing §6, Theorem 5, by §7, Lemma 1.

Our next theorem shows that integrals behave linearly with respect to measures.

fds = fds = s ,∫
A

∑
i

∫
Ai

∑
i

ai Ai (8.10.20)

vs
□

 Theorem  (dominated convergence)8.10.2

f =  (pointwise)lim
i→∞

fi (8.10.21)

A−Q ( Q = 0)vs fi A, f ,

fds = ds,∫
A

lim
i→∞

∫
A

fi (8.10.22)

(∀i) | | ≤ gfi (8.10.23)

g gd < ∞∫A vs

s vs f vs s A,

s = −s+ s− f fi s+ s−

| | d ≤ | | d ≤ gd < ∞;∫
A

fi s+ ∫
A

fi vs ∫
A

vs (8.10.24)

| | d .∫
A

fi s− (8.10.25)

s+ s−

fds = fd − fd = lim( d − d ) = lim ds.∫
A

∫
A

s+ ∫
A

s− ∫
A

fi s+ ∫
A

fi s− ∫
A

fi (8.10.26)

s : M→ ( ) ,En Cn quad□

 Theorem  (uniform convergence)8.10.3

→ ffi A−Q ( A < ∞, Q = 0),vs vs fi A, f ,

fds = ds.∫
A

lim
i→∞

∫
A

fi (8.10.27)

□
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Let  with  on  and let

for finite constants  and  Then the following statements are true.

(a) If  and  are generalized measures, so is 

(b) If, further,  is -measurable on a set  and is both -and -integrable on  it is also s-integrable on  and

Proof

We consider only assertion (b) for  the rest is easy.

First, let  be -elementary on  By Corollary 1(ii), we set

Also, by integrability,

Now, by Problem 4 in Chapter 7, §11,

so

As  is also -measurable (even elementary), it is -integrable on  (by Definition 1), and

as claimed.

Next, suppose  is -measurable on  and  By assumption,  too; so

Now, by Theorem 3 in §1,

for some -elementary maps  on  By Lemma 2 in §7, for large  the  are integrable with respect to both  and 
on  By what was shown above, they are also -integrable, with

With  Theorem 3 yields the result.

Finally, let  By Corollary 1(v), we may assume (as in Lemma 3 of §7) that  with  and 
 (since  by assumption). Set

 Theorem 8.10.4

t, u : M→ ( , ) ,E∗ En Cn < ∞vt M,

s = pt+qu (8.10.28)

p q.

t u s.

f M A t u A, A,

fds = p fdt+q fdu.∫
A

∫
A

∫
A

(8.10.29)

s = t+u;

f M A.

fdt = t  and  fdu = u .∫
A

∑
i

ai Ai ∫
A

∑
i

ai Ai (8.10.30)

∞ > |f |d =∑ | |  and ∞ > |f |d = | | .∫
A

vt ai vtAi ∫
A

vu ∑
i

ai vuAi (8.10.31)

= ≤ + ;vs vt+u vt vu (8.10.32)

|f |d∫
A

vs = | |∑
i

ai vsAi

≤ | | ( + ) = |f |d + |f |d < ∞.∑
i

ai vtAi vuAi ∫
A

vt ∫
A

vu

f M s A

fds = s = (t +u ) = fdt+ fdu,∫
A

∑
i

ai Ai ∑
i

ai Ai Ai ∫
A

∫
A

(8.10.33)

f M A A < ∞.vu A < ∞,vt

A ≤ A+ A < ∞.vs vt vu (8.10.34)

f =  (uniformly)lim
i→∞

fi (8.10.35)

M fi A. i, fi vt vu
A. s

ds = dt+ du.∫
A

fi ∫
A

fi ∫
A

fi (8.10.36)

i → ∞,

A = ∞.vu ↗ A,Ai < ∞,vuAi

< ∞vtAi < ∞,vt
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on  with  (Why?)

As  on  and  on  all  are both - and -integrable on  (for  is). Since  and 
 the  are also -integrable (as shown above), with

With  Theorem 2 now yields the result.

To complete the proof of (b), it suffices to consider, along similar lines, the case  (or ). We leave this to the
reader.

For (a), see Chapter 7, §11.

If  is s-integrable on  so is  and

Proof

By Definition 1, and Theorem 1 of §1,  and  are -measurable on  and

so  is -integrable on .

The desired inequality is immediate by Corollary 1(ii) if  is elementary.

Next, exactly as in Theorem 4, one obtains it for the case  and then for  We omit the details.

We write

or

iff  is -integrable on  and

for .

We then call  the indefinite integral of  in  (  may be interpreted as in Problems 2-4 below.)

If  and

then

= f → f  (pointwise)fi CAi (8.10.37)

A, | | ≤ |f |.fi

= ffi Ai = 0fi A− ,Ai fi t u A f < ∞vtAi

< ∞,vuAi fi s

ds = ds = dt+ du = dt+ du.∫
A

fi ∫
Ai

fi ∫
Ai

fi ∫
Ai

fi ∫
A

fi ∫
A

fi (8.10.38)

i → ∞,

s = pt s = qu

□

 Theorem 8.10.5

f A, |f |,

fds ≤ |f |d .
∣

∣
∣∫

A

∣

∣
∣ ∫

A

vs (8.10.39)

f |f | M A−Q, Q = 0,vs

|f |d < ∞;∫
A

vs (8.10.40)

|f | s A

f

A < ∞,vs A = ∞.vs □

 Definition

" ds = gdt in A " (8.10.41)

" s = ∫ gdt in A " (8.10.42)

g t A,

sX = gdt∫
X

(8.10.43)

A ⊇ X,X ∈M

s g A. gdt∫X

 Lemma 8.10.3

A ∈M

ds = gdt in A, (8.10.44)
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Proof

By assumption,  and  are -integrable on  and

for  We must show that

for such .

This is easy if  (constant) on  For by definition,

over all -partitions  of  As

we have

so

Thus all is proved for constant .

Hence by -additivity, the lemma holds for -elementary maps  (Why?)

In the general case,  is -integrable on  hence -measurable and finite on  By Corollary 1(iii), we
may assume  finite and measurable on  so

on  for some -elementary maps  all integrable on  with respect to  (and ).

Let

in  By what we just proved for elementary and integrable maps,

Now, if  Theorem 3 yields

(see Problem 6). Thus all is proved if .

If, however,  argue as in Theorem 4 (the last step), using the left continuity of  and of

d = |g|d  in A.vs vt (8.10.45)

g |g| vt X,

sX = gdt∫
X

(8.10.46)

A ⊇ X,X ∈M.

X = |g|dvs ∫
X

vt (8.10.47)

X

g = c X.

X = |s | ,vs sup
P

∑
i

Xi (8.10.48)

M P = { }Xi X.

s = gdt = c ⋅ t ,Xi ∫
Xi

Xi (8.10.49)

X = |c| |t | = |c| |t | = |c| X;vs sup
P

∑
i

Xi sup
P

∑
i

Xi vt (8.10.50)

X = |g|d .vs ∫
X

vt (8.10.51)

g

σ M g.

g t X, M X−Q, Q = 0.vt
g X;

g =  (uniformly)lim
k→∞

gk (8.10.52)

X M ,gk X, vt t

= ∫ dtsk gk (8.10.53)

X.

X = | | d , k = 1, 2, … .vsk ∫
X

gk vt (8.10.54)

X < ∞,vt

|g|d = | | d = X = X∫
X

vt lim
k→∞

∫
X

gk vt lim
k→∞

vsk vs (8.10.55)

X < ∞vt

X = ∞,vt vs

∫ |g|d .vt (8.10.56)
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Verify!

If  is s-integrable on  with

then (subject to Note 1)  is t-integrable on  and

(Note the formal substitution of " " for " ")

Proof

The proof is easy if  is constant or elementary on  (use Corollary 1(ii)). We leave this case to the reader, and next we
assume  is bounded and 

By s-integrability,  is -measurable and finite on  with

by Lemma 3. Hence  on  Therefore,

for  Thus we may neglect  and assume that  is finite and -measurable on 

As  Definition 3 and Lemma 3 yield

Also (Theorem 3 in Chapter 8, §1),

for elementary maps  all -integrable on  (Lemma 2 in §7). As  is bounded, we get on 

Moreover, as the theorem holds for elementary and integrable maps,  is -integrable on  and

Since  and  Theorem 3 shows that  is -integrable on  and

Thus all is proved if  and  is bounded on .

In the general case, we again drop a null set to make  and  finite and -measurable on  By Corollary 1(v), we may
again assume  with  

Now for  set

□

 Theorem  (change of measure)8.10.6

f A ∈M,

ds = gdt in A, (8.10.57)

fg A

fds = fgdt.∫
A

∫
A

(8.10.58)

gdt ds.

f A

g A < ∞.vt

f M A−Q,

0 = Q = |g|dvs ∫
Q

vt (8.10.59)

0 = g = fg Q−Z, Z = 0.vt

fgdt = 0 = fds∫
Q

∫
Q

(8.10.60)

Q = 0.vs Q f M A.

ds = gdt,

A = |g|d < ∞.vs ∫
A

vt (8.10.61)

f = (uniformly)lim
k→∞

fk (8.10.62)

,fk vs A g A

fg = g (uniformly).lim
k→∞

fk (8.10.63)

gfk t A,

ds = gdt, k = 1, 2, … .∫
A

fk ∫
A

fk (8.10.64)

A < ∞vs A < ∞,vt fg t A,

fds = ds = gdt = fgdt.∫
A

lim
k→∞

∫
A

fk lim
k→∞

∫
A

fk ∫
A

(8.10.65)

A < ∞vt g A

f g M A.

↗ A,Ai < ∞vtAi (∀i).

i = 1, 2, …

={gi
g

0

 on  (|g| ≤ i),Ai

 elsewhere.
(8.10.66)
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Then each  is bounded,

and

on  We also set  so  (pointwise) and  on  Then

(Why?) Since  and  the result follows by Theorem 2.

8.10: Integration in Generalized Measure Spaces is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

gi

→ g (pointwise),gi (8.10.67)

| | ≤ |g|gi (8.10.68)

A. = f ;fi CAi → ffi | | ≤ |f |fi A.

ds = ds = dt = dt.∫
A

fi ∫
Ai

fi ∫
Ai

figi ∫
A

figi (8.10.69)

| | ≤ |fg|figi → fg,figi □
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8.10.E: Problems on Generalized Integration

Fill in the missing details in the proofs of this section. Prove Note 3.

Treat Corollary 1 (ii) as a definition of 

 
for  and elementary and integrable  even if  
Hence deduce Corollary  for this more general case.

Using Lemma 2 in §7, with  construct 

 
as in Definition 2 of §7 for the case  Show that this agrees with Problem 2 if  is elementary and integrable. Then
prove linearity for functions with -finite support as in §7.

Define 

 
also for  
[Hint: Set 

Prove Theorems 1 to 3 for the general case,  (see Problem 4 ). 
[Hint: Argue as in §7.]

From Problems  deduce Definition 2 as a theorem in the case  

Let  be any set functions. Let  and 

 
Prove that if 

 Exercise 8.10.E. 1

 Exercise 8.10.E. 2

fds∫
A

(8.10.E.1)

s : M→ E f , E ≠ ( ) .En Cn

1(i)(vi)

 Exercise 8.10.E. 3

m = , s : M→ E,vs

fds∫
A

(8.10.E.2)

A ≠ ∞.vs f

vs

 Exercise 8.10.E. 4

fds (s : M→ E)∫
A

(8.10.E.3)

A = ∞.vs
m =  in Lemma 3 of §7. ]vs

 Exercise 8.10.E. 5

s : M→ E

 Exercise 8.10.E. 5′

2 −4, E = ( ) .En Cn

 Exercise 8.10.E. 6

s, : M→ E(k = 1, 2, …)sk A ∈M

= {X ∈M|X ⊆ A}.MA (8.10.E.4)
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then 

 
provided  exists. 
[Hint: Using Problem 2 in Chapter 7, §11, fix a finite disjoint sequence  
Then 

 
Infer that 

 
Also, 

 
Proceed.]

Let  and  be two generalized measure spaces  
Set 

 
and  for . 
Define a Fubini map as in §8, Part IV, dropping, however,  from Fubini property (c) temporarily. 
Then prove Theorem 1 in §8, including formula  for Fubini maps so modified. 
[Hint: For 

Continuing Problem  let  be the -ring generated by  in  Prove that  is a Fubini map (as modified). 
[Outline: Proceed as in Lemma 5 of 

Further continuing Problems 7 and  define 

 
Show that  is a generalized measure, with  on  and that 

(∀X ∈ ) X = sX,MA lim
k→∞

sk (8.10.E.5)

A = A,lim
k→∞

vsk vs (8.10.E.6)

limk→∞ vsk
{ } ⊆ .Xi MA

|s | = | | = | | ≤ A.∑
i

Xi ∑
i

lim
k→∞

skXi lim
k→∞

∑
i

skXi lim
k→∞

vsk (8.10.E.7)

A ≤ A.vs lim
k→∞

vsk (8.10.E.8)

(∀ε > 0) (∃ ) (∀k > ) | | ≤ |s | +ε ≤ A+ε.k0 k0 ∑
i

skXi ∑
i

Xi vs (8.10.E.9)

 Exercise 8.10.E. 7

(X,M,m) (Y ,N ,n) (X ∈ M ,Y ∈N ) such that mn is defined (Note 1).

C= {A×B|A ∈M,B ∈N , A < ∞, B < ∞}vm vn (8.10.E.10)

s(A×B) = mA ⋅nB A×B ∈ C

fdp∫
X×Y

(1),

σ -additivity, use our present Theorem 2 twice. Omit  . ]P∗

 Exercise 8.10.E. 8

7, P σ C X×Y . (∀D ∈ P)CD

§8.  For step (ii), use Theorem 2 in §10 twice. ]

 Exercise 8.10.E. 9

8,

(∀D ∈ P) pD = dndm.∫
X

∫
Y

CD (8.10.E.11)

p p = s C,

(∀D ∈ P) pD = dp,∫
X×Y

CD (8.10.E.12)
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with the following convention: If  we set 

 
whenever  is -integrable on  and  on  

 Verify that this is unambiguous, i.e., 

 
so defined is independent of the choice of . 
Finally, let  be the completion of  (Chapter  §6, Problem 15 ); let  be its domain. 
Develop the rest of Fubini theory "imitating" Problem 12 in §8.

Signed Lebesgue-Stielttjes  measures in  are defined as shown in Chapter 7, §11, Part  Using the notation of that
section, prove the following: 
(i) Given a Borel-Stieltjes measure  in an interval  (or an LS measure  in  ), there are two monotone
functions  and  such that 

 
both satisfying formula ( 3 ) of Chapter 7, §11, inside . 
(ii) If  is -integrable on  then 

 
for any  and  (finite) such that . 
[Hints: (i) Define  and  by formula (3) of Chapter  §7. Then arguing as in Theorem 2 in Chapter 7, §9, find  and 
with  and . 
(ii) First let  then  Proceed.]

8.10.E: Problems on Generalized Integration is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

X×Y ∉ P,

fdp = fdp∫
X×Y

∫
H

(8.10.E.13)

H ∈ P, f p H, f = 0 −H.

fdp∫
X×Y

(8.10.E.14)

H

p̄̄̄ p 7, P
∗

 Exercise 8.10.E. 10

(LS) E1 V .

σ∗
α I ⊆ E1 =sα σ̄̄̄

∗
α I

g ↑ h ↑ (α = g−h)

= and  = ,mg s+
α mh s−

α (8.10.E.15)

I

f sα A ⊆ I,

fd = fd − fd∫
A

sα ∫
A

mg ∫
A

mh (8.10.E.16)

g ↑ h ↑ α = g−h

s+
α s−

α 7, g ↑ h ↑

=mg s+
α =mh s−

α

A = (a, b] ⊆ I, A ∈ B.
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8.11: The Radon–Nikodym Theorem. Lebesgue Decomposition
I. As you know, the indefinite integral

is a generalized measure. We now seek conditions under which a given generalized measure  can be represented as

for some  (to be found). We start with two lemmas.

Let  be finite measures in  Suppose  (i.e., ) and  is -continuous (Chapter 7,
§11).

Then there is  and  set  such that  and

Proof

As  and  there is  such that

Fix such a  and define a signed measure (Lemma 2 of Chapter 7, §11)

so that

hence

By Theorem 3 in Chapter 7, §11 (Hahn decomposition), there is a -positive set  with a -negative complement 

Clearly,  for if  the -continuity of  would imply , hence

contrary to .

Also,  and  implies  so by (1),

Taking  we get

as required.

With  and  as in Lemma 1, let  be the set of all maps -measurable and nonnegative on  such that

∫ fdm (8.11.1)

μ

μ = ∫ fdm (8.11.2)

f

 Lemma 8.11.1

m,μ :M→ [0, ∞) S. S ∈M,μS > 0 μ ≢ 0 μ m

δ > 0 a P ∈M mP > 0

(∀X ∈M) μX ≥ δ ⋅m(X∩P ). (8.11.3)

m < ∞ μS > 0, δ > 0

μS−δ ⋅mS > 0. (8.11.4)

δ

Φ = μ−δm, (8.11.5)

(∀Y ∈M) ΦY = μY −δ ⋅mY ; (8.11.6)

ΦS = μS−δ ⋅mS > 0. (8.11.7)

Φ P ∈M Φ
−P = S−P ∈M.

mP > 0; mP = 0, m μ μP = 0

ΦP = μP −δ ⋅mP = 0, (8.11.8)

ΦP ≥ ΦS > 0

P ⊇ Y Y ∈M ΦY ≥ 0;

0 ≤ μY −δ ⋅mY . (8.11.9)

Y = X∩P ,

δ ⋅m(X∩P ) ≤ μ(X∩P ) ≤ μX, (8.11.10)

□

 Lemma 8.11.2

m,μ, S H g : S → ,ME∗ S,

gdm ≤ μX∫
X

(8.11.11)
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for every set  from .

Then there is  with

Proof

 is not empty; e.g.,  is in  We now show that

Indeed,  is  and -measurable on  as  and  are.

Now, given  let  and  Dropping " " for brevity, we have

proving (2).

Let

Proceeding as in Problem 13 of Chapter 7, §6, and using (2), one easily finds a sequence  such that

(Verify!) Set

(It exists since ) By Theorem 4 in §6,

Also,  is -measurable and  on  as all  are; and if  then

hence

Thus  and

i.e.,

This completes the proof.

Note 1. As  and  Corollary 1 in §5 shows that  can be made finite on all of  Also,  is -integrable on 

X M

f ∈H

fdm = gdm.∫
S

max
g∈H

∫
S

(8.11.12)

H g = 0 H.

(∀g,h ∈H) g∨h = max(g,h) ∈H. (8.11.13)

g∨h ≥ 0 M S, g h

X ∈M, Y = X(g > h) Z = X(g ≤ h). dm

(g∨h) = (g∨h) + (g∨h) = g+ h ≤ μY +μZ = μX,∫
X

∫
Y

∫
Z

∫
Y

∫
Z

(8.11.14)

k = gdm ∈ .sup
g∈H
∫
S

E∗ (8.11.15)

{ } ↑, ∈H,gn gn

dm = k.lim
n→∞

∫
S

gn (8.11.16)

f = .lim
n→∞

gn (8.11.17)

{ } ↑.gn

k = = f .lim
n→∞

∫
S

gn ∫
S

(8.11.18)

f M ≥ 0 S, gn X ∈M,

(∀n) ≤ μX;∫
X

gn (8.11.19)

f = ≤ μX.∫
X

lim
n→∞

∫
X

gn (8.11.20)

f ∈H

f = k = g,∫
S

sup
g∈H
∫
S

(8.11.21)

f = g ≤ μS < ∞.∫
S

max
g∈H

∫
S

(8.11.22)

□

μ < ∞ f ≥ 0, f S. f m S.
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If  is a -finite measure space, if  and if

is a generalized -continuous measure, then

for at least one map

-measurable on .

Moreover, if  is another such map, then  

The last part of Theorem 1 means that  is "essentially unique." We call  the Radon-Nikodym  derivative of  with
respect to 

Proof

Via components (Theorem 5 in Chapter 7, §11), all reduces to the case

Then Theorem 4 (Jordan decomposition) in Chapter 7, §11, yields

where  and  are finite measures  both -continuous (Corollary 3 from Chapter 7, §11). Therefore, all reduces
to the case 

Suppose first that  too, is finite. Then if  just take .

If, however,  take  as in Lemma 2 and Note 1;  is nonnegative, bounded, and -measurable on ,

and

We claim that  is the required map.

Indeed, let

so  is a finite -continuous measure  on  (Why?) We must show that .

Seeking a contradiction, suppose  Then by Lemma 1, there are  and  such that  and

Now let

so  is -measurable and  Also,

 Theorem  (Radon-Nikodym)8.11.1

(S,M,m) σ S ∈M,

μ :M→ ( )En Cn (8.11.23)

m

μ = ∫ fdm on M (8.11.24)

f : S → ( ) ,En Cn (8.11.25)

M S

h mS (f ≠ h) = 0

f f (RN) μ,
m.

μ :M→ .E1 (8.11.26)

μ = − ,μ+ μ− (8.11.27)

μ+ μ− (≥ 0), m

0 ≤ μ < ∞.

m, μ = 0, f = 0

μS > 0, f ∈H f M S

∫ f ≤ μ < ∞, (8.11.28)

fdm = k = gdm.∫
S

sup
g∈H
∫
S

(8.11.29)

f

ν = μ−∫ fdm; (8.11.30)

ν m (≥ 0) M. ν = 0

νS > 0. P ∈M δ > 0 mP > 0

(∀X ∈M) νX ≥ δ ⋅m(X∩P ). (8.11.31)

g = f +δ ⋅ ;CP (8.11.32)

g M ≥ 0.
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by our choice of  and  Thus  On the other hand,

contrary to

This proves that  indeed.

Now suppose there is another map  with

so

(Why?) Let

so  (Theorem 3 of §2) and  is sign-constant on  and  Also, by construction,

Thus by Theorem 1(h) in §5,  a.e. on  on  and hence on  that is,

Thus all is proved for the case .

Next, let  be -finite:

for some sets  with .

By what was shown above, on each  there is an -measurable map  such that

for all -sets  Fixing such an  for each  define  by

Then (Corollary 3 in §1)  is -measurable and  on .

Taking any  set  Then

(∀X ∈M) g = f +δ∫
X

∫
X

∫
X

CP = f +δ ⋅m(X∩P )∫
X

≤ f +ν(X∩P )∫
X

≤ f +νX = μX∫
X

δ ν. g ∈H.

g = f +δ = k+δmP > k,∫
S

∫
S

∫
S

CP (8.11.33)

k = g.sup
g∈H
∫
S

(8.11.34)

∫ f = μ,

h ∈H

μ = ∫ hdm = ∫ fdm ≠ ∞; (8.11.35)

∫ (f −h)dm = 0. (8.11.36)

Y = S(f ≥ h) and Z = S(f < h); (8.11.37)

Y ,Z ∈M f −h Y Z.

(f −h)dm = 0 = (f −h)dm.∫
Y

∫
Z

(8.11.38)

f −h = 0 Y , Z, S = Y ∪Z

mS(f ≠ h) = 0. (8.11.39)

mS < ∞

m σ

S =  (disjoint)⋃
k=1

∞

Sk (8.11.40)

∈MSk m < ∞Sk

Sk M ≥ 0fk

dm = μX∫
X

fk (8.11.41)

M X ⊆ .Sk fk k, f : S → E1

f =  on  , k = 1, 2, … .fk Sk (8.11.42)

f M ≥ 0 S

X ∈M, = X∩ .Xk Sk

X =  (disjoint)⋃
k=1

∞

Xk (8.11.43)
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and  Also,

Thus by -additivity (Theorem 2 in §5),

Thus  is as required, and its "uniqueness" follows as before.

Note 2. By Definition 3 in §10, we may write

for

Note 3. Using Definition 2 in §10 and an easy "componentwise" proof, one shows that Theorem 1 holds also with  replaced by a
generalized measure . The formulas

then are replaced by

II. Theorem 1 requires  to be -continuous  We want to generalize Theorem 1 so as to lift this restriction. First, we
introduce a new concept.

Given two set functions  we say that  is -singular  iff there is a set  such that 
 and

(We then briefly say "s resides in ")

For generalized measures, this means that

Why?

If the generalized measures  are -singular, so is  for any scalar  (if  is scalar valued,  may be a vector).

So also are  provided  is additive.

Proof

(Exercise! See Problem 3 below.)

∈M.Xk

(∀k) fdm = dm = μ .∫
Xk

∫
Xk

fk Xk (8.11.44)

σ

fdm = fdm = μ = μX < ∞ (μ is finite!).∫
X

∑
k=1

∞

∫
Xk

∑
k

Xk (8.11.45)

f □

" dμ = fdm " (8.11.46)

" ∫ fdm = μ. " (8.11.47)

m

s

μ = ∫ fdm and mS(f ≠ h) = 0 (8.11.48)

μ = ∫ fds and  S(f ≠ h) = 0.vs (8.11.49)

μ m (μ ≪ m).

 Definition

s, t :M→ E (M⊆ ) ,2S s t (s ⊥ t) P ∈M

P = 0vt

(∀X ∈M|X ⊆ −P ) sX = 0. (8.11.50)

P .

(∀X ∈M) sX = s(X∩P ). (8.11.51)

 Corollary 8.11.1

s, u :M→ E t ks k s k

s±u, t
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If a generalized measure  is -continuous  and also -singular  then  on 

Proof

As  formula (3) holds for some  Hence for all 

and

As  we also have  by Definition 3(i) in Chapter 7, §11. Thus by additivity,

as claimed.

Let  be generalized measures.

If  is -finite (Definition 3(iii) in Chapter 7, §11), there are generalized measures  such that

and

Proof

Let  be the restriction of  to

As  is a measure (Theorem 1 of Chapter 7, §11), so is  (for  is a -ring; verify!).

Thus by Problem 13 in Chapter 7, §6, we fix  with

As  we have  hence

(for  is -finite).

Now define  and  by setting, for each ,

As  and  are -additive, so are  and . (Verify!) Thus  are generalized measures, while  and
 are measures .

We have

i.e.,

 Corollary 8.11.2

s :M→ E t (s ≪ t) t (s ⊥ t), s = 0 M.

s ⊥ t, P ∈M, P = 0.vt X ∈M,

s(X−P ) = 0 (for X−P ⊆ −P ) (8.11.52)

(X∩P ) = 0 (for X∩P ⊆ P ).vt (8.11.53)

s ≪ t, s(X∩P ) = 0

sX = s(X∩P ) +s(X−P ) = 0, (8.11.54)

□

 Theorem  (Lebesgue decomposition)8.11.2

s, t :M→ E

vs t , :M→ Es′ s′′

≪ t and  ⊥ ts′ s′′ (8.11.55)

s = + .s′ s′′ (8.11.56)

v0 vs

= {X ∈M| X = 0} .Mo vt (8.11.57)

vs v0 M0 σ

P ∈ ,M0

P = P = max { X|X ∈ } .vs v0 vs M0 (8.11.58)

P ∈ ,M0 P = 0;vt

|sP | ≤ P < ∞vs (8.11.59)

vs t

, , ,s′ s′′ v′ v′′ X ∈M

Xs′

Xs′′

Xv′

Xv′′

= s(X−P );

= s(X∩P );

= (X−P );vs

= (X∩P ).vs

s vs σ , , ,s′ s′′ v′ v′′ , :M→ Es′ s′′ v′

v′′ (≥ 0)

(∀X ∈M) sX = s(X−P ) +s(X∩P ) = X+ X;s′ s′′ (8.11.60)

s = + .s′ s′′ (8.11.61)
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Similarly one obtains .

Also, by (5), since ,

while  (see above). Thus  is -singular, residing in .

To prove  it suffices to show that  (for by (4) and (6),  implies ).

Assume the opposite. Then

(i.e., ), but

So by additivity,

with  contrary to

This contradiction completes the proof.

Note 4. The set function  in Theorem 2 is bounded on  Indeed,  yields a set  such that

and  implies  (Why?) Hence

As  we have

so

But  by -continuity (Theorem 2 of Chapter 7, §11). Thus  on 

Note 5. The Lebesgue decomposition  in Theorem 2 is unique. For if also

and

then with  as in Problem 3, 

and  But

by -continuity; so (8) reduces to

or  (for  and  reside in ). Thus  on .

By Note 4, we may cancel  and  in

= +vs v′ v′′

X∩P = ∅

−P ⊇ X and X ∈M⟹ X = 0,s′′ (8.11.62)

P = 0vt s′′ t P

≪ t,s′ ≪ tv′ X = 0v′ | X| = 0s′

(∃Y ∈M) Y = 0vt (8.11.63)

Y ∈M0

0 < Y = (Y −P ).v′ vs (8.11.64)

(Y ∪P ) = P + (Y −P ) > P ,vs vs vs vs (8.11.65)

Y ∪P ∈ ,M0

P = max { X|X ∈ } .vs vs M0 (8.11.66)

□

s′′ M. ⊥ ts′′ P ∈M

(∀X ∈M) (X−P ) = 0;s′′ (8.11.67)

P = 0vt P < ∞.vs

X = (X∩P ) + (X−P ) = (X∩P ).s′′ s′′ s′′ s′′ (8.11.68)

s = + ,s′ s′′

| | ≤ |s| + | | ≤ + ;s′′ s′ vs vs′ (8.11.69)

| X| = | (X∩P )| ≤ P + P .s′′ s′′ vs vs′ (8.11.70)

P = 0vs′ t | | ≤ P < ∞s′′ vs M.

s = +s′ s′′

≪ t and  ⊥ tu′ u′′ (8.11.71)

+ = s = + ,u′ u′′ s′ s′′ (8.11.72)

P (∀X ∈M)

(X∩P ) + (X∩P ) = (X∩P ) + (X∩P )s′ s′′ u′ u′′ (8.11.73)

(X∩P ) = 0.vt

(X∩P ) = 0 = (X∩P )s′ u′ (8.11.74)

t

(X∩P ) = (X∩P ),s′′ u′′ (8.11.75)

X = Xs′′ u′′ s′′ u′′ P =s′′ u′′ M

s′′ u′′
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to obtain  also.

Note 6. If  the -finiteness of  in Theorem 2 is redundant, for  is even bounded (Theorem 6 in Chapter 7, §11).

We now obtain the desired generalization of Theorem 1.

If  is a -finite measure space  then for any generalized measure

there is a unique -singular generalized measure

and a ("essentially" unique) map

-measurable and -integrable on  with

(Note 3 applies here.)

Proof

By Theorem 2 and Note 5,  for some (unique) generalized measures  with 
and 

Now use Theorem 1 to represent  as  with  as stated. This yields the result.

8.11: The Radon–Nikodym Theorem. Lebesgue Decomposition is shared under a CC BY 1.0 license and was authored, remixed, and/or curated
by LibreTexts.

+ = +s′ s′′ u′ u′′ (8.11.76)

=s′ u′

E = ( ) ,En Cn t vs vs

 Corollary 8.11.3

(S,M,m) σ (S ∈M),

μ :M→ ( ) ,En Cn (8.11.77)

m

:M→ ( )s′′ En Cn (8.11.78)

f : S → ( ) ,En Cn (8.11.79)

M m S,

μ = ∫ fdm+ .s′′ (8.11.80)

μ = +s′ s′′ , :M→ ( ) ,s′ s′′ En Cn ≪ ms′

⊥ m.s′′

s′ ∫ fdm, f □
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8.11.E: Problems on Radon-Nikodym Derivatives and Lebesgue Decomposition

Fill in all proof details in Lemma 2 and Theorem 1.

Verify the statement following formula ( 3 ). Also prove the following: 
(i) If  along with  then  implies ; 
(ii)  iff .

Prove Corollary 1. 
[Hints: Here  is a -ring. Suppose  and  reside in  and  respectively, and  Let 

 Verify that  (use Problem 8 in Chapter 

Show that if  is a signed measure in  then  and .

Fill in all details in the proof of Theorem  Also prove the following: 
(i)  and  are absolutely -continuous. 
[Hint: Use Theorem 2 in Chapter 7, §11.] 
(ii) . 
(iii) If  is a measure  so are  and .

Verify Note 3 for Theorem 1 and Corollary  State and prove both generalized propositions precisely.

8.11.E: Problems on Radon-Nikodym Derivatives and Lebesgue Decomposition is shared under a CC BY 1.0 license and was authored, remixed,
and/or curated by LibreTexts.

 Exercise 8.11.E. 1

 Exercise 8.11.E. 2

P ∈M −P ∈M, s ⊥ t t ⊥ s

s ⊥ t ⊥ tvs

 Exercise 8.11.E. 3

M σ s u P
′ ,P

′′ = 0 = .vtP
′

vtP
′′

P = ∪ ∈M.P
′

P
′′

P = 0vt 7, §11 ). Then show that both s and u reside in P . ]

 Exercise 8.11.E. 4

s : M→ E
∗

S ∈M, ⊥s
+

s
− ⊥s

−
s

+

 Exercise 8.11.E. 5

2.

s
′

vs′ t

= + , ⊥ tvs vs′ vs′′ vs′′

s (≥ 0), s
′

s
′′

 Exercise 8.11.E. 6

3.
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8.12: Integration and Differentiation
I. We shall now link RN-derivatives (§11) to those of Chapter 7, §12.

Below, we use the notation of Definition 3 in Chapter 7, §10 and Definition 1 of Chapter 7, §12. (Review them!) In particular,

is Lebesgue measure in  (presupposed in such terms as "a.e.," etc.);  is an arbitrary set function. For convenience, we set

and

unless defined otherwise; thus  and  exist always.

We start with several lemmas that go back to Lebesgue.

With the notation of Definition 3 of Chapter 7, §10, the functions

are Lebesgue measurable on  for any set function

Proof

By definition,

where

and

As is easily seen (verify!),

The right-side union is Lebesgue measurable by Problem 2 in Chapter 7, §10. Thus by Theorem 1 of §2, the function  is
measurable on  for  and so is

by Lemma 1 of §2 and Definition 3 in Chapter 7, §10. Similarly for .

Hence by Corollary 1 in §2, the set

m : →M∗ E∗ (8.12.1)

En s

( ) = 0s′ p̄̄̄ (8.12.2)

fdm = 0,∫
X

(8.12.3)

s′ f∫X

 Lemma 8.12.1

s, s,  and D
¯ ¯¯̄

D–– s′ (8.12.4)

En

s : → ( ⊇ ) .M
′ E∗

M
′

K
¯ ¯¯̄

(8.12.5)

s( ) = ( ),D
¯ ¯¯̄

p̄̄̄ inf
r
hr p̄̄̄ (8.12.6)

( ) = sup{ |I ∈ }hr p̄̄̄
sI

mI
K

r
p̄̄̄ (8.12.7)

={I ∈ | ∈ I, dI < } , r = 1, 2, … .K
r
p̄̄̄ K

¯ ¯¯̄
p̄̄̄

1

r
(8.12.8)

( > a) =⋃{I ∈ |a < , dI < } , a ∈ .En hr K
¯ ¯¯̄ sI

mI

1

r
E∗ (8.12.9)

hr
En r = 1, 2, …

s =D
¯ ¯¯̄

inf
r
hr (8.12.10)

sD––

A = ( s = s)En D–– D
¯ ¯¯̄

(8.12.11)
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is measurable. As  on  is measurable on  and also on  (by convention,  on  hence on all of 

With the same notation, let  be a regular measure in  Let  and  with 

and .

If

then

Proof

Fix  By regularity (Definition 4 in Chapter 7, §7), there is an open set  with

Now let

As  the definition of  implies that  is a Vitali covering of . (Verify!)

Thus Theorem 1 in Chapter 7, §10, yields a disjoint sequence , with

and

As

(by our choice of  and , we obtain

Thus

Making  we obtain the result.

If

with  and  and if  is differentiable at a point , then

= ss′ D¯ ¯¯̄ A, s′ A −A = 0s′ −A),
. □En

 Lemma 8.12.2

s : → ( ⊇ )M
′ E∗ M

′
K
¯ ¯¯̄

.En A ∈M∗ B ∈M′ A ⊆ B,

a ∈ E1

s > a  on A,D
¯ ¯¯̄

(8.12.12)

a ⋅mA ≤ sB. (8.12.13)

ε > 0. G⊇ B,

sB+ε ≥ sG. (8.12.14)

= {I ∈ |I ⊆ G, sI ≥ (a−ε)mI}.K
ε

K
¯ ¯¯̄

(8.12.15)

s > a,D
¯ ¯¯̄

sD
¯ ¯¯̄

K
ε A

{ } ⊆Ik K
ε

m(A− ) = 0⋃
k

Ik (8.12.16)

mA ≤ m(A−⋃ )+m⋃ = 0 +m⋃ = m .Ik Ik Ik ∑
k

Ik (8.12.17)

⋃ ⊆ G and sB+ε ≥ sGIk (8.12.18)

K
ε G

sB+ε ≥ s = s ≥ (a−ε) m ≥ (a−ε)mA.⋃
k

Ik ∑
k

Ik ∑
k

Ik (8.12.19)

(a−ε)mA ≤ sB+ε. (8.12.20)

ε → 0, □

 Lemma 8.12.3

t = s±u, (8.12.21)

s, t, u : →M
′ E∗ ⊇ ,M

′
K
¯ ¯¯̄

u ∈p̄̄̄ En

t = s±  and  t = s±  at  .D¯ ¯¯̄ D¯ ¯¯̄ u′ D
––

D
––

u′ p̄̄̄ (8.12.22)
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Proof

The proof, from definitions, is left to the reader (Chapter 7, §12, Problem 7).

Any -continuous measure  is strongly regular.

Proof

By Corollary 3 of Chapter 7, §11,  (  is finite!). Thus  is certainly -finite.

Hence by Theorem 2 in Chapter 7, §11,  is absolutely -continuous. So given  there is  such that

Now, let  By the strong regularity of Lebesgue measure  (Chapter 7, §8, Theorem 3(b)), there is an open set 
 and a closed  such that

Thus by our choice of ,

as required.

Let  be finite -continuous measures, with  or  on 

If the  are a.e. differentiable, then

Proof

Let first  Set

By Corollary 2 in Chapter 7, §11, all  are -continuous, hence strongly regular (Lemma 4). Also,  (since 
). Hence

for each cube  and the definition of  implies that

As   exists (pointwise). Now set

By Lemma 1 (and Lemma 1 in §2),  Since

on  Lemma 2 yields

 Lemma 8.12.4

m s : →M
∗ E1

= s < ∞vs s vs m

s m ε > 0, δ > 0

(∀X ∈ |mX < δ) sX < ε.M
∗ (8.12.23)

A ∈ .M
∗ m

G⊇ A F ⊆ A

m(A−F ) < δ and m(G−A) < δ. (8.12.24)

δ

s(A−F ) < ε and s(G−A) < ε, (8.12.25)

□

 Lemma 8.12.5

s, (k = 1, 2, …)sk m ↗ ssk ↘ ssk .M
∗

sk

s = s =  a.e.D
¯ ¯¯̄

D–– lim
k→∞

s′
k (8.12.26)

↗ s.sk

= s− .tk sk (8.12.27)

tk m ↘ 0tk

↗ ssk

I ≥ I ≥ 0tk tk+1 (8.12.28)

I; D
¯ ¯¯̄
tk

≥ ≥ ≥ 0.D
¯ ¯¯̄
tk D

¯ ¯¯̄
tk+1 D––tk+1 (8.12.29)

{ } ↓,D
¯ ¯¯̄
tk limk→∞ D

¯ ¯¯̄
tk

= ( ≥ ) , r = 1, 2, … .Ar En lim
k→∞

D¯ ¯¯̄ tk
1

r
(8.12.30)

∈ .Ar M
∗

≥ ≥D
¯ ¯¯̄
tk lim

i→∞
D
¯ ¯¯̄
ti

1

r
(8.12.31)

,Ar

m ≤ .
1

r
Ar tkAr (8.12.32)
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As  we have

Thus

Also, as is easily seen

and

Hence

As

(see above), we get

Now, as  and as the  are differentiable, Lemma 3 yields

Thus

i.e.,

This settles the case .

In the case  one only has to set  and proceed as before. (Verify!)

Given  let

on  Then  is a.e. differentiable, and

Proof

First, let  be open and let .

↘ 0,tk

m ≤ = 0.
1

r
Ar lim

k→∞
tkAr (8.12.33)

m = 0, r = 1, 2, … .Ar (8.12.34)

( > 0) = ( ≥ ) =En lim
k→∞

D¯ ¯¯̄ tk ⋃
r=1

∞

En lim
k→∞

D¯ ¯¯̄ tk
1

r
⋃
r=1

∞

Ar (8.12.35)

m = 0.⋃
r=1

∞

Ar (8.12.36)

≤ 0 a.e.lim
k→∞

D
¯ ¯¯̄
tk (8.12.37)

≥ ≥ 0D
¯ ¯¯̄
tk D––tk (8.12.38)

= 0 = D  a.e. on  .lim
k→∞

D
¯ ¯¯̄
tk lim

k→∞
tk En (8.12.39)

= s−tk sk sk

= s−  and  = s− a.e.D
¯ ¯¯̄
tk D

¯ ¯¯̄
s′
k D––tk D–– s′

k (8.12.40)

( s− )= 0 = lim ( s− ) ,lim
k→∞

D¯ ¯¯̄ s′
k

D
––

s′
k

(8.12.41)

s = = s a.e.D
¯ ¯¯̄

lim
k→∞

s′
k D–– (8.12.42)

↗ ssk

↘ s,sk = −stk sk □

 Lemma 8.12.6

A ∈ ,mA < ∞,M
∗

s = ∫ dmCA (8.12.43)

.M
∗ s

=  a.e. on  .s′ CA En (8.12.44)

( =  characteristic function of A. )CA

A ∈ Ap̄̄̄
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Then  contains some  and hence also all cubes  with  and 

Thus for such ,

i.e.,

Hence by Definition 1 of Chapter 7, §12,

if  i.e.,  on .

We calim that

To prove it, note that

is a finite (why?) -continuous measure on . By Lemma 4,  is strongly regular. Also, as  for any  we
certainly have

(Why?) Now let

where

We have to show that 

Suppose

Then by (2), we must have  for at least one  we fix this  Also, by (3),

(even on all of ). Thus by Lemma 2,

But this is impossible. Indeed, as  on  (hence on ),the integral in (4) cannot be  This refutes the
assumption  so by (2),

i.e.,

A (δ)Gp̄̄̄ I ∈ K
¯ ¯¯̄

dI < δ ∈ I.p̄̄̄

I ∈ K
¯ ¯¯̄

sI = dm = (1)dm = mI;∫
I

CA ∫
I

(8.12.45)

= 1 = ( ), ∈ A.
sI

mI
CA p̄̄̄ p̄̄̄ (8.12.46)

( ) = 1 = ( )s′ p̄̄̄ CA p̄̄̄ (8.12.47)

∈ A;p̄̄̄ =s′ CA A

s = = 0 a.e. on  −A.D
¯ ¯¯̄

s′ (8.12.48)

s = ∫ dmCA (8.12.49)

m M
∗ s sI ≥ 0 I ∈ ,K

¯ ¯¯̄

s ≥ s ≥ 0.D¯ ¯¯̄ D–– (8.12.50)

B = ( s > 0) = ,En D¯ ¯¯̄ ⋃
r=1

∞

Br (8.12.51)

= ( s ≥ ) , r = 1, 2, … .Br En D
¯ ¯¯̄ 1

r
(8.12.52)

m(B−A) = 0.

m(B−A) > 0. (8.12.53)

m ( −A) > 0Br ;Br Br

s ≥  on  −AD
¯ ¯¯̄ 1

r
Br (8.12.54)

Br

0 < m ( −A) ≤ s ( −A) = dm.
1

r
Br Br ∫

−ABr

CA (8.12.55)

= 0CA −A −ABr > 0.
m(B−A) > 0;

m( ( s > 0) −A)= 0;En D
¯ ¯¯̄

(8.12.56)
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We see that

and

proving the lemma for open sets 

Now take any  As Lebesgue measure is regular (Chapter 7, §8, Theorem 3(b)), we find for each 
 an open set  with

Let

Then  on  (see Problem 5 (ii) in §6). Also, by what was shown above, the  are differentiable, with 
a.e.

Hence by Lemma 5,

The lemma is proved.

Let  be -integrable, at least on each cube in  Then the set function

is differentiable, with  a.e. on 

Thus  is the -derivative of  with respect to Lebesgue measure  (Theorem 1 in §11).

Proof

As  is a countable union of cubes (Lemma 2 in Chapter 7, §2), it suffices to show that  a.e. on each open cube 
with  differentiable a.e. on 

Thus fix such a  and restrict  and  to

This does not affect  on  for as  is open, any sequence of cubes

terminates inside  anyway.

When so restricted,

is a generalized measure in  for  is a -ring (verify!), and  is integrable on  Also,  is strongly regular, and  is 
-continuous.

s = 0 = s  a.e. on  −A.D¯ ¯¯̄ D
––

(8.12.57)

= 0 =  a.e. on  −A,s′ CA (8.12.58)

= 1 =  on A,s′ CA (8.12.59)

A.

A ∈ ,mA < ∞.M
∗

k ∈ N ⊇ A,Gk

m ( −A) <  and  ⊇ .Gk

1

k
Gk Gk+1 (8.12.60)

= ∫ dm.sk CGk (8.12.61)

↘ ssk M
∗ sk =s′

k CGk

s = s = =  (a.e.).D
¯ ¯¯̄

D–– lim
k→∞

CGk CA (8.12.62)

□

 Theorem 8.12.1

f : → ( , )En E∗ Er C r m .En

s = ∫ fdm (8.12.63)

= f ,s′ .En

s′ RN s m

En = fs′ J,
s J.

J ≠ ∅ s m

= {X ∈ |X ⊆ J} .M0 M
∗ (8.12.64)

s′ J; J

→ ∈ JIk p̄̄̄ (8.12.65)

J

s = ∫ f (8.12.66)

J; M0 σ f J. m s

m
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First, suppose  is -simple on  say,

say, with  and

Then

Hence by Lemma 6 above and by Theorem 1 in Chapter 7, §12,  is differentiable a.e. (as each  is), and

as required.

The general case reduces (via components and the formula ) to the case  with  measurable (even
integrable) on 

By Problem 6 in §2, then, we have  for some simple maps  Let

Then all  and  are finite measures and  by Theorem 4 in §6. Also, by what was shown above, each  is
differentiable a.e. on  with  (a.e.). Thus as in Lemma 5,

with  (a.e.), as  is integrable on  Thus all is proved.

II. So far we have considered Lebesgue  differentiation. However, our results easily extend to -differentiation (Definition 2 in
Chapter 7, §12).

The proof is even simpler. Thus in Lemma 1, the union in formula (1) is countable (as  is replaced by the countable set family );
hence it is -measurable. In Lemma 2, the use of the Vitali theorem is replaced by Theorem 3 in Chapter 7, §12. Otherwise, one
only has to replace Lebesgue measure  by  on  Once the lemmas are established (reread the proofs!), we obtain the
following.

Let  and  be as in Definition 2 of Chapter 7, §12. Let  be -integrable on each 
 with 

Then the set function

is -differentiable, with  (a.e.) on .

Proof

Recall that  is a countable union of sets  with  As  is -regular, each  lies in an open set 
 with

f M0 J,

f = ,∑
i=1

q

aiCAi
(8.12.67)

0 < < ∞, ∈ ,ai Ai M
∗

J =  (disjoint).⋃
i=1

q

Ai (8.12.68)

s = ∫ f = ∫ .∑
i=1

q

ai CAi
(8.12.69)

s ∫ CAi

= = = f  (a.e.),s′ ∑
i=1

q

ai(∫ )CAi

′

∑
i=1

q

aiCAi
(8.12.70)

f = −f+ f− f ≥ 0, f

J.

↗ ffk ≥ 0.fk

= ∫  on  , k = 1, 2, … .sk fk M0 (8.12.71)

sk s = ∫ f ↗ s,sk sk
J, =s′

k
fk

s = s = = = lim = f  (a.e.) on J,D
¯ ¯¯̄

D–– s′ lim
k→∞

s′
k fk (8.12.72)

= f ≠ ±∞s′ f J. □

( )K
¯ ¯¯̄

Ω

K
¯ ¯¯̄

Ω
μ

m μ M.

 Theorem 8.12.2

S, ρ, Ω, μ : M→ E∗ f : S → ( , )E∗ Er C r mu

A ∈M μA < ∞.

s = ∫ fdμ (8.12.73)

Ω = f ,s′ S

S ∈ ΩU i
n 0 < μ < ∞.U i

n μ∗ G U i
n

∈MJ i
n
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Also,  is -measurable (even integrable) on  Dropping a null set, assume that  is -measurable on .

From here, proceed exactly as in Theorem 1, replacing  by 

Both theorems combined yield the following result.

If  is an -continuous and -finite generalized measure in  then  is -differentiable a.e. on 
and  (see Definition 3 in §10) in any 

Similarly for -differentiation.

Proof

Given  there is an open set  such that

As before, restrict  and  to

Then by assumption,  is finite and -continuous on  (a -ring); so by Theorem 1 in §11,

on  for some -integrable map  on .

Hence by our present Theorem 1,  is differentiable, with  a.e. on  and so

This implies  in .

For -differentiation, use Theorem 2.

Let  be as in Corollary 1. Subject to Note 1 in §10, if  is -integrable on  then  is -integrable on 
 and

Similarly for -derivatives, with  replaced by .

Proof

By Corollary 1,  in  Thus Theorem 6 of §10 yields the result.

Note 1. In particular, Corollary 2 applies to -continuous signed LS measures  in  (see end of §11). If  then 
 is surely finite on -measurable subsets of  so Corollaries 1 and 2 show that

since  (See Problem 9 in Chapter 7, §12.)

μ < μ + < ∞.J i
n U i

n εin (8.12.74)

f μ .J i
n f M J = J i

n

m μ. □

 Corollary 8.12.1

s : → ( , )M′ E∗ Er C r m m ,En s K
¯ ¯¯̄

,En

ds = dms′ A ∈ (mA < ∞).M∗

Ω

A ∈ (mA < ∞),M
∗ J ⊇ A

mJ < mA+ε < ∞. (8.12.75)

s m

= {X ∈ |X ⊆ J} .M0 M∗ (8.12.76)

s m M0 σ

s = ∫ fdm (8.12.77)

M0 m f J

s = fs′ J

s = ∫ f = ∫  on  .s′
M0 (8.12.78)

ds = dms′ A

Ω □

 Corollary  (change of measure)8.12.2

s f s A ∈ (mA < ∞),M∗ fs′ m

A

fds = f dm.∫
A

∫
A

s′ (8.12.79)

Ω m μ

ds = dms′ A. □

m s = sα E1 A = [a, b],
sα sα A;

fd = f dm = f dm,∫
A

sα ∫
A

s′
α ∫

A

α′ (8.12.80)

= .s′
α α′
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Note 2. Moreover,  (see Note 1) is absolutely -continuous iff  is absolutely continuous in the stronger sense (Problem 2
in Chapter 4, §8).

Indeed, assuming the latter, fix  and choose  as in Definition 3 of Chapter 7, §11. Then if  we have

for some intervals  with

Hence

(Why?) Similarly for the converse.

8.12: Integration and Differentiation is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

s = sα m α

ε > 0 δ mX < δ,

X ⊆⋃  (disjoint)Ik (8.12.81)

= ( , ] ,Ik ak bk

δ >∑m =∑ ( − ) .Ik bk ak (8.12.82)

|sX| ≤∑ |s | < ε.Ik (8.12.83)
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8.12.E: Problems on Differentiation and Related Topics

Fill in all proof details in this section. Verify footnote 4 and Note 2.

Given a measure  prove that 

(i)  is topological; 
(ii) its Borel restriction  is strongly regular; and 
(iii)  and  do not change if  or  are restricted to the Borel field  in  neither does this affect the propositions
on -differentiation proved here. 
[Hints: (i) Use Lemma 2 of Chapter 7, §2. (ii) Use also Problem 10 in Chapter 7, §7. (iii) All depends on 

What analogues to  apply to -differentiation in 

(i) Show that any -singular measure  in  finite on  has a zero derivative (a.e.). 
(ii) For -derivatives, prove that this holds if  is also regular. 
[Hint for (i): By Problem 2, we may assume s regular (if not, replace it by ). 
Suppose 

 
and find a contradiction to Lemma 2.]

Give another proof for Theorem 4 in Chapter  
[Hint: Fix an open cube  By Problem 2(iii), restrict  and  to 

 
to make them finite. Apply Corollary 2 in §11 to . Then use Problem  Theorem 1 of the present section, and Theorem 1 of
Chapter 7, §12. 
For -differentiation, assume  regular; argue as in Corollary  using Corollary 2 
of 11.]

Prove that if 

 
with -integrable on  then  is differentiable, with  a.e. on  

 Exercise 8.12.E. 1

 Exercise 8.12.E. 2

s : → ( ⊇ ) ,M′ E∗ M′ K
¯ ¯¯̄

s

σ

s, s,D–– D
¯ ¯¯̄

s′ s m B ;En

K
¯ ¯¯̄

K. ]
¯ ¯¯̄ ¯̄¯

 Exercise 8.12.E. 3

2(i)−( iii ) Ω ? In(S, ρ)?En

 Exercise 8.12.E. 4

m s ,En ,K
¯ ¯¯̄

Ω s

σ

m ( s> 0) > a> 0En D
¯ ¯¯̄

(8.12.E.1)

 Exercise 8.12.E. 5

7, 812.

J ∈ .K
¯ ¯¯̄

s m

= {X ∈ B|X ⊆ J}M0 (8.12.E.2)

s 4,

Ω s 1,

 Exercise 8.12.E. 6

F (x) =L fdm (a≤ x ≤ b),∫
x

a

(8.12.E.3)

f : → ( , )mE1 E∗ En Cn A= [a, b], F = f ,F ′ A.
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[Hint: Via components, reduce all to the case  on  
Let 

 
on . Let  be the -induced LS measure. Show that  on intervals in ; so  a.e. on  (Problem 9
in Chapter 7, §11). Use Theorem 1.]

8.12.E: Problems on Differentiation and Related Topics is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

f ≥ 0,F ↑ A.

s= ∫ fdm (8.12.E.4)

M
∗ t =mF F s= t A = =s′ t′ F ′ A
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9.1: L-Integrals and Antiderivatives
I. Lebesgue theory makes it possible to strengthen many calculus theorems. We shall start with functions on  (A
reader who has omitted the "starred" part of Chapter 8, §7, will have to set  throughout.)

By -integrals of such functions, we mean integrals with respect to Lebesgue measure  in  Notation:

and

For Riemann integrals, we replace " " by " " We compare such integrals with antiderivatives (Chapter 5, §5), denoted

without the " " or " " Note that

etc., since  here.

Let  be -integrable on  Set

Then the following are true.

(i) The function  is the derivative of  at any  at which  is finite and continuous. (At  and , continuity and
derivatives may be one-sided from within.)

(ii) The function  is absolutely continuous on  hence 

Proof

(i) Let  Let  be left continuous at  so, given  we can fix  such that

Then

But

, f : → E.E1 E1

E = ( , )E∗ En Cn

L m .E1

L f = L f(x)dx = L f∫
b

a

∫
b

a

∫
[a,b]

(9.1.1)

L f = −L f .∫
a

b

∫
b

a

(9.1.2)

L R.

f ,∫
b

a

(9.1.3)

L R.

L f = L f ,∫
[a,b]

∫
(a,b)

(9.1.4)

m{a} = m{b} = 0

 Theorem 9.1.1

f : → EE1 L A = [a, b].

H(x) = L f , x ∈ A.∫
x

a

(9.1.5)

f H p ∈ A f a b

H A; [A] < ∞.VH

p ∈ (a, b], q = f(p) ≠ ±∞. f p; ε > 0, c ∈ (a, p)

|f(x) −q| < ε for x ∈ (c, p). (9.1.6)

(∀x ∈ (c, p)) L (f −q) ≤ L |f −q|
∣

∣
∣ ∫

p

x

∣

∣
∣ ∫

p

x

≤ L (ε) = ε ⋅m[x, p] = ε(p−x).∫
p

x
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Thus

i.e.,

Hence

If  is right continuous at  a similar formula results for  This proves clause (i).

(ii) Let  be given. Then Theorem 6 in Chapter 8, §6, yields a  such that

whenever

Here we may set

for some intervals

so that

Then (1) implies that

Thus

whenever

and

L (f −q)∫
p

x

L q∫
p

x

L f∫
p

x

= L f −L q∫
p

x

∫
p

x

= q(p−x),  and 

= L f −L f∫
p

a

∫
x

a

= H(p) −H(x).

|H(p) −H(x) −q(p−x)| ≤ ε(p−x); (9.1.7)

−q ≤ ε (c < x < p).
∣

∣
∣
H(p) −H(x)

p−x

∣

∣
∣ (9.1.8)

f(p) = q = = (p).lim
x→p−

ΔH

Δx
H ′

− (9.1.9)

f p ∈ [a, b), (p).H ′
+

ε > 0 δ > 0

L f ≤ L |f | < ε
∣

∣
∣ ∫

X

∣

∣
∣ ∫

X

(9.1.10)

mX < δ and A ⊇ X,X ∈ M. (9.1.11)

X =  (disjoint)⋃
i=1

r

Ai (9.1.12)

= ( , ) ⊆ AAi ai bi (9.1.13)

mX = m = ( − ) < δ.∑
i

Ai ∑
i

bi ai (9.1.14)

ε > L |f | = L |f | ≥ L f = |H ( ) −H ( )| .∫
X

∑
i

∫
Ai

∑
i

∣

∣
∣ ∫

bi

ai

∣

∣
∣ ∑

i

bi ai (9.1.15)

|H ( ) −H ( )| < ε∑
i

bi ai (9.1.16)

( − ) < δ∑
i

bi ai (9.1.17)
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(This is what we call "absolute continuity in the stronger sense.") By Problem 2 in Chapter 5, §8, this implies "absolute
continuity" in the sense of Chapter 5, §8, hence 

Note 1. The converse to (i) fails: the differentiability of  at  does not imply the continuity of its derivative  at  (Problem 6 in
Chapter 5, §2).

Note 2. If  is continuous on  (  countable), Theorem 1 shows that  is a primitive (antiderivative):  on  Recall
that "Q countable" implies  but not conversely. Observe that we may always assume 

We can now prove a generalized version of the so-called fundamental theorem of calculus, widely used for computing integrals via
antiderivatives.

If  has a primitive  on  and if  is bounded on  for some  with  then  is -
integrable on  and

Proof

By Definition 1 of Chapter 5, §5,  is relatively continuous and finite on  hence bounded on  (Theorem 2 in
Chapter 4, §8).

It is also differentiable, with  on  for a countable set  with  We fix this  along with 

As we deal with  only, we surely may redefine  and  on 

and  on  Then  is bounded on  while  is bounded and 
continuous on  and  on  so  on 

Also, for  and  set

Then

i.e.,  (a.e.) on  (as ).

By (3), each  is bounded and continuous (as  is). Thus by Theorem 1 of Chapter 8, §3,  and all  are -measurable
on  (even on ). So is  by Corollary 1 of Chapter 8, §3.

Moreover, by boundedness,  and  are -integrable on finite intervals. So is  For example, let

as ,

proving integrability. Now, as

A ⊇ ( , )  (disjoint).⋃
i

ai bi (9.1.18)

[A] < ∞. □VH

H p f p

f A−Q Q H H = ∫ f A.

mQ = 0, a, b ∈ Q.

 Theorem 9.1.2

f : → EE1 F A = [a, b], f A−P P mP = 0, f L

A,

L f = F (x) −F (a) for all x ∈ A.∫
x

a

(9.1.19)

F A = [a, b], A

= f ,F ′ A−Q Q ⊆ A, a, b ∈ Q. Q P .

A F f −A :

F (x) ={
F (a)

F (b)

 if x < a,

 if x > b,
(9.1.20)

f = 0 −A. f −P , F

,E1 = fF ′ −Q; F = ∫ f .E1

n = 1, 2, … t ∈ ,E1

(t) = n[F (t+ )−F (t)] = .fn
1

n

F (t+1/n) −F (t)

1/n
(9.1.21)

→ = f on  −Q;fn F ′ (9.1.22)

→ ffn E1 mQ = 0

fn F F fn m

A E1 f

F fn L f .

|f | ≤ K < ∞ on A−P ; (9.1.23)

mP = 0

|f | ≤ (K) = K ⋅mA < ∞,∫
A

∫
A

(9.1.24)
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Corollary 1 in Chapter 5, §4 yields

Hence

i.e.,  for all .

Thus  and  satisfy Theorem 5 of Chapter 8, §6, with  By Note 1 there,

In the next lemma, we show that also

which will complete the proof.

Given a finite continuous  and given  as in (3), we have

Proof

As before,  and  are bounded, continuous, and -integrable on any  or  Fixing  let

By Theorem 1 and Note 2,  also in the sense of Chapter 5, §5, with  (derivative of ) on .

Hence by Definition 2 the same section,

i.e.,

and so

(We computed

F = ∫ f  on any interval [t, t+ ] ,
1

n
(9.1.25)

(∀t ∈ ) F (t+ )−F (t) ≤ | (t)| ≤ .E1 ∣

∣
∣

1

n

∣

∣
∣ sup

t∈−Q

F ′ 1

n

K

n
(9.1.26)

| (t)| = n F (t+ )−F (t) ≤ K;fn
∣

∣
∣

1

n

∣

∣
∣ (9.1.27)

| | ≤ Kfn n

f fn g = K.

L = L f .lim
n→∞

∫
x

a

fn ∫
x

a

(9.1.28)

L = F (x) −F (a),lim
n→∞

∫
x

a

fn (9.1.29)

□

 Lemma 9.1.1

F : → EE1 fn

L = F (x) −F (a) for all x ∈ .lim
n→∞

∫
x

a

fn E1 (9.1.30)

F fn L [a, x] [x, a]. a,

H(x) = L F , x ∈ .∫
x

a

E1 (9.1.31)

H = ∫ F F = H ′ H E1

F = H(x) −H(a) = H(x) −0 = L F ;∫
x

a

∫
x

a

(9.1.32)

L F = F ,∫
x

a

∫
x

a

(9.1.33)

L (t)dt∫
x

a

fn = n F (t+ ) dt−n F (t)dt∫
x

a

1

n
∫

x

a

= n F (t)dt−n F (t)dt.∫
b+1/n

a+1/n

∫
x

a

∫ F (t+1/n)dt (9.1.34)
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by Theorem 2 in Chapter 5, §5, with .) Thus by additivity,

But

Similarly,

This combined with (5) proves (4), and hence Theorem 2, too.

We also have the following corollary.

If  is -integrable on  then

provided  is primitive to  on 

Proof

This follows from Theorem 2 by Definition (c) and Theorem 2 of Chapter 8, §9.

Caution. Formulas (2) and (6) may fail if  is unbounded, or if  is not a primitive in the sense of Definition 1 of Chapter 5, §5:
We need  on  countable (  is not enough!). Even -integrability (which makes  bounded and a.e.
continuous) does not suffice if

For examples, see Problems 2-5.

If  is relatively continuous and finite on  and has a bounded derivative on  (  countable), then  is -
integrable on  and

This is simply Theorem 2 with  replaced by  respectively

If in Theorem 2 the primitive

is exact on some  then

g(t) = t+1/n

L = n F −n F = n F −n F .∫
x

a

fn ∫
x+1/n

a+1/n

∫
x

a

∫
x+1/n

x

∫
a+1/n

a

(9.1.35)

n F = → (x) = F (x).∫
x+1/n

x

H (x+ )−H(x)1
n

1
n

H ′ (9.1.36)

n F = F (a).lim
n→∞

∫
a+1/n

a

(9.1.37)

□

 Corollary 9.1.1

f : → ( , )E1 E∗ En Cn R A = [a, b],

(∀x ∈ A) R f = L f = F (x) −F (a),∫
x

a

∫
b

a

(9.1.38)

F f A.

f F

= fF ′ A−Q,Q mQ = 0 R f

F ≠ ∫ f . (9.1.39)

 Corollary 9.1.2

f A = [a, b] A−Q Q f ′ L

A

L = f(x) −f(a)  for x ∈ A.∫
x

a

f ′ (9.1.40)

F , f ,P f , ,Q,f ′

 Corollary 9.1.3

F = ∫ f (9.1.41)

B ⊆ A,
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(Recall that  is classical notation for .)

Proof

By (2), this holds on  if  there.

II. Note that under the assumptions of Theorem 2,

Thus all laws governing the primitive  apply to  For example, Theorem 2 of Chapter 5, §5, yields the following corollary.

Let  be relatively continuous on  and have a bounded derivative on  (  countable).

Suppose that  (real or not) has a primitive on  exact on  and that  is bounded on .

Then  is -integrable on  the function

is -integrable on  and

where  and .

For this and other applications of primitives, see Problem 9. However, often a direct approach is stronger (though not simpler),
as we illustrate next.

Suppose  is  and monotonically decreasing on  Then, if  is -integrable on  so
also is  and

Proof

The -integrability of  follows by Theorem 3 in Chapter 8, §6, as  is monotone and bounded, hence even -integrable
(Corollary 3 in Chapter 8, §9).

Using this and Lemma 1 of the same section, fix for each  a -partition

of  so that

where we have set

Consider any such  (we drop the " " for brevity). If  then since ,

f(x) = L f , x ∈ B.
d

dx
∫

x

a

(9.1.42)

F (x)d

dx
(x)F ′

B ⊆ A = fF ′
□

L f = F (x) −F (a) = f .∫
x

a

∫
x

a

(9.1.43)

∫ f L ∫ f .

 Corollary  (change of variable)9.1.4

g : →E1 E1 A = [a, b] A−Q Q

f : → EE1 g[A], g[A−Q], f g[A−Q]

f L g[A],

(f ∘ g)g′ (9.1.44)

L A,

L f(g(x)) (x)dx = L f(y)dy,∫
b

a

g′ ∫
q

p

(9.1.45)

p = g(a) q = g(b)

 Lemma  (Bonnet)9.1.2

f : →E1 E1 ≥ 0 A = [a, b]. g : →E1 E1 L A,

fg,

L fg = f(a) ⋅L g  for some c ∈ A.∫
b

a

∫
c

a

(9.1.46)

L fg f R

n C

= { } (i = 1, 2, … , )Pn Ani qn (9.1.47)

A

(∀n) > (f , ) − (f , ) = m ,
1

n
S
¯¯̄

Pn S–– Pn ∑
i=1

qn

wni Ani (9.1.48)

= supf [ ] − inff [ ] .wni Ani Ani (9.1.49)

P = { } , i = 1, … , qAi n = [ , ] ,Ai ai−1 ai f ↓
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Under Lebesgue measure (Problem 8 of Chapter 8, §9), we may set

and still get

(Verify!) Here  and .

Now, set

and rewrite the first sum (call it  or ) as

or

because  and .

Now, by Theorem 1 (with  replaced by ),  is continuous on   so  attains a largest value  and a least
value  on 

As  and  on  we have

Thus, replacing  and  by  in  and noting that

we obtain

more fully, with  and ,

Next, let  (or rather  be the second sum in (12). Noting that

suppose first that  (bounded) on .

Then for all ,

= f ( ) −f ( ) ≥ |f(x) −f ( )| , x ∈ .wi ai−1 ai ai−1 Ai (9.1.50)

= [ , ] (∀i)Ai ai−1 ai (9.1.51)

L fg∫
A

= f ( )L g(x)dx∑
i=1

q

ai−1 ∫
Ai

+ L [f(x) −f ( )] g(x)dx.∑
i=1

q

∫
Ai

ai−1

= aa0 = baq

G(x) = L g∫
x

a

(9.1.52)

r rn

r = f ( ) [G( ) −G( )]∑
i=1

q

ai−1 ai ai−1

= G( ) [f ( ) −f ( )] +G(b)f ( ) ,∑
i=1

q−1

ai ai−1 ai aq−1

r = G( ) +G(b)f ( ) ,∑
i=1

q−1

ai wi aq−1 (9.1.53)

f ( ) −f ( ) =ai−1 ai wi G(a) = 0

H, f G, g G A = [a, b]; G K

k A.

f ↓ f ≥ 0 A,

≥ 0 and f ( ) ≥ 0.wi aq−1 (9.1.54)

G(b) G( )ai K( or k) (13)

= f(a) −f ( ) ,∑
i=1

q−1

wi aq−1 (9.1.55)

kf(a) ≤ r ≤ Kf(a); (9.1.56)

k = minG[A] K = maxG[A]

(∀n) kf(a) ≤ ≤ Kf(a).rn (9.1.57)

s sn

≥ |f(x) −f ( )| ,wi ai−1 (9.1.58)

|g| ≤ B A

n
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But by (12),

As ,

and so by (14),

By continuity,  takes on the intermediate value  at some  so

since

Thus all is proved for a bounded 

The passage to an unbounded  is achieved by the so-called truncation method described in Problems 12 and 13. (Verify!)

Let  be monotone on  Then if  is -integrable on  so also is  and

Proof

If, say,  on  set

Then  and  on  so by Lemma 2,

As

this easily implies (15).

If  apply this result to  to obtain (15) again.

Note 3. We may restate (15) as

provided either

| | ≤ L ( B) = B m < → 0  (by (11)).sn ∑
i=1

qn

∫
Ani

wni ∑
i=1

qn

wni Ani

B

n
(9.1.59)

L fg = + (∀n).∫
A

rn sn (9.1.60)

→ 0sn

L fg = ,∫
A

lim
n→∞

rn (9.1.61)

kf(a) ≤ L fg ≤ Kf(a).∫
A

(9.1.62)

f(a)G(x) L fg∫A c ∈ A;

L fg = f(a)G(c) = f(a)L g,∫
A

∫
c

a

(9.1.63)

G(x) = L f .∫
x

a

(9.1.64)

g.

g □

 Corollary  (second law of the mean)9.1.5

f : →E1 E1 A = [a, b]. g : →E1 E1 L A, fg,

L fg = f(a)L g+f(b)L g for some c ∈ A.∫
b

a

∫
c

a

∫
b

c

(9.1.65)

f ↓ A,

h(x) = f(x) −f(b). (9.1.66)

h ≥ 0 h ↓ A;

gh = h(a)L g for some c ∈ A.∫
b

a

∫
c

a

(9.1.67)

h(a) = f(a) −f(b), (9.1.68)

f ↑, −f □

(∃c ∈ A) L fg = pL g+qL g,∫
b

a

∫
c

a

∫
b

c

(9.1.69)
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(i)  and  or

(ii)  and .

This statement slightly strengthens (15).

To prove clause (i), redefine

Then still  so (15) applies and yields the desired result. Similarly for (ii). For a continuous  see also Problem 13(ii') in
Chapter 8, §9, based on Stieltjes theory.

III. We now give a useful analogue to the notion of a primitive.

A map  is called an -primitive or an indefinite -integral of  on  iff  is -integrable on 
 and

for all  and some fixed finite .

Notation:

or

By (16), all -primitives of  on  differ by finite constants only.

If  one can use this concept to lift the boundedness restriction on  in Theorem 2 and the corollaries of this
section. The proof will be given in §2. However, for comparison, we state the main theorems already now.

Let

for some .

Then  is differentiable, with

In classical notation,

A proof was sketched in Problem 6 of Chapter 8, §12. (It is brief but requires more "starred" material than used in §2.)

Let  be differentiable on  (at  and  differentiability may be one sided). Let  be -
integrable on .

f ↑ p ≤ f(a+) ≤ f(b−) ≤ q,

f ↓ p ≥ f(a+) ≥ f(b−) ≥ q

f(a) = p and f(b) = q. (9.1.70)

f ↑; g,

 Definition

F : → EE1 L L f : → E,E1 A = [a, b] f L

A

F (x) = c+L f∫
x

a

(9.1.71)

x ∈ A c ∈ E

F = L∫ f (not F = ∫ f) (9.1.72)

F (x) = L∫ f(x)dx on A. (9.1.73)

L f A

E = ( , ) ,E∗ En Cn f

 Theorem 9.1.3

F = L∫ f on A = [a, b] (9.1.74)

f : → ( , )E1 E∗ En Cn

F

= f a.e. on A.F ′ (9.1.75)

f(x) = L f(t)dt for almost all x ∈ A.
d

dx
∫

x

a

(9.1.76)

 Theorem 9.1.4

F : → ( )E1 En Cn A = [a, b] a b = fF ′ L

A
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Then
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L f = F (x) −F (a) for all x ∈ A.∫
x

a

(9.1.77)
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9.1.E: Problems on L-Integrals and Antiderivatives

Fill in proof details in Theorems 1 and 2, Lemma 1, and Corollaries 1-3.

Verify Note 2.

Let  be Cantor's function (Problem 6 in Chapter 4, §5). Let 

 
 So  (Problem  

Show that  is differentiable  on  By Theorems 2 and 3 of Chapter 8, §9, 

 
exists, yet . 
Does this contradict Corollary  Is  a genuine antiderivative of  If not, find one.

Let 

 
Show that 

 
exists, yet 

 
What is wrong? 
[Hint: A genuine primitive of  has to be relatively continuous on  find 

What is wrong with the following computations? 

(i) . 

(ii)  Is there a primitive on the whole interval? 

 Exercise 9.1.E. 1

 Exercise 9.1.E. 1′

 Exercise 9.1.E. 2

F

G=⋃
k,i

Gkt (9.1.E.1)

(  as in that problem ) .Gkt [0, 1] −G= P ( Cantor's set );mP = 0 10 in Chapter 7, §8).
F ( = 0)F ′ G.

R = L = L = 0∫
1

0
F ′ ∫

1

0
F ′ ∫

G

F ′ (9.1.E.2)

F (1) −F (0) = 1 −0 ≠ 0
1? F f?

 Exercise 9.1.E. 3

F ={
0

1

 on  [0, ) ,  and 1
2

 on  [ , 1] .1
2

(9.1.E.3)

R = 0∫
1

0
F ′ (9.1.E.4)

F (1) −F (0) = 1 −0 = 1. (9.1.E.5)

 (call it ϕ)F ′ [0, 1];
ϕ and show that ϕ(1) −ϕ(0) = 0. ]

 Exercise 9.1.E. 4

L = − = −1∫
1

2

−1
dx

x2

1
x

∣∣
1

2

−1

L = = 0.∫ 1
−1

dx
x ln |x||1−1
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[Hint: See hint to Problem 3.] 

(iii) How about  (cf. examples (a) and (b) of Chapter 5, §5)?

Let 

 
Prove the following: 
(i)  is differentiable on . 
(ii)  is bounded on any  but not on . 
(iii) Let 

 
Show that 

 
and 

 
so 

 
and  is not L-integrable on . 
What is wrong? Is there a contradiction to Theorem 

Consider both 
(a)  and 
(b) . 
In each case, show that  is continuous on  and 

 
exists, yet it does not "work out" via primitives. What is wrong? Does a primitive exist? 
To use Corollary  first expand  and  in a Taylor series and find the series for 

L dx∫ 1
−1

|x|
x

 Exercise 9.1.E. 5

F (x) = cos , F (0) = 1.x2 π

x2
(9.1.E.6)

F A = [0, 1]
f = F ′ [a, b] ⊂ (0, 1), A

=  and  =  for n = 1, 2, …an
2

4n+1

− −−−−−
√ bn

1

2n
−−

√
(9.1.E.7)

A ⊇ [ , ] (disjoint)⋃
n=1

∞

an bn (9.1.E.8)

L f = ;∫
bn

an

1

2n
(9.1.E.9)

L f ≥ L f ≥ = ∞,∫
b

a

∫
[ , ]∪∞

n=1 an bn

∑
n=1

∞
1

2n
(9.1.E.10)

f = F ′ A

2?

 Exercise 9.1.E. 6

f(x) = , f(0) = 1,sin x
x

f(x) = , f(0) = 11−e−x

x

f A = [0, 1]

R f ≤ 1∫
A

(9.1.E.11)

1, sinx e−x

∫ f (9.1.E.12)
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by Theorem 3 of Chapter 5, §9. 
Find 

 
approximately, to within  using the remainder term of the series to estimate accuracy. 
[Hint: Primitives exist, by Theorem 2 of Chapter 5, §11, even though they are none of the known "calculus functions." 

Take  and  as in Problem 17(iii) of Chapter 7, §8. 
Define  on  and 

 
Prove that  has a bounded derivative  yet  is not R-integrable on  so Theorem 2 applies, but Corollary 1 does not. 
[Hints: If  compute  as in calculus. 
If  and  over  then  is always in some  (Why?) Deduce that 

 and 

 
so  (What if  over  ?) Similarly, show that  on . 
Prove however that  oscillates from 1 to  as  or , hence also as  (why?); so  is
discontinuous on all of  with  Now use Theorem 3 in Chapter 8, §9.]

. If 

 
and  find a continuous map  with 

 
[Hints: By Theorem 2 of Chapter 7, §8, fix (  ) an open  with 

 
Set 

 
and 

R f∫
A

(9.1.E.13)

1/10,
]

 Exercise 9.1.E. 7

A, = ( , ) ,Gn an bn P (mP > 0)
F = 0 P

F (x) = sin  if x ∉ P .(x− )an
2 (x− )bn

2 1

( − ) (x− ) (x− )bn an an bn
(9.1.E.14)

F f , f A;
p ∉ P , (p)F ′

p ∈ P x → p+ A−P , x ( , ) , p ≤ < x.an bn an
Δx = x−p > x−an

≤ (x− ) (b−a ≤ |Δx|(b−a ;
∣
∣
∣
ΔF

Δx

∣
∣
∣ an )2 )2 (9.1.E.15)

(p) = 0.F ′
+ x → p+ P = 0F ′

− P

(x)F ′ −1 x → +an x → −bn x → p ∈ P F ′

P , mP > 0.

 Exercise 9.1.E. 8

⇒ 8

Q ⊆ A = [a, b] (9.1.E.16)

mQ = 0, g : A → , g ≥ 0, g ↑,E1

= +∞  on Q.g′ (9.1.E.17)

∀n ⊇ Q,Gn

m < .Gn 2−n (9.1.E.18)

(x) = m ( ∩ [a, x])gn Gn (9.1.E.19)

g =∑
n=1

∞

gn (9.1.E.20)
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on  converges uniformly on  (Why?) 
By Problem 4 in Chapter 7, §9, and Theorem 2 of Chapter 7, §4, each  (hence g) is continuous. (Why?) If  show
that 

 
so 

 
and 

(i) Prove Corollary 4. 
(ii) State and prove earlier analogues for Corollary 5 of Chapter 5, §5, and Theorems 3 and 4 from Chapter 5, §10. 
[Hint for (i): For primitives, this is Problem 3 in Chapter 5, §5. As  is countable (Problem 2 in Chapter 1, §9) and  is
bounded on 

 

. Show that if  is L-integrable on  and 

 
then  a.e. on . 
[Hints: Let  and  with, say,  
Then by Corollary 1 in Chapter 7, §1 and Definition 2 of Chapter 7, §5, 

 
for some intervals  with 

 
(Why?) Set  so 

 
(for  on intervals ). Thus 

A;∑ gn A.
gn [p, x] ⊆ ,Gn

(x) = (p) +(x−p),gn gn (9.1.E.21)

= 1
Δgn

Δx
(9.1.E.22)

= → ∞.]
Δg

Δx
∑
n=1

∞
Δgn

Δx
(9.1.E.23)

 Exercise 9.1.E. 9

g[Q] f

g[A] −g[Q] ⊆ g[A−Q], (9.1.E.24)

f  satisfies Theorem 2 on g[A],  with P = g[Q],  while (f ∘ g)  satisfies it on A. ]g′

 Exercise 9.1.E. 10

⇒ 10 h : →E1 E∗ A = [a, b],

(∀x ∈ A) L h = 0,∫
x

a

(9.1.E.25)

h = 0 A

K = A(h > 0) H = A−K, mK = ε > 0.

H ⊆ (disjoint)⋃
n

Bn (9.1.E.26)

⊆ A,Bn

m < mH +ε = mH +mK = mA.∑
n

Bn (9.1.E.27)

B = ;∪nBn

h = h = 0∫
B

∑
n

∫
Bn

(9.1.E.28)

L ∫ h = 0 Bn
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But  so 

 
where  even though  (Why?) 
Hence find a contradiction to Theorem  of Chapter 8, §5. Similarly, disprove that 

. Let  on  with derived function  Taking Theorem 3 from Chapter 7, §10, for granted,
prove that 

 
[Hints: With  as in  and  are bounded on  and measurable by Theorem 1 of Chapter 8, §2. (Why?) Deduce that 

 (a.e.) on  Argue as in Lemma 1 using Fatou's lemma (Chapter 8, §6, Lemma 2).]

("Truncation.") Prove that if  is m-integrable on  in a measure space  then for any  there
is a bounded, -measurable and integrable on  such that 

 
[Outline: Redefine  on a null set, to make -measurable on  Then for  set 

 
(The function  is called the th truncate of .) 

 Each  is bounded and  -measurable on  (why?), and 

 
by integrability. Also,  and  on  (Why?) 
Now use Theorem 5 from Chapter 8, §6, to show that one of the  may serve as the desired 

Fill in all proof details in Lemma  Prove it for unbounded . 
[Hints: By Problem  fix a bounded  with 

 
Verify that 

h = h− h = 0.∫
A−B

∫
A

∫
B

(9.1.E.29)

B ⊇ H;

A−B ⊆ A−H = K, (9.1.E.30)

h > 0, m(A−B) > 0.
1(h) mA(h < 0) = ε > 0. ]

 Exercise 9.1.E. 11

⇒ 11 F ↑ A = [a, b], |F | < ∞, = f .F ′

L f ≤ F (x) −F (a), x ∈ A,∫
x

a

(9.1.E.31)

fn (3),F fn A

→ ffn A.

 Exercise 9.1.E. 12

g : S → E A ∈M (S,M,m), ε > 0,
M Amap : S → Eg0

|g− | dm < ε.∫
A

g0 (9.1.E.32)

g = 0 gM A. n = 1, 2, …

={gn
g

0

 on A(|g| < n),  and 

 elsewhere. 
(9.1.E.33)

gn n g

gn M A

|g|dm < ∞∫
A

(9.1.E.34)

| | ≤ |g|gn → g(pointwise)gn A.
gn . ]go

 Exercise 9.1.E. 13

2. g

12, (| | ≤ B) ,go go

L |g− | < .∫
A

go
1

2

ε

f(a) −f(b)
(9.1.E.35)
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For all  we get  Hence  Now finish as in the text.]

Show that Theorem 4 fails if  is not differentiable at some  
[Hint: See Problems 2 and 3.]

9.1.E: Problems on L-Integrals and Antiderivatives is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

| | ≤ |g|sn ∑
i=1

qn

∫
Ani

wni ≤ | | + |g− |∑
i

∫
Ani

wni go ∑
i

∫
Ani

wni go

≤ B m + [f(a) −f(b)] |g− |∑
i

wni Ani ∑
i

∫
Ani

go

< + [f(a) −f(b)] |g− | < + ε.
1

n
∫
A

go
1

n

1

2

n > 2/ε, | | < ε+ ε = ε.sn
1
2

1
2

→ 0.sn

 Exercise 9.1.E. 14

F p ∈ A.
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9.2: More on L-Integrals and Absolute Continuity
I. In this section, we presuppose the "starred" §10 in Chapter 7. First, however, we add some new ideas that do not require any
starred material. The notation is as in §1.

Given  and  we write

and call  an -derivate at  iff

for at least one sequence .

If  has a derivative at  it is the only -derivate at  otherwise, there may be many derivates at  (finite or not).

Such derivates must exist if  Indeed, given any  let

let

By the compactness of  (Chapter 4, §6, example (d)),  must have a subsequence  with a limit  (e.g., take 
), and so .

We also obtain the following lemma.

If  has no negative derivates on  where   and  and if no derivate of  on  equals 
 then  on .

Proof

First, suppose  has no negative derivates on  at all. Fix  and set

Seeking a contradiction, suppose  yet  Then if

one of the intervals  and  (call it ) satisfies .

Let

Again, one of  and  (call it ) satisfies  Let

and so on.

Thus obtain contracting intervals  with

 Definition

F : → E, p ∈ ,E1 E1 q ∈ E,

q ∼ DF (p) (9.2.1)

q F p

q = lim
k→∞

F ( ) −F (p)xk

−pxk
(9.2.2)

→ p ( ≠ p)xk xk

F p, F p; p

E = ( ) .E1 E∗ p ∈ ,E1

= p+ → p;xk
1

k
(9.2.3)

= , k = 1, 2, …yk
F ( ) −F (p)xk

−pxk
(9.2.4)

E∗ { }yk { }yki q ∈ E∗

q = lim– –– yk q ∼ DF (p)

 Lemma 9.2.1

F : →E1 E∗ A−Q, A = [a, b] mQ = 0, F A

−∞, F ↑ A

F A ε > 0

G(x) = F (x) +εx. (9.2.5)

a ≤ p < q ≤ b, G(q) < G(p).

r = (p+q),
1

2
(9.2.6)

[p, r] [r, q] [ , ]p1 q1 G( ) < G( )q1 p1

= ( + ) .r1
1

2
p1 q1 (9.2.7)

[ , ]p1 r1 [ , ]r1 q1 [ , ]p2 q2 G( ) < G( ) .q2 p2

= ( + ) ,r2
1

2
p2 q2 (9.2.8)

[ , ] ,pn qn
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Now, by Theorem 5 of Chapter 4, §6, let

Then set  if  and  otherwise. Then

and  By the compactness of  fix a subsequence

say. Then  is a -derivate at .

But this is impossible; for by our choice of  and our assumption, all derivates of  are  (Why?)

This contradiction shows that  implies  i.e.,

Making  we obtain  when  i.e.,  on .

Now, for the general case, let  be the set of all  that have at least one  so .

Let  be as in Problem 8 of §1; so  on  Given  set

As  we have

Hence  if .

If, however,  then  implies  (Why?) Thus all  are  so by what was proved above,
 on  It follows, as before, that  on  also. The lemma is proved.

We now proceed to prove Theorems 3 and 4 of §1. To do this, we shall need only one "starred" theorem (Theorem 3 of Chapter 7,
§10).

Proof of Theorem 3 of §1. (1) First, let  be bounded:

Via components and by Corollary 1 of Chapter 8, §6, all reduces to the real positive case  on  (Explain!)

Then (Theorem 1(f) of Chapter 8, §5)  implies

i.e.,  so  and  on .

Now, by Theorem 3 of Chapter 7, §10,  is a.e. differentiable on  Thus exactly as in Theorem 2 in §1, we set

Since all  are -measurable on  (why?), so is . Moreover, as , we obtain (as in Lemma 1 of §1)

G( ) < G( ) , n = 1, 2, … .qn pn (9.2.9)

∈ [ , ] .po ⋂
n=1

∞

pn qn (9.2.10)

=xn qn G( ) < G( ) ,qn po =xn pn

< 0
G( ) −G( )xn po

−xn po
(9.2.11)

→ .xn po ,E∗

→ c ∈ ,
G( ) −G( )xnk po

−xnk po
E∗ (9.2.12)

c ≤ 0 G ∈ Apo

G G > 0.

a ≤ p < q ≤ b G(p) ≤ G(q),

F (p) +εp ≤ F (q) +εq. (9.2.13)

ε → 0, F (p) ≤ F (q) a ≤ p < q ≤ b, F ↑ A

Q p ∈ A DF (p) < 0; mQ = 0

g = ∞g′ Q. ε > 0,

G= F +εg. (9.2.14)

g ↑,

(∀x, p ∈ A) ≥ .
G(x) −G(p)

x−p

F (x) −F (p)

x−p
(9.2.15)

DG(p) ≥ 0 p ∉ Q

p ∈ Q, (p) = ∞g′ DG(p) ≥ 0. DG(p) ≥ 0;

G ↑ A. F ↑ A, □

f

|f | ≤ K on A. (9.2.16)

f ≥ 0 A.

a ≤ x < y ≤ b

L f ≤ L f ,∫
x

a

∫
y

a

(9.2.17)

F (x) ≤ F (y); F ↑ ≥ 0F ′ A

F A.

(t) = → (t) a.e.fn
F (t+ )−F (t)1

n

1
n

F ′ (9.2.18)

fn m A F ′ |f | ≤ K
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Thus by Theorem 5 from Chapter 8, §6 (with ),

(Lemma 1 of §1). Hence

and so (Problem 10 in §1)  (a.e.) as claimed.

(2) If  is not bounded, we still can reduce all to the case  so that  and  on 

If so, we use "truncation": For  set

Then (see Problem 12 in §1) the  are -measurable and bounded, hence -integrable on  with  and

on  By the first part of the proof, then,

Also, set 

so  is monotone ( ) on  (Why?)

Thus by Theorem 3 in Chapter 7, §10, each  has a derivative at almost every 

Making  and recalling that  on  we obtain

Thus

But as  (see above), Problem 11 of §1 yields

so

Combining, we get

| (x)| = n(L f) ≤ n ⋅ = K.fn ∫
x+1/n

x

K

n
(9.2.19)

g = K

L = L = L f∫
x

a

F ′ lim
n→∞

∫
x

a

fn ∫
x

a

(9.2.20)

L ( −f) = 0, x ∈ A,∫
x

a

F ′ (9.2.21)

= fF ′

f f ≥ 0, f : →E1 E∗ F ↑ ≥ 0F ′ A.

n = 1, 2, … ,

={gn
f

0

 on A(f ≤ n),  and 

 elsewhere.
(9.2.22)

gn L L A, → fgn

0 ≤ ≤ fgn (9.2.23)

A.

L =  a.e. on A,n = 1, 2, … .
d

dx
∫

x

a

gn gn (9.2.24)

(∀n)

(x) = L (f − ) ≥ 0;Fn ∫
x

a

gn (9.2.25)

Fn ↑ A.

Fn x ∈ A,

(x) = (L f −L ) = (x) − (x) ≥ 0 a.e. on A.F ′
n

d

dx
∫

x

a

∫
x

a

gn F ′ gn (9.2.26)

n → ∞ → fgn A,

(x) −f(x) ≥ 0 a.e. on A.F ′ (9.2.27)

L ( −f) ≥ 0.∫
x

a

F ′ (9.2.28)

F ↑

L ≤ F (x) −F (a) = L f ;∫
x

a

F ′ ∫
x

a

(9.2.29)

L ( −f) = L −L f ≤ 0.∫
x

a

F ′ ∫
x

a

F ′ ∫
x

a

(9.2.30)

(∀x ∈ A) L ( −f) = 0;∫
x

a

F ′ (9.2.31)
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so by Problem 10 of §1,  a.e. on  as required.

Proof of Theorem 4 of §1. Via components, all again reduces to a real .

Let 

so  (pointwise),  and .

This makes each  -integrable on  Thus as before, by Theorem 5 of Chapter 8, §6,

Now, set

Then by Theorem 3 of §1 (already proved),

(since ).

Thus  has solely nonnegative derivates on  Also, as  we get

even if  (Why?) Hence

as

Thus none of the -derivates on  can be .

By Lemma 1, then,  is monotone ( ) on  so  i.e.,

or

Hence by (1),

For the reverse inequality, apply the same formula to  Thus we obtain the desired result:

Note 1. Formula (2) is equivalent to  on  (see the last part of §1). For if (2) holds, then

= fF ′ A, □

f

(∀n)

={gn
f

0

 on A(f ≤ n),

 on A(f > n);
(9.2.32)

→ fgn ≤ f , ≤ n,gn gn | | ≤ |f |gn

gn L A.

L = L f , x ∈ A.lim
n→∞

∫
x

a

gn ∫
x

a

(9.2.33)

(x) = F (x) −L .Fn ∫
x

a

gn (9.2.34)

(x) = (x) − L = f(x) − (x) ≥ 0 a.e. on AF ′
n F ′ d

dx
∫

x

a

gn gn (9.2.35)

≤ fgn

Fn A−Q(mQ = 0). ≤ n,gn

L ≤ n,
1

x−p
∫

x

a

gn (9.2.36)

x < p.

≥ −n,
ΔFn

Δx

ΔF

Δx
(9.2.37)

(x) = F (x) −L .Fn ∫
x

a

gn (9.2.38)

Fn A −∞

Fn ↑ A; (x) ≥ (a),Fn Fn

F (x) −L ≥ F (a) −L = F (a),∫
x

a

gn ∫
a

a

gn (9.2.39)

F (x) −F (a) ≥ L , x ∈ A,n = 1, 2, … .∫
x

a

gn (9.2.40)

F (x) −F (a) ≥ L f , x ∈ A.∫
x

a

(9.2.41)

−f .

F (x) = F (a) +L f  for x ∈ A. □∫
x

a

(9.2.42)

F = L ∫ f A
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with  so  by definition.

Conversely, if

set  to find .

II. A bsolute continuity redefined.

A map  is absolutely continuous on an interval  iff for every  there is  such that

for any disjoint intervals  with .

From now on, this replaces the "weaker" definition given in Chapter 5, §8. The reader will easily verify the next three "routine"
propositions.

If  are absolutely continuous on  so are

So also is  if

All this also holds if  are vector valued and  is scalar valued. Finally, if  then

are absolutely continuous along with  and 

A function  is absolutely continuous on   iff all its components  are.

Hence a complex function  is absolutely continuous iff its real and imaginary parts,  and  are.

If  is absolutely continuous on  it is bounded, is uniformly continuous, and has bounded variation, 
 all on 

If  is of bounded variation on  then

(i)  is a.e. differentiable on  and

(ii)  is -integrable on .

Proof

F (x) = c+L f ,∫
x

a

(9.2.43)

c = F (a); F = L ∫ f

F (x) = c+L f ,∫
x

a

(9.2.44)

x = a c = F (a)

 Definition

f : → EE1 I ⊆ E1 ε > 0, δ > 0

( − ) < δ implies  |f ( ) −f ( )| < ε∑
i=1

r

bi ai ∑
i=1

r

bi ai (9.2.45)

( , ) ,ai bi , ∈ Iai bi

 Theorem 9.2.1

f , g,h : → (C)E1 E∗ A = [a, b]

f ±g,hf ,  and |f |. (9.2.46)

f/h

(∃ε > 0) |h| ≥ ε on A. (9.2.47)

f , g : → EE1 h E ⊆ ,E∗

f ∨ g, f ∧ g, , and f+ f− (9.2.48)

f g.

 Corollary 9.2.1

F : → ( )E1 En Cn A = [a, b] , … ,F1 Fn

F : → CE1 Fre ,Fim

 Corollary 9.2.2

f : → EE1 A = [a, b],

[a, b] < ∞Vf A.

 Lemma 9.2.2

F : → ( )E1 En Cn A = [a, b],

F A,

F ′ L A

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/19219?pdf


9.2.6 https://math.libretexts.org/@go/page/19219

Via components (Theorem 4 of Chapter 5, §7), all reduces to the real case, .

Then since  we have

for some nondecreasing  and  (Theorem 3 in Chapter 5, §7).

Now, by Theorem 3 from Chapter 7, §10,  and  are a.e. differentiable on  Hence so is

Moreover,  and  since  and .

Thus for the -integrability of  proceed as in Problem 11 in §1, i.e., show that  is measurable on  and that

is finite. This yields the result.

If  is absolutely continuous on  then the following are true:

(i*)  is a.e. differentiable, and  is -integrable, on .

(ii*) If, in addition,  a.e. on  then  is constant on .

Proof

Assertion (i*) is immediate from Lemma 2, since any absolutely continuous function is of bounded variation by Corollary
2.

(ii*) Now let  a.e. on  Fix any

and let  consist of all  at which the derivative .

Given  let  be the set of all closed intervals  such that

By assumption,

and  If  and  is small enough, then

i.e., .

It easily follows that  covers  in the Vitali sense (verify!); so for any 
 Theorem 2 of Chapter 7, §10 yields disjoint intervals

with

F : →E1 E1

[A] < ∞,VF

F = g−h (9.2.49)

g h

g h A.

g−h = F . (9.2.50)

≥ 0g′ ≥ 0h′ g ↑ h ↑

L ,F ′ F ′ A

L = L −L∫
b

a

F ′ ∫
b

a

g′ ∫
b

a

h′ (9.2.51)

□

 Theorem  (Lebesgue)9.2.2

F : → ( )E1 En Cn A = [a, b],

F F ′ L A

= 0F ′ A, F A

= 0F ′ A.

B = [a, c] ⊆ A (9.2.52)

Z p ∈ B = 0F ′

ε > 0, K [p, x], p < x,

= < ε.
∣

∣
∣
ΔF

Δx

∣

∣
∣

∣

∣
∣
F (x) −F (p)

x−p

∣

∣
∣ (9.2.53)

= 0 (p ∈ Z),lim
x→p

ΔF

Δx
(9.2.54)

m(B−Z) = 0;B = [a, c] ∈ .M
∗ p ∈ Z, x−p

< ε,
∣

∣
∣
ΔF

Δx

∣

∣
∣ (9.2.55)

[p, x] ∈ K

K Z

δ > 0,

= [ , ] ∈ K, ⊆ B,Ik pk xk Ik (9.2.56)

(Z− ) < δ,m∗ ⋃
k=1

q

Ik (9.2.57)
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hence also

(for ). But

so

Now, as  is absolutely continuous, we can choose  so that (3) implies

But  also implies

Hence

Combining with (4), we get

so  As  was arbitrary,  is constant on  as claimed.

Note 2. This shows that Cantor's function (Problem 6 of Chapter 4, §5) is not absolutely continuous, even though it is continuous
and monotone, hence of bounded variation on  Indeed (see Problem 2 in §1), it has a zero derivative a.e. on  but is not
constant there. Thus absolute continuity, as now defined, differs from its "weak" counterpart (Chapter 5, §8).

A map  is absolutely continuous on   iff

for some function  and then

Briefly: Absolutely continuous maps are exactly all -primitives.

Proof

If  then by Theorem 1 of §1,  is absolutely continuous on  and by Note 1,

m(B− ) < δ⋃
k=1

q

Ik (9.2.58)

m(B−Z) = 0

B−⋃
k=1

q

Ik = [a, c] − [ , ]⋃
k=1

q−1

pk xk

= [a, ) ∪ [ , ) ∪ [ , c] ( if  < < ) ;p1 ⋃
k=1

q−1

xk pk+1 xq xk pk xk+1

m(B− ) = ( −a) + ( − ) +(c− ) < δ.⋃
k=1

q

Ik p1 ∑
k=1

q−1

pk+1 xk xq (9.2.59)

F δ > 0

|F ( ) −F (a)| + |F ( ) −F ( )| +|F (c) −F ( )| < ε.p1 ∑
k=1

q−1

pk+1 xk xq (9.2.60)

∈ KIk

|F ( ) −F ( )| < ε ( − ) = ε ⋅m .xk pk xk pk Ik (9.2.61)

[F ( ) −F ( )] < ε m ≤ ε ⋅mB = ε(c−p).
∣

∣
∣∑
k=1

q

xk pk
∣

∣
∣ ∑

k=1

q

Ik (9.2.62)

|F (c) −F (a)| ≤ ε(1 +c−a) → 0 as ε → 0; (9.2.63)

F (c) = F (a). c ∈ A F A, □

[0, 1]. [0, 1]

 Theorem 9.2.3

F : → ( )E1 E1 Cn A = [a, b]

F = L∫ f  on A (9.2.64)

f ;

F (x) = F (a) +L f , x ∈ A.∫
x

a

(9.2.65)

L

F = L ∫ f , F A,
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Conversely, if  is absolutely continuous, then by Theorem 2, it is a.e. differentiable and  is -integrable (all on 
). Let

Then  too, is absolutely continuous and so is  Also, by Theorem 3 of §1,

and so 

By Theorem 2,  i.e.,

and so  on  as claimed.

If  we have

on an interval  iff  is absolutely continuous on  and  a.e. on .

(Use Problem 3 in §1 and Theorem 3.)

Note 3. This (or Theorem 3) could serve as a definition. Comparing ordinary primitives

with -primitives

we see that the former require  to be just relatively continuous but allow only a countable "exceptional" set  while the latter
require absolute continuity but allow  to even be uncountable, provided .

The simplest and "strongest" kind of absolutely continuous functions are so-called Lipschitz maps (see Problem 6). See also
Problems 7 and 10.

III. We conclude with another important idea, due to Lebesgue.

We call  a Lebesgue point (" -point") of  iff

(i)  is -integrable on some ;

(ii)  is finite; and

(iii) .

The Lebesgue set of  consists of all such .

F (x) = F (a) +L f , x ∈ A.∫
x

a

(9.2.66)

F = fF ′ L

A

H(x) = L f , x ∈ A.∫
x

a

(9.2.67)

H, F −H.

= f = ,H ′ F ′ (9.2.68)

(F −H = 0 a.e. on A.)′ (9.2.69)

F −H = c;

F (x) = c+H(x) = c+L f ,∫
x

a

(9.2.70)

F = L ∫ f A, □

 Corollary 9.2.3

f ,F : → ( , ) ,E1 E∗ En Cn

F = L∫ f (9.2.71)

I ⊆ E1 F I = fF ′ I

F = ∫ f (9.2.72)

L

F = L∫ f , (9.2.73)

F Q,

Q mQ = 0

 Definition

p ∈ E1 L f : → EE1

f L (δ)Gp

q = f(p)

L |f −q| = 0limx→p
1

x−p
∫ x

p

f p
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Let

If  is an -point of  then  is the derivative of  at  (but the converse fails).

Proof

By assumption,

and

as  (Here  and .)

Thus with  we get

as required.

Let  Then  is an -point of  iff it is an -point for each of the  components,  of .

Proof

(Exercise!)

If  is -integrable on  then almost all  are Lebesgue points of 

Note that this strengthens Theorem 3 of §1.

Proof

By Corollary 5, we need only consider the case .

For any  is -integrable on  so by Theorem 3 of §1, setting

we get

for almost all .

 Corollary 9.2.4

F = L∫ f  on A = [a, b]. (9.2.74)

p ∈ A L f , f(p) F p

F (x) = c+L f , x ∈ (δ),∫
x

p

Gp (9.2.75)

L (f −q) ≤ L |f −q| → 0
1

|Δx|

∣

∣
∣ ∫

x

p

∣

∣
∣

1

|Δx|
∫

x

p

(9.2.76)

x → p. q = f(p) Δx = x−p

x → p,

−q
∣

∣
∣
F (x) −F (p)

x−p

∣

∣
∣ = L f −(x−p)q

1

|x−p|

∣

∣
∣ ∫

x

p

∣

∣
∣

= L f −L (q) → 0,
1

|x−p|

∣

∣
∣ ∫

x

p

∫
x

p

∣

∣
∣

□

 Corollary 9.2.5

f : → ( ) .E1 En Cn p L f L n , … , ,f1 fn f

 Theorem 9.2.4

f : → ( , )E1 E∗ En Cn L A = [a, b], p ∈ A f .

f : →E1 E∗

r ∈ , |f −r|E1 L A;

(x) = L |f −r|,Fr ∫
x

a

(9.2.77)

(p) = L |f −r| = |f(p) −r|F ′
r lim

x→p

1

|x−p|
∫

x

p

(9.2.78)

p ∈ A
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Now, for each  let  be the set of those  for which (5) fails; so  Let  be the sequence of all rationals
in  Let

where

so  (Why?)

To finish, we show that all  are -points of  Indeed, fix any  and any  Let  Fix a
rational  such that

Then

Hence as  we have

Since

formula (5) applies. So there is  such that  implies

As

we get

Hence

Combining with (6), we have

whenever  Thus

r, Ar p ∈ A m = 0.Ar { }rk
.E1

Q = ∪ {a, b} ∪ ,⋃
k=1

∞

Ark A∞ (9.2.79)

= A(|f | = ∞);A∞ (9.2.80)

mQ = 0.

p ∈ A−Q L f . p ∈ A−Q ε > 0. q = f(p).

r

|q−r| < .
ε

3
(9.2.81)

||f −r| − |f −q|| ≤ |(f −r) −(f −q)| = |q−r| <  on A− .
ε

3
A∞ (9.2.82)

m = 0,A∞

L f −r −L f −q|| ≤ L ( )= |x−p|.
∣

∣
∣ ∫

x

p

∣

∣
∣

∣

∣
∣ ∫

x

p

∣

∣
∣ ∫

x

p

ε

3

ε

3
(9.2.83)

p ∉ Q ⊇ ,⋃
k

Ark (9.2.84)

δ > 0 |x−p| < δ

( L |f −r|)− f(p) −r|| < .
∣

∣
∣

1

|x−p|
∫

x

p

∣

∣
∣

ε

3
(9.2.85)

|f(p) −r| = |q−r| < ,
ε

3
(9.2.86)

L |f −r|
1

|x−p|
∫

x

p

≤ ( L |f −r|)− q−r|| + |q−r|
∣

∣
∣

1

|x−p|
∫

x

p

∣

∣
∣

< + = .
ε

3

ε

3

2ε

3

L |f −r| < |x−p|.∫
x

p

2ε

3
(9.2.87)

L |f −q| < + = ε
1

|x−p|
∫

x

p

ε

3

2ε

3
(9.2.88)

|x−p| < δ.

L |f −q| = 0,lim
x→p

1

|x−p|
∫

x

p

(9.2.89)
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as required.
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9.2.E: Problems on L-Integrals and Absolute Continuity

Fill in all details in the proof of Lemma 1 and of Theorems 3 and 4 from §1.

Prove Theorem 1 and Corollaries 1, 2, and 5.

Disprove the converse to Corollary 4. (Give an example!)

. Show that if  is L-integrable on  and continuous at  then  is an L-point of  
[Hint: Use the 

Complete all proof details for Lemma  Theorems 3 and  and Corollary 

Let  on  and  on  (Dirichlet function). 
Show that  has exactly three derivates  at every 

. We say that  is a Lipschitz map, or has the uniform Lipschitz property on  iff 

 
Prove the following: 
(i) Any such  is absolutely continuous on . 
(ii) If all derivates of  satisfy 

 
then  is a Lipschitz map on .

. Let  and  (real or not) be absolutely continuous on  and  respectively. 
Prove that  is absolutely continuous on  provided that either  is as in Problem  or  is strictly monotone on 

Prove that if  is absolutely continuous on  if  and if  then 
Lebesgue measure). 

 Exercise 9.2.E. 1

 Exercise 9.2.E. 2

 Exercise 9.2.E. 2′

 Exercise 9.2.E. 3

⇒ 3 F : → EE1 A = [a, b] p ∈ A, p F .
ε, δ definition of continuity. ]

 Exercise 9.2.E. 4

2, 4, 3.

 Exercise 9.2.E. 5

F = 1 R(=  rationals ) F = 0 −RE1

F (0, +∞,  and  −∞) p ∈ .E1

 Exercise 9.2.E. 6

⇒ 6 F A,

(∃K ∈ ) (∀x, y ∈ A) |F (x) −F (y)| ≤ K|x −y|.E1 (9.2.E.1)

F A = [a, b]
f

|Df(x)| ≤ k < ∞, x ∈ A = [a, b], (9.2.E.2)

f A

 Exercise 9.2.E. 7

⇒ 7 g : →E1 E1 f : → EE1 A = [a, b] g[A],
h = f ∘ g A, f 6, g A.

 Exercise 9.2.E. 8

F : →E1 E1 A = [a, b], Q ⊆ A, mQ = 0, F [Q] = 0(m =m∗
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[Outline: We may assume  (Why?) 
 Fix  and take  as in Definition 2. As  is regular, there is an open , 

 
with  By Lemma 2 of Chapter 7, §2, 

 
for some . 

 Let  so 

 
and 

 
Also, 

 
From Definition  show that 

 
(first consider partial sums). As 

 
get 

Show that if  is as in Problem 8 and if 

 
(L-measurable sets), then 

 
 

[Outline: (i) If  is closed, it is compact, and so is  (Theorems 1 and 4 of Chapter 4, §6). 
(ii) If  then 

Q ⊆ (a, b).
ε > 0 δ m G

Q ⊆ G ⊆ (a, b), (9.2.E.3)

mG < δ.

G = (disjoint)⋃
k=1

∞

Ik (9.2.E.4)

= ( , ]Ik ak bk

= inf F [ ] , = supF [ ] ;uk Ik vk Ik

F [ ] ⊆ [ , ]Ik uk vk (9.2.E.5)

F [ ] ≤ − .m∗ Ik vk uk (9.2.E.6)

∑ ( − ) =∑m = mG < δ.bk ak Ik (9.2.E.7)

2,

( − ) ≤ ε∑
k=1

∞

vk uk (9.2.E.8)

F [Q] ⊆ F [G] ⊆ F [ ] ,⋃
k

Ik (9.2.E.9)

F [Q] ≤ F [ ] = ( − ) ≤ ε → 0. ]m∗ ∑
k

m∗ Ik ∑
k

vk uk (9.2.E.10)

 Exercise 9.2.E. 9

F

A = [a, b] ⊇ B, B ∈M∗ (9.2.E.11)

F [B] ∈ .M
∗ (9.2.E.12)

(" F  preserves  -sets." )M∗

B F [B]
B ∈ ,Fσ
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so by (i), 

 
(iii) If  then by Theorem 2 of Chapter 7, §8, 

 
Now use Problem 

. (Change of variable.) Suppose  is absolutely continuous and one-to-one on  while 
 is L-integrable on  

Prove that  is L-integrable on  and 

 
where  and . 
[Hints: Let  and  on  
By Theorems 2 and 3 and Problem 7 (end),  and  are absolutely continuous on  and  respectively; and  is L-
integrable on  So by Theorem 3 

 
as 

Setting  if not defined otherwise, find the intervals (if any) on which  is absolutely continuous if  is defined by 
(a) ; 
(b) ; 
(c) ; 
(d) ; 
(e) ; 
(f) ; 
(g) ; 

(h) ; 

[Hint: Use Problems 6 and 7.]

9.2.E: Problems on L-Integrals and Absolute Continuity is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by
LibreTexts.

B = , ∈ F ;⋃
i

Bi Bi (9.2.E.13)

F [B] = F [ ] ∈ ⊆ .⋃
i

Bi Fσ M
∗ (9.2.E.14)

B ∈ ,M∗

(∃K ∈ ) K ⊆ B, m(B −K) = 0.Fσ (9.2.E.15)

8,  with Q = B −K. ]

 Exercise 9.2.E. 10

⇒ 10 g : →E1 E1 A = [a, b],
f : → ( , )E1 E∗ En C n g[A].

(f ∘ g)g′ A

L (f ∘ g) = L f ,∫
b

a

g′ ∫
q

p

(9.2.E.16)

p = g(a) q = g(b)
F = L ∫ f H = F ∘ g A.

F H g[A] A, H ′

A.

H = L∫ = L∫ (f ∘ g) ,H ′ g′ (9.2.E.17)

= (f ∘ g)  a.e. on A. ]H ′ g′

 Exercise 9.2.E. 11

f(x) = 0 f f(x)
sinx

cos 2x

1/x

tanx

xx

x sin(1/x)
sin ( Problem 5 in §1)x2 x−2

⋅ sin(1/x) (verify that  | (x)| ≤ + )x3
−−

√ f ′ 3
2

x−
1

2
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9.3: Improper (Cauchy) Integrals
Cauchy extended R-integration to unbounded sets and functions as follows.

Given  and assuming that the right-hand side R-integrals and limits exist, define (first for unbounded sets, then for
unbounded functions)

(i) ;

(ii) .

If both

exists, define

Now, suppose  is unbounded near some  i.e., unbounded on  for every deleted globe  about  (such
points  are called singularities).

Then (again assuming existence of the R-integrals and limits), we define

1. in case of a singularity ,

2. if  then

3. if  and if

exist, then

The term

is necessary if - or -integrals are used.

Finally, if  contains several singularities, it must be split into subintervals, each with at most one endpoint singularity; and  is
split accordingly. We call all such integrals improper or Cauchy (C) integrals. A C-integral is said to converge iff it exists and is
finite.

This theory is greatly enriched if in the above definitions, one replaces -integrals by Lebesgue integrals, using Lebesgue or LS
measure in  (This makes sense even when a Lebesgue integral (proper) does exist; see Theorem 1.) Below,  shall denote such
a measure unless stated otherwise.

C-integrals with respect to  will be denoted by

f : →EE1

f = f = R f∫ ∞
a

∫
[a,∞)

limx→∞ ∫ x

a

f = f = R f∫ a

−∞
∫
(−∞,a]

limx→−∞ ∫ a

x

f  and  f∫
∞

0
∫

0

−∞
(9.3.1)

f = f + f .∫
∞

−∞
∫
(−∞,0)

∫
[0,∞)

(9.3.2)

f p ∈ A= [a, b], A∩G¬p G¬p p

p

p = a

f = f = R f ;∫
b

a+
∫
(a,b]

lim
x→a+

∫
b

x

(9.3.3)

p = b,

f = f = R f ;∫
b−

a

∫
[a,b)

lim
x→b−

∫
x

a

(9.3.4)

a< p < b

f  and  f∫
p−

a

∫
b

p+
(9.3.5)

f = f + f + f .∫
b

a

∫
p−

a

∫
p

p

∫
b

p+
(9.3.6)

f = f∫
p

p

∫
[p,p]

(9.3.7)

RS LS

A f∫ b

a

R

.E1 m

m
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"Classical" notation:

(the latter if  is Lebesgue measure). We omit the "C" if confusion with proper integrals  is unlikely.

Note 1. C-integrals are limits of integrals, not integrals proper. Yet they may equal the latter (Theorem 1 below) and then may be
used to compute them.

Caution. "Singularities" in  may affect the primitive used in computations (cf. Problem 4 in §1). Then  must be split (see
above), and  splits accordingly. (Additivity applies to C-integrals; see Problem 9, below.)

(A) The integral

has a singularity at  By Theorem 1 below, we get

(B) We have

Hence

(C) The integral

has no singularities (consider deleted globes about ). The primitive  exists (example (b) in Chapter 5, §5); so

In the rest of this section, we state our theorems mainly for

but they apply, with similar proofs, to

The measure  is as explained above.

C fdm, C f , etc. ∫
∞

a

∫
[a,b)

(9.3.8)

C ∫ f(x)dm(x) or C ∫ f(x)dx (9.3.9)

m f∫ x

a

[a, b] [a, b]

C f∫ b

a

 Examples

L∫
1/2

−1

dx

x2
(9.3.10)

0.

L∫
1/2

−1

dx

x2
= +∫

0−

−1

dx

x2
∫

1/2

0+

dx

x2

= (− −1)+ (−2+ ) =∞+∞=∞.lim
x→0−

1

x
lim
x→0+

1

x

C = (− +2) = 2.∫
∞

1/2

dx

x2
lim
x→∞

1

x
(9.3.11)

C =C +C =∞+2 =∞.∫
∞

−1

dx

x2
∫

1/2

−1

dx

x2
∫

∞

1/2

dx

x2
(9.3.12)

L dx∫
1

−1

|x|

x
(9.3.13)

0 F (x) = |x|

L dx = = 0.∫
1

−1

|x|

x
|x||1−1 (9.3.14)

C f ,∫
∞

a

(9.3.15)

C f , C f , etc. ∫
∞

−∞
∫

b−

a

(9.3.16)

m
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Let  (  complete).

(i) If  on  then

exists  and equals

(ii) The map  is -integrable on  iff

and  is -measurable on  then again,

Proof

(i) Let  on  By the rules of Chapter 8, §5,  is always defined for such  so we may set

Then by Theorem 1(f) in Chapter 8, §5,  on  for  implies

Now, by the properties of monotone limits,

exists in  so by Theorem 1 of Chapter 4, §2, it can be found by making  run over some sequence  say, 
.

Thus set

Then  and

i.e., .

Moreover, by Note 4 in Chapter 8, §5, the set function  is -additive and semifinite  Thus by Theorem 2 of
Chapter 7, §4 (left continuity)

proving (i).

(ii) By clause (i),

 Theorem 9.3.1

A= [a,∞), f : →EE1 E

f ≥ 0 A,

C fdm∫
∞

a

(9.3.17)

(≤∞)

fdm.∫
A

(9.3.18)

f m A

C |f | <∞∫
∞

a

(9.3.19)

f m A;

C fdm = fdm.∫
∞

a

∫
A

(9.3.20)

f ≥ 0 A. f∫A f ;

F (x) = fdm, x ≥ a.∫
x

a

(9.3.21)

F ↑ A; a≤ x ≤ y

F (x) = f ≤ f = F (y).∫
x

a

∫
y

a

(9.3.22)

F (x) = f =C flim
x→∞

lim
x→∞

∫
x

a

∫
∞

a

(9.3.23)

;E∗ x →∞,xk
= kxk

= [a, k], k= 1, 2,… .Ak (9.3.24)

{ } ↑Ak

⋃ =A= [a,∞),Ak (9.3.25)

↗AAk

s= ∫ f σ (≥ 0).

fdm = f = f =C f ,∫
A

lim
k→∞

∫
Ak

lim
k→∞

∫
k

a

∫
∞

a

(9.3.26)

C |f | = |f |dm∫
∞

a

∫
A

(9.3.27)
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exists, as  Hence

plus measurability amounts to integrability (Theorem 2 of Chapter 8, §6).

Moreover,

implies the convergence of  (see Corollary 1 below). Thus as

exists, we proceed exactly as before (here  is finite), proving (ii) also.

Note 2. If  formula (1) results even if  is not -measurable.

Note 3. While  cannot be integrable unless  is (Corollary 2 of Chapter 8, §6), it can happen that

converges even if

(this is called conditional convergence). A case in point is

see Problem 8.

Thus -integrals may be finite where proper integrals are  or fail to exist (a great advantage!). Yet they are deficient in other
respects (see Problem 9(c)).

For our next theorem, we need the previously "starred" Theorem 2 in Chapter 4, (Review it!) As we shall see, C-integrals resemble
infinite series.

Let  complete. 
Suppose

exists for each  (This is automatic if  see Chapter 8, §5.)

Then

converges iff for every  there is  such that

and

|f | ≥ 0.

C |f | <∞∫
∞

a

(9.3.28)

C |f | <∞∫
∞

a

(9.3.29)

C f∫ ∞
a

flim
x→∞

∫
x

a

(9.3.30)

s= ∫ f □

E ⊆ ,E∗ f m

f |f |

C ∫ f (9.3.31)

C ∫ |f | =∞ (9.3.32)

C dx;∫
∞

0

sinx

x
(9.3.33)

C ∞

 Theorem  (Cauchy criterion)9.3.2

A= [a,∞), f : →E,EE1

fdm∫
x

a

(9.3.34)

x ∈ A. E ⊆ ;E∗

C f∫
∞

a

(9.3.35)

ε> 0, b ∈ A

fdm < ε whenever b ≤ v≤ x <∞,
∣
∣
∣∫

x

v

∣
∣
∣ (9.3.36)
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Proof

By additivity (Chapter 8, §5, Theorem 2; Chapter 8, §7, Theorem 3),

if  (In case  this holds even if  is not integrable; see Theorem 2, of Chapter 8, §5.)

Now, if

converges, let

Then for any  there is some

such that

(Why may we use the standard metric here?)

Taking  we get (2'). Also, if  we have

and

Hence by the triangle law, (2) follows also. Thus this  satisfies (2).

Conversely, suppose such a  exists for every given  Fixing  we thus have (2) and (2'). Now, with 
define  by

so

if this limit exists. By (2),

if  Thus  is finite on  and so we may again use the standard metric

fdm <∞.
∣

∣
∣∫

b

a

∣

∣
∣ (9.3.37)

f = f + f∫
x

a

∫
v

a

∫
x

v

(9.3.38)

a≤ v≤ x <∞. E ⊆ ,E∗ f

C f∫
∞

a

(9.3.39)

r= fdm ≠±∞.lim
x→∞

∫
x

a

(9.3.40)

ε> 0,

b ∈ [a,∞) =A (9.3.41)

fdm−r < ε  for x ≥ b.
∣

∣
∣∫

x

a

∣

∣
∣

1

2
(9.3.42)

x = b, a≤ b ≤ v≤ x,

fdm−r < ε
∣

∣
∣∫

x

a

∣

∣
∣

1

2
(9.3.43)

r− fdm < ε.
∣

∣
∣ ∫

ν

a

∣

∣
∣

1

2
(9.3.44)

b

b ε> 0. b, A= [a,∞),
F : A→E

F (x) = fdm,∫
x

a

(9.3.45)

C f = F (x)∫
∞

a

lim
x→∞

(9.3.46)

|F (x)| = fdm ≤ fdm + fdm < fdm +ε
∣
∣
∣∫

x

a

∣
∣
∣

∣

∣
∣∫

b

a

∣

∣
∣

∣
∣
∣∫

x

b

∣
∣
∣

∣

∣
∣∫

b

a

∣

∣
∣ (9.3.47)

x ≥ b. F [b,∞),

ρ(F (x),F (v)) = |F (x)−F (v)| = fdm− fdm ≤ fdm < ε
∣

∣
∣∫

x

a

∫
v

a

∣

∣
∣

∣

∣
∣∫

x

v

∣

∣
∣ (9.3.48)
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if  The existence of

now follows by Theorem 2 of Chapter 4, §2. (We shall henceforth presuppose this "starred" theorem.)

Thus all is proved.

Under the same assumptions as in Theorem 2, the convergence of

implies that of

Indeed,

(Theorem 1(g) of Chapter 8, §5, and Problem 10 in Chapter 8, §7).

Note 4. We say that  converges absolutely iff  converges.

If  a.e. on  for some  then

so the convergence of

implies that of

For as  Theorem 1 reduces all to Theorem 1(c) of Chapter 8, §5.

Note 5. As we see, absolutely convergent C-integrals coincide with proper (finite) Lebesgue integrals of nonnegative or -
measurable maps. For conditional (i.e., nonabsolute) convergence, see Problems 6-9, 13, and 14.

Iterated C-Integrals. Let the product space  of Chapter 8, §8 be

and let  where  and  are Lebesgue measure or LS measures in . Let

Then the integral

x, v≥ b.

C fdm = F (x) ≠±∞∫
∞

a

lim
x→∞

(9.3.49)

□

 Corollary 9.3.1

C |f |dm∫
∞

a

(9.3.50)

C fdm.∫
∞

a

(9.3.51)

f ≤ |f |
∣
∣
∣∫

x

v

∣
∣
∣ ∫

x

v

(9.3.52)

C ∫ f C ∫ |f |

 Corollary  (comparison test)9.3.2

|f | ≤ |g| A= [a,∞) f , g : →E,E1

C |f | ≤C |g|;∫
∞

a

∫
∞

a

(9.3.53)

C |g|∫
∞

a

(9.3.54)

C |f |.∫
∞

a

(9.3.55)

|f |, |g| ≥ 0,

m

X×Y

× = ,E1 E1 E2 (9.3.56)

p =m×n, m n E1

A= [a, b],B= [c, d],  and D=A×B. (9.3.57)

fdmdn= f dmdn∫
B

∫
A

∫
Y

∫
X

CD (9.3.58)
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is also written

or

As usual, we write " " for " " if  is Lebesgue measure in  similarly for 

We now define

provided the limits and integrals involved exist.

If the integral (3) is finite, we say that it converges. Again, convergence is absolute if it holds also with  replaced by  and
conditional otherwise. Similar definitions apply to

Let  be -measurable on  (  as above). Then we have the following.

(i*) The Cauchy integrals

exist  and both equal

(ii*) If one of these three integrals is finite, then

converge, and both equal

(Similarly for  etc.)

Proof

As  and  are -finite (finite on intervals!),  surely has -finite support.

As  clause (i*) easily follows from our present Theorem 1(i) and Theorem 3(i) of Chapter 8, §8.

Similarly, clause (ii*) follows from Theorem 3(ii) of the same section.

fdmdn∫
d

c

∫
b

a

(9.3.59)

f(x, y)dm(x)dn(y).∫
d

c

∫
b

a

(9.3.60)

dx dm(x) m ;E1 n.

C fdndm∫
∞

a

∫
∞

c

= ( f(x, y)dn(y)) dm(x)lim
b→∞

∫
b

a

lim
d→∞

∫
d

c

=C f(x, y)dn(y)dm(x),∫
∞

a

∫
∞

c

f |f |,

C fdmdn,C fdndm,  etc.∫
∞

c

∫
∞

a

∫
b

−∞
∫

∞

c

(9.3.61)

 Theorem 9.3.3

f : →E2 E∗ p E2 p,m,n

C |f |dndm and C |f |dmdn∫
∞

−∞
∫

∞

−∞
∫

∞

−∞
∫

∞

−∞
(9.3.62)

(≤∞),

|f |dp.∫
E2

(9.3.63)

C fdndm and C fdmdn∫
∞

−∞
∫

∞

−∞
∫

∞

−∞
∫

∞

−∞
(9.3.64)

fdp.∫
E2

(9.3.65)

C fdndm,∫ ∞
a

∫ b

−∞

m n σ f σ

|f | ≥ 0,

□
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Let  Lebesgue measure in  Suppose  is -measurable on  Set

Then

(a)  and

(b) 

provided  is nonnegative or -integrable on  (for (a)) or on  (for (b)).

Proof Outline

First let  with  a "curved rectangle"

for some  in  and  in  By elementary geometry (or calculus), the area

(the difference between two circular sectors).

For  formulas (a) and (b) easily follow from

(Verify!) Now, curved rectangles behave like half-open intervals

in  since Theorem 1 in Chapter 7, §1, and Lemma 2 of Chapter 7, §2, apply with the same proof. Thus they form a
semiring generating the Borel field in .

Hence show (as in Chapter 8, §8 that Theorem 4 holds for ). Then take . Next let  be elementary
and nonnegative, and so on, as in Theorems 2 and 3 in Chapter 8, §8.

(D) Let

so

Set

in Theorem 4(b). Then  hence

 Theorem  (passage to polars)9.3.4

p = .E2 f : →E2 E∗ p .E2

F (r, θ) = f(r cosθ, r sinθ), r> 0. (9.3.66)

C fdxdy =C rdr Fdθ,∫ ∞
−∞ ∫ ∞

−∞ ∫ ∞
0 ∫ 2π

0

C fdxdy =C rdr Fdθ,∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ π/2
0

f p E2 (0,∞)×(0,∞)

f = ,CD D

{(r, θ)| < r≤ , < θ≤ }r1 r2 θ1 θ2 (9.3.67)

<r1 r2 X = (0,∞) <θ1 θ2 Y = [0, 2π).

pD= ( − ) ( − )
1

2
r22 r21 θ2 θ1 (9.3.68)

f = ,CD

pD=L dp.∫
E2

CD (9.3.69)

( , ] ×( , ]r1 r2 θ1 θ2 (9.3.70)

,E2

E2

f = (D ∈ BCD D ∈M∗ f

□

 Examples (continued)

J =L dx;∫
∞

0
e−x

2

(9.3.71)

J 2 =(C dx)(C dy)∫
∞

0
e−x

2

∫
∞

0
e−y

2

=C dxdy. (Why?)∫
∞

0
∫

∞

0
e−( + )x2 y2

f(x, y) = e−( + )x2 y2

(9.3.72)

F (r, θ) = ;e−r
2
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(Here we computed

by substituting .) Thus

This page titled 9.3: Improper (Cauchy) Integrals is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon
(The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.

J 2 =C rdr( dθ)∫
∞

0
∫

π

2

0
e−r

2

=C r dr ⋅ = − = π.∫
∞

0
e−r

2 π

2
π

1

4
e−t

∣
∣
∣
∞

0

1

4

∫ r dre−r
2

(9.3.73)

= tr2

C dx =L dx = = .∫
∞

0
e−x

2

∫
∞

0
e−x

2

π
1

4

−−−
√

1

2
π−−√ (9.3.74)
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9.3.E: Problems on Cauchy Integrals

Fill in all proof details in Theorems  Verify also at least some of the cases other than  Check the validity for -
integrals (footnote 6).

Prove Theorem 4 in detail.

Verify Notes 2 and 3 and examples (A)-(D).

Assuming  verify the following: 
(i) . 
[Hint: Use Corollary 2.] 
(ii) . 
(iii) . 
(iv) .

Verify the following: 
(i) . 
(ii) . 
Does this contradict formula (4) in the text, or Problem 5, which follows?

Let  and 

 
so  (Why?) 
(i) Is  R-integrable on  Is  so on  
(ii) Find  using Corollary 1 in §1. 
(iii) Find the value of 

 
to within  
[Hint: Reduce it to Problem 

 Exercise 9.3.E. 1

1 −3. f .∫
∞
a LS

 Exercise 9.3.E. 2

 Exercise 9.3.E. 2′

 Exercise 9.3.E. 3

a > 0,

dt ≤ dt =∫ ∞
1

1
t
e−t ∫ ∞

1 e−t 1
e

dt =∫ ∞
1 e−at e−a

a

dt =∫ ∞
0 e−at 1

a

sinbtdt =∫ ∞
0

e−at b

+a2 b2

 Exercise 9.3.E. 4

dydx = dx ≤ ( converges, by 3(i))∫ ∞
1

∫ ∞
1

e−xy ∫ ∞
1

1
x
e−x 1

e

dydx ≥ dydx = (1 − )dx ≥ ( − )dx = ∞∫ ∞
0

∫ ∞
0

e−xy ∫ ∞
1

∫ ∞
0

e−xy ∫ ∞
1

1
x

e−x ∫ ∞
1

1
x

e−x

 Exercise 9.3.E. 5

f(x, y) = e−xy

g(x) = L dy;∫
1

0
e−xy (9.3.E.1)

g(0) = 1.
g A = [0, 1]? f A×A?

g(x)

R dydx = R g∫
1

0
∫

1

0
e−xy ∫

1

0
(9.3.E.2)

1/10.
6(b) in §1.]
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. Let  be -measurable on  Prove the following: 
(i) If 

 
then  exists and equals 

 
(ii) If  converges conditionally only, then 

 
(iii) In case  we have 

 
iff  also, 

 
if  exists (finite or not).

. Suppose  is -integrable and sign-constant on each 

 
but changes sign from  to  with 

 
and  fixed. 
Prove that if 

 
as  then 

 Exercise 9.3.E. 6

⇒ 6 f , g : →E1 E∗ m A = [a, b), b ≤ ∞.

C < ∞ or C < ∞,∫
b−

a

f+ ∫
b−

a

f− (9.3.E.3)

C f∫ b−
a

C −C = fdm( proper ).∫
b−

a

f+ ∫
b−

a

f− ∫
A

(9.3.E.4)

f∫ b−
a

= = +∞.∫
b−

a

f+ ∫
b−

a

f− (9.3.E.5)

C |f | < ∞,∫ b−
a

C |f ±g| = ∞∫
b−

a

(9.3.E.6)

C |g| = ∞;∫ b−
a

C (f ±g) = C f ±C g∫
b−

a

∫
b−

a

∫
b−

a

(9.3.E.7)

C g∫ b−
a

 Exercise 9.3.E. 7

⇒ 7 f : →E1 E∗ m

= [ , ) , n = 1, 2, …An an an+1 (9.3.E.8)

An ,An+1

= [a, ∞)⋃
n=1

∞

An (9.3.E.9)

{ } ↑an

fdm ↘ 0
∣

∣
∣∫

An

∣

∣
∣ (9.3.E.10)

n → ∞,

c f∫
∞

a

(9.3.E.11)

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/25155?pdf


9.3.E.3 https://math.libretexts.org/@go/page/25155

 
converges. 
[Hint: Use Problem 10 in Chapter 4, §13.]

. Let 

 
Prove that 

 
converges conditionally only. 
[Hints: Use Problem 7. Show that 

. (Additivity.) Given , suppose that 

 
(proper) exists for each  Prove the following: 
(a)  and  converge. 
(b) If 

 
converges, so does 

 
(c) Countable additivity does not necessarily hold for C-integrals. 
[Hint: Use Problem 8 suitably splitting .]

(Refined comparison test.) Given  prove the following: 
(i) If for some  and , 

 
then 

 Exercise 9.3.E. 8

⇒ 8

f(x) = , f(0) = 1.
sinx

x
(9.3.E.12)

C f(x)dx∫
∞

0
(9.3.E.13)

C |f | = L |f | = L = L = ∞. ]∫
∞

0
∫

(0,∞)
∫

∞

0
f+ ∫

∞

0
f− (9.3.E.14)

 Exercise 9.3.E. 9

⇒ 9 f : → E(E complete) and a < b < c ≤ ∞E1

fdm ≠ ±∞∫
x

a

(9.3.E.15)

x ∈ [a, c).

C f∫ b−
a

C f∫ b

a+

C f∫
c−

b

(9.3.E.16)

C f = C f +C f .∫
c−

a

∫
b−

a

∫
c−

b

(9.3.E.17)

[0, ∞)

 Exercise 9.3.E. 10

f , g : → E(E complete) and b ≤ ∞,E1

a < b k ∈ E1

|f | ≤ |kg|  on [a, b) (9.3.E.18)
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(ii) Such  do exist if 

 
exists. 
(iii) If this limit is not zero, then 

 

(Similarly in the case of 

Prove that 
(I)  iff ; 
(ii)  iff ; 
(iii) .

Use Problems 10 and 11 to test for convergence of the following: 
(a) ; 

(b) ; 

(c)  

; 
(d) ; 

(e) ; 
(f) ; 

(g) .

. (The Abel-Dirichlet test.) Given  suppose that 
(a)  with ; 
(b)  is L-measurable on  and; 
(c) . 
Then  converges. 
[Outline: Set 

 
so  on  By Lemma 2 of §1,  is L-integrable on each  and  such that 

|g| < ∞ implies  |f | < ∞.∫
b−

a

∫
b−

a

(9.3.E.19)

a, k ∈ E1

< ∞lim
t→b−

|f(t)|

|g(t)|
(9.3.E.20)

|g| < ∞ iff  |f | < ∞.∫
b−

a

∫
b−

a

(9.3.E.21)

 with a ≥ −∞.)∫ b

a+

 Exercise 9.3.E. 11

dt < ∞∫
∞

1 tp p < −1

dt < ∞∫ 1
0+ tp p > −1

dt = ∞∫ ∞
0+ tp

 Exercise 9.3.E. 12

∫ ∞
0

dtt3/2

1+t2

∫ ∞
1

dt

t 1+t2√

dt∫ ∞
a

P(t)

Q(t)

(Q,P  polynomials of degree s and r, s > r;Q ≠ 0 for t ≥ a)

∫ 1−
0

dt

1−t4√

ln tdt∫ 1
0+

tp

∫ 1−
0

dt

ln t

tdt∫
−

π

2
0+ tanp

 Exercise 9.3.E. 13

⇒ 13 f , g : → ,E1 E1

f ↓, f(t) = 0limt→∞

g A = [a, ∞);
(∃K ∈ ) (∀x ∈ A) L g < KE1 ∣∣ ∫ x

a
∣∣

C f(x)g(x)dx∫ ∞
a

G(x) = g;∫
x

a

(9.3.E.22)

|G| < K A. fg [u, v] ⊂ A, (∃c ∈ [u, v])
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Now, by , 

 
so 

 
Now use Theorem  

 Now extend this to ]

. Do Problem  replacing assumptions (a) and (c) by 
(a')  is monotone and bounded on  and 
(c')  converges. 
[Hint: If  say, set  and  so 

 
Apply Problem 13 to 

Use Problems 13 and 14 to test the convergence of the following: 
(a) . 
[Hint: The integral converges iff  
(b) . 

 

(c) . 
(d) . 

The Cauchy principal value  of  is defined by 

 
(if it exists). Prove the following: 
(i) If  exists, so does  and the two are equal. 
Disprove the converse.

L fg = f(u) g = |f(u)[G(c) −G(u)]| < 2Kf(u).
∣
∣
∣ ∫

v

u

∣
∣
∣

∣
∣
∣ ∫

c

u

∣
∣
∣ (9.3.E.23)

(a)

(∀ε > 0)(∃k ∈ A)(∀u ≥ k) |f(u)| < ;
ε

2K
(9.3.E.24)

(∀v≥ u ≥ k) L fg < ε.
∣
∣
∣ ∫

v

u

∣
∣
∣ (9.3.E.25)

2.
g : → ( ) .E1 En Cn

 Exercise 9.3.E. 14

⇒ 14 13,
f [a, ∞) = A,
C g(x)dx∫ ∞

a

f ↑, q = f(t)limt→∞ F = q−f ;

fg = qg−Fg. (9.3.E.26)

C F (x)g(x)dx. ]∫
∞

a

(9.3.E.27)

 Exercise 9.3.E. 15

sin tdt∫ ∞
0

tp

p < 0. ]
dt∫ ∞

0+
cos t

t√

[ Hint: Integrate  dt by parts; then let u → 0 and v→ ∞. ]∫ v

u
cos t

t√

dt∫ ∞
1

cos t
tp

sin dt∫ ∞
0 t2

[ Hint: Substitute  = u;  then use (a). ]t2

 Exercise 9.3.E. 16

(CPV) C f(t)dt∫ ∞
−∞

(CPV) f = f(t)dt∫
∞

−∞
lim
x→∞

∫
x

−x

(9.3.E.28)

C ∫ f(t)dt (CPV)∫ f ,
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[Hint: Take  
(ii) Do the same for 

 
 being the only singularity in .

9.3.E: Problems on Cauchy Integrals is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

f(t) = sign(t)/ . ]|t|
−−

√

(CPV) f = ( f + f) ,∫
b

a

lim
δ→0+

∫
p−δ

a

∫
b

p+δ

(9.3.E.29)

p (a, b)
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9.4: Convergence of Parametrized Integrals and Functions
I. We now consider C-integrals of the form

where  is Lebesgue or LS measure in  Here the variable  called a parameter, remains fixed in the process of integration; but
the end result depends on  of course.

We assume  (  complete) even if not stated explicitly. As before, we give our definitions and theorems for the case

The other cases  are analogous; they are treated in Problems 2 and 3. We assume

throughout, and write " " for " " iff  is Lebesgue measure.

If

converges for each  in a set  we can define a map  by

This means that

so  on .

Here  depends on both  and  (convergence is "pointwise"). However, it may occur that one and the same  fits all  so that
 depends on  alone. We then say that

converges uniformly on  (i.e., for ), and write

Explicitly, this means that

Clearly, this implies (1), but not conversely. We now obtain the following.

Suppose

exists for  and  (This is automatic if  see Chapter 8, §5.)

C ∫ f(t, u)dm(t), (9.4.1)

m .E1 u,

u,

f : → EE2 E

C .∫
∞

a

(9.4.2)

(C ,C ,  etc. )∫ a

−∞ ∫ b−
a

a, b, c, x, t, u, v∈ E1 (9.4.3)

dt dm(t) m

C f(t, u)dm(t)∫
∞

a

(9.4.4)

u B ⊆ ,E1 F : B → E

F (u) = C f(t, u)dm(t) = f(t, u)dm(t).∫
∞

a

lim
x→∞

∫
x

a

(9.4.5)

(∀u ∈ B)(∀ε > 0)(∃b > a)(∀x ≥ b) f(t, u)dm(t) −F (u) < ε,
∣

∣
∣∫

x

a

∣

∣
∣ (9.4.6)

|F | < ∞ B

b ε u b u ∈ B,

b ε

C f(t, u)dm(t)∫
∞

a

(9.4.7)

B u ∈ B

F (u) = C f(t, u)dm(t) (uniformly) on B.∫
∞

a

(9.4.8)

(∀ε > 0)(∃b > a)(∀u ∈ B)(∀x ≥ b) f(t, u)dm(t) −F (u) < ε.
∣

∣
∣∫

x

a

∣

∣
∣ (9.4.9)

 Theorem  (Cauchy criterion)9.4.1

f(t, u)dm(t)∫
x

a

(9.4.10)

x ≥ a u ∈ B ⊆ .E1 E ⊆ ;E∗
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Then

converges uniformly on  iff for every  there is  such that

and

Proof

The necessity of (3) follows as in Theorem 2 of §3. (Verify!)

To prove sufficiency, suppose the desired  exists for every  Then for each (fixed) ,

satisfies Theorem 2 of §3. Hence

exists for every  (pointwise). Now, from (3), writing briefly  for  we obtain

for all  and all .

Making  (with  and  temporarily fixed), we have by (4) that

whenever .

But by our assumption,  depends on  alone (not on ). Thus unfixing , we see that (5) establishes the uniform
convergence of

as required.

Under the assumptions of Theorem 1,

converges uniformly on  if

does.

C f(t, u)dm(t)∫
∞

a

(9.4.11)

B ε > 0, b > a

(∀v, x ∈ [b, ∞))(∀u ∈ B) f(t, u)dm(t) < ε,
∣

∣
∣∫

x

v

∣

∣
∣ (9.4.12)

f(t, u)dm(t) < ∞.
∣

∣
∣∫

b

a

∣

∣
∣ (9.4.13)

b ε > 0. u ∈ B

C f(t, u)dm(t)∫
∞

a

(9.4.14)

F (u) = f(t, u)dm(t) ≠ ±∞lim
x→∞

∫
x

a

(9.4.15)

u ∈ B ∫ f ∫ f(t, u)dm(t),

f = f − f < ε
∣

∣
∣∫

x

v

∣

∣
∣

∣

∣
∣∫

x

a

∫
v

a

∣

∣
∣ (9.4.16)

u ∈ B x > v≥ b

x → ∞ u v

F (u) − f ≤ ε
∣

∣
∣ ∫

v

a

∣

∣
∣ (9.4.17)

v≥ b

b ε u u

f ,∫
∞

a

(9.4.18)

□

 Corollary 9.4.1

C f(t, u)dm(t)∫
∞

a

(9.4.19)

B

C |f(t, u)|dm(t)∫
∞

a

(9.4.20)
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Indeed,

Let  and  satisfy

for  and .

Then

converges uniformly on  if

does.

Indeed, Theorem 1 applies, with

Hence we have the following corollary.

Let  and  satisfy

for  and  Suppose

converges. Then

converges (uniformly) on  So does

by Corollary 1.

Proof

Set

Then Corollary 2 applies (with  replaced by  there). Indeed, the convergence of

f ≤ |f | < ε.
∣

∣
∣∫

x

v

∣

∣
∣ ∫

x

v

(9.4.21)

 Corollary  (comparison test)9.4.2

f : → EE2 M : →E2 E∗

|f(t, u)| ≤ M(t, u) (9.4.22)

u ∈ B ⊆ E1 t ≥ a

C |f(t, u)|dm(t)∫
∞

a

(9.4.23)

B

C M(t, u)dm(t)∫
∞

a

(9.4.24)

f ≤ M < ε.
∣

∣
∣∫

x

v

∣

∣
∣ ∫

x

v

(9.4.25)

 Corollary  (" -test")9.4.3 M

f : → EE2 M : →E1 E∗

|f(t, u)| ≤ M(t) (9.4.26)

u ∈ B ⊆ E1 t ≥ a.

C M(t)dm(t)∫
∞

a

(9.4.27)

C |f(t, u)|dm(t)∫
∞

a

(9.4.28)

B.

C f(t, u)dm(t)∫
∞

a

(9.4.29)

h(t, u) = M(t) ≥ |f(t, u)|. (9.4.30)

M h

C ∫ h = C ∫ M (9.4.31)
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is trivially "uniform" for  since  does not depend on  at all.

Note 1. Observe also that, if  does not depend on  then the (pointwise) and (uniform) convergence of  are trivially
equivalent.

We also have the following result.

Suppose

converges (pointwise) on  Then this convergence is uniform iff

i.e., iff

Proof

The proof (based on Theorem 1) is left to the reader, along with that of the following corollary.

Suppose

exists for each .

Then

converges (uniformly) on  iff

does.

II. The Abel-Dirichlet tests for uniform convergence of series (Problems 9 and 11 in Chapter 4, §13) have various analogues for C-
integrals. We give two of them, using the second law of the mean (Corollary 5 in §1).

First, however, we generalize our definitions, "unstarring" some ideas of Chapter 4, §11. Specifically, given

we say that  converges to  uniformly on  as  and write

iff we have

u ∈ B, M u □

h(t, u) u, C ∫ h

 Corollary 9.4.4

C f(t, u)dm(t)∫
∞

a

(9.4.32)

B ⊆ .E1

C f(t, u)dm(t) = 0 (uniformly) on B,lim
ν→∞

∫
∞

v

(9.4.33)

(∀ε > 0)(∃b > a)(∀u ∈ B)(∀v≥ b) C f(t, u)dm(t) < ε.
∣

∣
∣ ∫

∞

v

∣

∣
∣ (9.4.34)

 Corollary 9.4.5

f(t, u)dm(t) ≠ ±∞∫
b

a

(9.4.35)

u ∈ B ⊆ E1

C f(t, u)dm(t)∫
∞

a

(9.4.36)

B

C f(t, u)dm(t)∫
∞

b

(9.4.37)

H : → E (E complete),E2 (9.4.38)

H(x, y) F (y), B, x → q (q ∈ ) ,E∗

H(x, y) = F (y) (uniformly) on Blim
x→q

(9.4.39)

(∀ε > 0) (∃ ) (∀y ∈ B) (∀x ∈ ) |H(x, y) −F (y)| < ε;G¬q G¬q (9.4.40)
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hence  on .

If here  the deleted globe  has the form  Thus if

(6) turns into (2) as a special case. If (6) holds with  and  interchanged, as in (1), convergence is pointwise
only.

As in Chapter 8, §8, we denote by  or  the function of  alone (on ) given by

Similarly,

Of course, we may replace  by  or  etc.

We use Lebesgue measure in Theorems 2 and 3 below.

Assume  satisfy

(i)  converges (uniformly) on ;

(ii) each  is -measurable on ;

(iii) each  is monotone  or  on  and

(iv)  (bounded) on .

Then

converges uniformly on .

Proof

Given  use assumption (i) and Theorem 1 to choose  so that

written briefly as

for all  and  with  as in (iv).

Hence by (ii), each  is -integrable on any interval , with  Thus given such  and 
we can use (iii) and Corollary 5 from §1 to find that

for some .

Combining with (7) and using (iv), we easily obtain

|F | < ∞ B

q = ∞, G¬q (b, ∞).

H(x, u) = f(t, u)dt,∫
x

a

(9.4.41)

" (∃ ) "G¬q " (∀y ∈ B) "

f(⋅, y), ,f y x E1

(x) = f(x, y).f y (9.4.42)

(y) = f(x, y).fx (9.4.43)

f(x, y) f(t, u) H(t, u),

 Theorem 9.4.2

f , g : →E2 E1

C g(t, u)dt∫ ∞
a B

(u ∈ B)gu L A = [a, ∞)

(u ∈ B)f u (↓ ↑) A;

|f | < K ∈ E1 A×B

C f(t, u)g(t, u)dt∫
∞

a

(9.4.44)

B

ε > 0, b > a

L g(t, u)dt < ,
∣

∣
∣ ∫

x

v

∣

∣
∣

ε

2K
(9.4.45)

L < ,
∣

∣
∣ ∫

x

v

gu
∣

∣
∣

ε

2K
(9.4.46)

u ∈ B x > v≥ b, K

(u ∈ B)gu L [v, x] ⊂ A x > v≥ b. u [v, x],

L = (v)L + (x)L∫
x

v

f ugu f u ∫
c

v

gu f u ∫
x

c

gu (9.4.47)

c ∈ [v, x]

L f(t, u)g(t, u)dt < ε
∣

∣
∣ ∫

x

v

∣

∣
∣ (9.4.48)
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whenever  and  (Verify!)

Our assertion now follows by Theorem 1.

Let  satisfy

(a)  (uniformly) for ;

(b) each  is nonincreasing  on ;

(c) each  is -measurable on  and

(d) .

Then

converges uniformly on .

Proof Outline

Argue as in Problem 13 of §3, replacing Theorem 2 in §3 by Theorem 1 of the present section.

By Lemma 2 in §1, obtain

for  and .

Then use assumption (a) to fix  so that

for  and 

Note 2. Via components, Theorems 2 and 3 extend to the case  

Note 3. While Corollaries 2 and 3 apply to absolute convergence only, Theorems 2 and 3 cover conditional convergence, too (a
great advantage!). The theorems also apply if  or  is independent of  (see Note 1). This supersedes Problems 13 and 14 in §3.

(A) The integral

converges uniformly on  if  and pointwise on .

Indeed, we can use Theorem 3, with

and

say. Then the limit

u ∈ B x > v≥ b.

□

 Theorem  (Abel-Dirichlet test)9.4.3

f , g : →E2 E∗

f(t, u) = 0limt→∞ u ∈ B

(u ∈ B)f u (↓) A = [0, ∞)

(u ∈ B)gu L A;

(∃K ∈ ) (∀x ∈ A)(∀u ∈ B) L g(t, u)dt < KE1 ∣∣ ∫ x

a
∣∣

C f(t, u)g(t, u)dt∫
∞

a

(9.4.49)

B

L = (v)L ≤ Kf(v, u)
∣

∣
∣ ∫

x

v

f ugu
∣

∣
∣

∣

∣
∣f u ∫

x

a

gu
∣

∣
∣ (9.4.50)

u ∈ B x > v≥ a

k

|f(t, u)| <
ε

2K
(9.4.51)

t > k u ∈ B. □

g : →E2 ( ) .En Cn

f g u

 Examples

dt∫
∞

0

sin tu

t
(9.4.52)

= [δ, ∞)Bδ δ > 0, B = [0, ∞)

g(t, u) = sin tu (9.4.53)

f(t, u) = , f(0, u) = 1,
1

t
(9.4.54)
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is trivially uniform for  as  is independent of  Thus assumption (a) is satisfied. So is (d) because

(Explain!) The rest is easy.

Note that Theorem 2 fails here since assumption (i) is not satisfied.

(B) The integral

converges uniformly on  It does so absolutely on  if 

Here we shall use Theorem 2 (though Theorem 3 works, too). Set

and

Then

converges (substitute  in Problem 8 or 15 in §3). Convergence is trivially uniform, by Note 1. Thus assumption (i)
holds, and so do the other assumptions. Hence the result.

For absolute convergence on  use Corollary 3 with

so .

Note that, quite similarly, one treats C-integrals of the form

provided

converges .

In fact, Theorem 2 states (roughly) that the uniform convergence of  implies that of  provided  is monotone (in 
) and bounded.

III. We conclude with some theorems on uniform convergence of functions  (see (6)). In Theorem 4,  is again an
LS (or Lebesgue) measure in  the deleted globe  is fixed.

Suppose

= 0lim
t→∞

1

t
(9.4.55)

u ∈ ,Bδ f u.

sin tudt = sinθdθ ≤ ⋅ 2.
∣

∣
∣∫

x

0

∣

∣
∣

∣

∣
∣
1

u
∫

xu

0

∣

∣
∣

1

δ
(9.4.56)

sinatdt∫
∞

0

1

t
e−tu (9.4.57)

B = [0, ∞). = [δ, ∞),Bδ δ > 0.

f(t, u) = e−tu (9.4.58)

g(t, u) = , g(0, u) = a.
sinat

t
(9.4.59)

g(t, u)dt∫
∞

0

(9.4.60)

x = at

,Bδ

M(t) = ,e−δt (9.4.61)

M ≥ |fg|

g(t)dt, g(t)dt,  etc.,∫
∞

a

e−tu ∫
∞

a

e− ut2

(9.4.62)

g(t)dt∫
∞

a

(9.4.63)

(a ≥ 0)

C ∫ g C ∫ fg, f

t

H : → EE2 m

;E1 G∗
¬q

 Theorem 9.4.4

H(x, y) = F (y) (uniformly)lim
x→q

(9.4.64)
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for  Then we have the following:

(i) If all  are continuous or -measurable on  so also is .

(ii) The same applies to -integrability on  provided  and then

hence

Formula (8') is known as the rule of passage to the limit under the integral sign.

Proof

(i) Fix a sequence   in the deleted globe  and set

The uniform convergence

is preserved as  runs over that sequence (see Problem 4). Hence if all  are continuous or measurable, so is  (Theorem
2 in Chapter 4, §12 and Theorem 4 in Chapter 8, §1. Thus clause (i) is proved.

(ii) Now let all  be -integrable on  let

Then the  are -measurable on  and so is  by (i). Also, by (6),

proving (8). Moreover, as

 is -integrable on  and so is

Hence

as  by (8). Thus (8') is proved, too.

Quite similarly (keeping  complete and using sequences), we obtain the following result.

Suppose that

(i) all  are continuous and finite on a finite interval , and differentiable on  for a fixed countable
set ;

(ii)  exists for some  and

(iii)  (uniformly) exists on .

y ∈ B ⊆ .E1

(x ∈ )Hx G∗
¬q m B, F

m B, mB < ∞;

| −F | = 0;lim
x→q

∫
B

Hx (9.4.65)

= F = ( ) .lim
x→q

∫
B

Hx ∫
B

∫
B

lim
x→q

Hx (9.4.66)

→ qxk (xk ),G∗
¬q

= (k = 1, 2, …).Hk Hxk (9.4.67)

H(x, y) → F (y) (9.4.68)

x Hk F

Hx m B;

mB < ∞. (9.4.69)

Hk m B, F ,

(∀ε > 0) (∃ ) (∀x ∈ ) | −F | ≤ (ε) = εmB < ∞,G¬q G¬q ∫
B

Hx ∫
B

(9.4.70)

| −F | < ∞,∫
B

Hx (9.4.71)

−FHx m B,

F = −( −F ) .Hx Hx (9.4.72)

− F = ( −F ) ≤ | −F | → 0,
∣

∣
∣∫

B

Hx ∫
B

∣

∣
∣

∣

∣
∣∫

B

Hx

∣

∣
∣ ∫

B

Hx (9.4.73)

x → q, □

E

 Theorem 9.4.5

(x ∈ )Hx G∗
−q B ⊂ E1 B−Q,

Q

H (x, ) ≠ ±∞limx→q y0 ∈ B;y0

H(x, y) = f(y)limx→q D2 B−Q

https://libretexts.org/
https://creativecommons.org/licenses/by/3.0/
https://math.libretexts.org/@go/page/19221?pdf


9.4.9 https://math.libretexts.org/@go/page/19221

Then  so defined, has a primitive  on  exact on  (so  on  moreover,

Outline of Proof

Note that

Use Theorem 1 of Chapter 5, §9, with 

Note 4. If  over a path  (clustering at ), one must replace  and  by  and  in (6) and in Theorems
4 and 5.

This page titled 9.4: Convergence of Parametrized Integrals and Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or
curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the
LibreTexts platform; a detailed edit history is available upon request.

f , F B, B−Q = fF ′ B−Q);

F (y) = H(x, y) (uniformly) for y ∈ B.lim
x→y

(9.4.74)

H(x, y) = (y).D2
d

dy
Hx (9.4.75)

= , → q. □Fn Hxn xn

x → q P q G¬q G∗
¬q P ∩G¬q P ∩G∗

¬q
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9.4.E: Problems on Uniform Convergence of Functions and C-Integrals

Fill in all proof details in Theorems  Corollaries 4 and  and examples  and 

Using  prove that 

 
exists on  iff 

 
Assume  complete and  on  
[Hint: "Imitate" the proof of Theorem 1, using Theorem 2 of Chapter 4, §2.]

State formulas analogous to ( 1) and ( 2) for  and .

State and prove Theorems 1 to 3 and Corollaries 1 to 3 for 

 
In Theorems 2 and 3 explore absolute convergence for 

 
Do at least some of the cases involved. 
[Hint: Use Theorem 1 of §3 and Problem 1', if already solved.]

Prove that 

 
on  iff 

 
on  for all sequences . 
[Hint: "Imitate" Theorem 1 in Chapter 4, §2. Use Definition 1 of Chapter 4, §12.]

 Exercise 9.4.E. 1

1 −5, 5, (A) (B).

 Exercise 9.4.E. 1′

(6),

H(x, y) (uniformly) lim
x→q

(9.4.E.1)

B ⊆ E1

(∀ε > 0) (∃ ) (∀y ∈ B) (∀x, ∈ ) |H(x, y) −H ( , y)| < ε.G¬q x′ G¬q x′ (9.4.E.2)

E |H| < ∞ ×B.G¬q

 Exercise 9.4.E. 2

, ,∫ a

−∞
∫ b−

a
∫ b

a+

 Exercise 9.4.E. 3

, ,  and  .∫
a

−∞

∫
b−

a

∫
b

a+

(9.4.E.3)

 and  .∫
b−

a

∫
b

a+

(9.4.E.4)

 Exercise 9.4.E. 4

H(x, y) = F (y) (uniformly) lim
x→q

(9.4.E.5)

B

H ( , ⋅) = F ( uniformly )lim
n→∞

xn (9.4.E.6)

B → q ( ≠ q)xn xn
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Prove that if 

 
on  and on  then this convergence holds on  Hence deduce similar propositions on -integrals.

Show that the integrals listed below violate Corollary 4 and hence do not converge uniformly on  though proper L-
integrals exist for each  Thus show that Theorem 1 (ii) does not apply to uniform convergence. 
(a) ; 

(b) ; 

(c) . 

 Then 

 
as  Thus if , 

Using Corollaries 3 to  show that the following integrals converge (uniformly) on  (as listed) but only pointwise on  (for
the latter, proceed as in Problem 6 ). Specify  and  in each case where they are not given. 
(a) . 

 
(b) . 
(c) . 
(d) . 
[Hint: Fix  so small that 

 
Then, if , 

In example (A), disprove uniform convergence on . 
[Hint: Proceed as in Problem 

 Exercise 9.4.E. 5

H(x, y) = F (y) (uniformly) lim
x→q

(9.4.E.7)

A B, A∪B. C

 Exercise 9.4.E. 6

P = (0, δ)

u ∈ P .

∫ 1

0+
udt

−t2 u2

dt∫ 1

0+
−u2 t2

( + )t2 u2 2

dt∫ 1

0+

tu( − )t2 u2

( + )t2 u2 2

[ Hint for (b) :  To disprove uniform convergence, fix any ε, v> 0.

dt = →∫
v

0

−u2 t2

( + )t2 u2 2

v

+v2 u2

1

v
(9.4.E.8)

u → 0. v< 1
2ε

(∃u ∈ P ) dt > > ε. ]∫
v

0

−u2 t2

( + )t2 u2 2

1

2v
(9.4.E.9)

 Exercise 9.4.E. 7

5, U P

P M(t)

dt;U = [δ, ∞);P = (0, δ)∫ ∞

0
e−ut2

[ Hint: Set M(t) =  for t ≥ 1 (Corollaries 3 and 5) . ]e−δt

cos tdt(a ≥ 0);U = [δ, ∞)∫ ∞

0
e−ut ta

dt;U = [δ, ∞)∫ 1
0+ tu−1

sin tdt;U = [0, δ], 0 < δ < 2;P = [δ, 2);M(t) =∫ 1
0+ t−u t1−δ

v

(∀t ∈ (0, v)) > .
sin t

t

1

2
(9.4.E.10)

u → 2

sin tdt ≥ → ∞. ]∫
v

0

t−u 1

2
∫

v

0

dt

tu−1
(9.4.E.11)

 Exercise 9.4.E. 8

P = (0, ∞)

6. ]
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Do example (B) using Theorem 3 and Corollary 5. Disprove uniform convergence on 

Show that 

 
converges uniformly on any closed interval  with  
[Hint: Transform into 

Show that 

 
converges (uniformly) on any finite interval . 
[Hint: Integrate 

 
by parts twice. Then let 

Show that 

 
converges (uniformly) for  
[Hints: For 

Prove that 

 
converges (uniformly) for  but (pointwise) for  
[Hint: Use Theorem 3 with  and 

 Exercise 9.4.E. 9

B.

 Exercise 9.4.E. 10

cos tdt∫
∞

0+

sin tu

t
(9.4.E.12)

U, ±1 ∉ U.

{sin[(u+1)t] +sin[(u−1)t]}dt. ]
1

2
∫

∞

0+

1

t
(9.4.E.13)

 Exercise 9.4.E. 11

t sin sin tudt∫
∞

0

t3 (9.4.E.14)

U

t sin sin tudt∫
y

x

t3 (9.4.E.15)

y → ∞ and x → 0. ]

 Exercise 9.4.E. 12

dt (0 < a < 1)∫
∞

0+

e−tu cos t

ta
(9.4.E.16)

u ≥ 0.

t → 0+,  use M(t) = .  For t → ∞,  use example (B) and Theorem 2. ]t−a

 Exercise 9.4.E. 13

dt (0 < a < 1)∫
∞

0+

cos tu

ta
(9.4.E.17)

u ≥ δ > 0, u > 0.

g(t, u) = cos tu

g = ≤ .
∣

∣
∣∫

x

0

∣

∣
∣

∣
∣
∣
sinxu

u

∣
∣
∣

1

δ
(9.4.E.18)
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For , 

 
if 

Given  and  suppose that 
(i) each  is relatively (or uniformly) continuous on  and 
(ii)  is -integrable on . 
Set 

 
Then show that  is relatively (or uniformly) continuous on  
[Hint: We have 

 
Similarly for uniform continuity.]

Suppose that 
(a)  on ; 
(b) each  is relatively continuous on  and 
(c) each  is  -integrable on every   
Then show that  is relatively continuous, hence integrable, on  and that 

 
where 

 
(Passage to the limit under the -sign.) 
[Hint: Use Problem 14 and Theorem 4; note that 

9.4.E: Problems on Uniform Convergence of Functions and C-Integrals is shared under a CC BY 1.0 license and was authored, remixed, and/or
curated by LibreTexts.

u > 0

dt = dz → ∞∫
∞

v

cos tu

ta
ua−1 ∫

∞

vu

cosz

z
(9.4.E.19)

v= 1/u and u → 0.  Use Corollary 4. ]

 Exercise 9.4.E. 14

A,B ⊆ (mA < ∞)E1 f : → E,E2

f(x, ⋅) = (x ∈ A)fx B;

eachf(⋅, y) = (y ∈ B)f y m A

F (y) = f(x, y)dm(x), y ∈ B.∫
A

(9.4.E.20)

F B.

(∀x ∈ A)(∀ε > 0) (∀ ∈ B)(y0 ∃δ > 0)(∀y ∈ B∩ (δ))Gy0

|F (y) −F ( )| ≤ |f(x, y) −f (x, )| dm(x) ≤ ( )dm = ε.y0 ∫
A

y0 ∫
A

ε

mA

 Exercise 9.4.E. 15

C f(t, y)dm(t) = F (y)( uniformly )∫ ∞
a B = [b, d] ⊆ E1

f(x, ⋅) = (x ≥ a)fx B;

f(⋅, y) = (y ∈ B)f y m [a, x] ⊂ ,E1 x ≥ a.

F B

F = ,∫
B

lim
x→∞

∫
B

Hx (9.4.E.21)

H(x, y) = f(t, y)dm(t).∫
x

a

(9.4.E.22)

∫

C f(t, y)dm(t) = H(x, y)(uniformly). ]∫
∞

0

lim
x→∞

(9.4.E.23)
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